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Abstract. The increasing ubiquity of mobile computing devices has
made mobile ad hoc networks an everyday occurrence. Applications in
these networks are commonly structured as a logical network of mobile
agents that coordinate with each other to achieve their goals. In these
highly dynamic multi-agent systems, the multitude of devices provides a
varied and rapidly changing context in which agents must learn to op-
erate. Successful end-user applications will not only learn to handle dy-
namic conditions, but will take advantage of the wide variety of available
information and resources. Any environment that supports agents and
their interactions must facilitate flexible communication mechanisms.
Such protocols for enabling an application agents task of gathering con-
textual information must function in a timely and adaptive fashion. This
paper presents a protocol for mediating these context-based interactions
among mobile agents. We present an implementation and show how it
facilitates information exchange among mobile application agents. We
also provide an analysis of the tradeoffs between consistency and range
of context definitions in highly dynamic ad hoc networks.

1 Introduction

In large-scale multi agent systems, a software agent must adapt its behavior to
a constantly changing environment defined by a multitude of mobile computing
devices supporting a variety of other application agents and services. Mobile
networks form opportunistically and change rapidly in response to the movement
of the hosts and agents that define the network. To communicate, applications in
such a network commonly use ad hoc routing protocols (e.g., DSDV [1], DSR [2],
AODV [3]) that deliver messages between a known source and destination using
intermediate nodes as routers. Ad hoc multicast routing protocols require nodes
to register as receivers for a specific multicast address. The network maintains a
multicast tree [4, 5] or mesh [6, 7] for delivering messages to registered receivers.

Directly applying these routing techniques to gathering the context informa-
tion needed by a particular application agent poses several drawbacks. In both



unicast and multicast routing, the paths along which messages are delivered may
extend across the entire network. As the ubiquity of mobile devices increases,
mobile networks may grow very large, have large network diameters, and sup-
port increasing numbers of coordinating agents. Consider a network composed
of cars on a highway. Cars may be transitively connected for hundreds of miles,
but it is generally not necessary or desirable for an application to communicate
at great distances. Each car may support several agents, but many application
agents require only local interactions, e.g., an agent may be responsible for gath-
ering local traffic information for a particular driver. In addition, for traditional
routing protocols to function, senders and receivers require explicit knowledge
of each other. Often, however, an application has no a priori knowledge about
the agents and services with which it will want to interact, since components
in the networks move at will, and agents or services that are encountered once
may never be encountered again. Supporting context-aware agents in this unpre-
dictable environment requires reevaluating what application agents need from
underlying protocols and providing solutions tailored to these needs.

Emerging applications for this environment (like the traffic example above)
focus on using application agents to provide context information to the user.
This context can be defined by physical properties of the host or surrounding
hosts and by information or services available on them. For example, a context-
aware tour guide [8, 9] may interact with nearby kiosks to display locally relevant
tourist information. Cars on a highway may interact to gather traffic information
about their intended routes. In any of these cases, application agents cooperate
to gather the information presented to the user. This information defines the
operating context of the application, which differs for each application. The
scope of interaction is driven by the instantaneous needs of applications, which
change over time.

We focus on providing a protocol to support an agent’s ability to specify what
context information it needs from its environment and to gather that informa-
tion in a manner that adapts to environmental changes. Because the network
is constantly being reshaped, an agent’s requests must be evaluated in a timely
fashion to ensure the freshness of the information. Previous work resulted in the
Content-Based Multicast model (CBM) [10], which focuses on disseminating in-
formation collected by sensors. In general, this model is tailored for distributing
information about a (possibly mobile) threat to interested parties. The dissemi-
nation pattern in CBM is based on the relative movement patterns of the threat
being sensed and the interested parties. Mobile nodes that sense the presence
of a threat push information about the threat in the direction of its movement.
At the same time, mobile components pull information about threats present in
their direction of travel. This combination of both push and pull actions allows
this multicast protocol to adjust to dynamic components with varying speeds.

While the CBM model addresses needs of context aware applications, it is
tailored to a specific class of context-aware applications. It is a protocol tailored
to dissemination of mobile threats to mobile parties. Our approach focuses on a
more general treatment of context that caters to the varying and unpredictable



needs of applications in heterogeneous mobile networks. While traditional ap-
proaches to context-aware computing either deal with specific types of context
(like CBM) or only context that can be sensed by the local host, we extend the
notion of context to include information available in a region of the network sur-
rounding the host where the requesting agent resides. The protocol constructs
and dynamically maintains a tree over a subnet of neighboring hosts and links
whose attributes contribute to an application agent’s specific definition of con-
text. Here we present the first protocol implementing the Network Abstractions
model [11]. We explore the protocol in detail, focusing on its practicality, imple-
mentation, and performance in an effort to quantify the guarantees that can be
associated with extended contexts in dynamic mobile networks.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the Network Abstractions model and protocol. Section 3 discusses
our implementation. Section 4 provides an analysis of the model through simu-
lation. Conclusions appear in Section 5.

2 Network Abstractions Overview

Today’s dynamic mobile networks contain many hosts and links with varying
properties which define the context for any individual agent in the network. The
behavior of an adaptive agent depends on this continuously changing context.
This context definition is broader than traditional definitions that include only
local information. This has the potential to greatly increase the amount of con-
text information available, and so an application agent desires the ability to
precisely specify its context based on the properties of hosts and links in the
network. For example, a network on a highway might extend for hundreds of
miles, but an agent operating on behalf of a driver may be interested only in
gas stations within five miles. Our approach allows the corresponding agent’s
context specification to remain as general and flexible as possible while ensuring
the feasibility of the protocol to dynamically compute the context. The Network
Abstractions model provides an agent on a particular host, called the reference,
the ability to specify a context that spans a subset of the network.

2.1 Model Overview

As discussed previously, an adaptive application in a mobile network operates
optimally only over a context tailored to its specific needs. The Network Abstrac-
tions model views this context as a subnet surrounding the application agent.
Consider the example network shown in Fig. 1. In this network, the reference
host where the agent is running is shown in gray. The links shown are available
communication links. This figure represents the agent’s definition of a context
that includes all hosts within fewer than three hops. The number inside each
node is its shortest distance from the reference in terms of number of hops. The
dashed line labeled “D=3” represents the agent’s bound on the context (three
hops), while the darkened links indicate paths in a tree that define the context.
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Fig. 1. A Network Abstraction defined to include all hosts within three hops of the
reference (shown in gray)

By defining such a context, the agent has restricted its operation to a subnet of
the network that is locally relevant to its desired functionality.

This example uses a simple definition of “distance” (number of hops), but this
approach can be generalized to include distance definitions tailored to unique
applications. We will provide examples of more sophisticated distance metrics
later in this section. In general, after providing its application-specific definition
of distance and the maximum allowable distance, the reference agent would like
a list of hosts such that:

Given a host α and a positive D, find the set of all hosts Qα such that
all hosts in Qα are reachable from α, and for all hosts β in Qα, the cost
of the shortest path from α to β is less than D.

In the Network Abstractions model, an agent specifies its distance metric
with two components. The first defines the weight of a link in the network. This
can be computed using information available to the two nodes connected by the
link. The second component is a cost function evaluated over a series of weights.
In the hop count example, the weight of all links is defined to be one, while the
cost function simply adds the weights of links along the path.

The weight on a link, wij , is a combination of properties of the link (e.g.,
latency, bandwidth, or physical distance) and properties of the two hosts (i and
j) it connects (e.g., available power, location, or direction).

The cost function determines the cost of a particular path in the network,
defined by the series of nodes traversed by the path. Cost functions are defined
recursively; this allows them to be computed in a distributed fashion. A path



from reference host 0 to host k is represented as Pk. The cost function is defined
as:

f0(Pk) = Cost(f0(Pk−1), wk−1,k)

where Cost indicates the agent-specified function evaluated over the cost at the
previous hop and the weight of the most recent link. As will become evident in
the upcoming examples, we must require that the cost function strictly increases
with the number of hops from the reference host. Recursive evaluation of this
cost function over a network path determines its cost. In a real network, multiple
paths may exist between two nodes. Therefore, as shown by the darkened links
in Fig. 1, we build a tree rooted at the reference node that includes only the
lowest cost path to each node in the network.

An agent exploits the availability of the cost function and its associated
properties to limit the scope of the context computation by providing a bound
on the maximum allowable cost. Nodes to which the cost is less than the bound
are included in the context. This allows the computation to avoid touching nodes
outside its context bound.

2.2 Example Metrics

Next we examine some example distance metrics. First we provide a metric that
uses a more sophisticated weight definition, then show a more complicated cost
function.

Network Latency Consider an application in which field researchers share
sensor data and video feeds. The context requirements for each researcher’s
tasks will likely be different. The Network Abstractions model allows the agents
running on behalf of each researcher to tailor their context definitions to the
researcher’s needs by defining a weight for each network link. Because we are
sending video, we want a link’s weight to account for the node-to-node latency:

wij =
node latency i

2
+

node latencyj

2
+ link latency ij .

where the first two components define the average time between when the node
receives a packet and when it propagates the packet. We use only half of this
number; otherwise we would count the node’s latency twice if the node is in the
middle of the path. This latency value will suffice under the assumption that
a node’s incoming latency is approximately equivalent to the node’s outgoing
latency. The third component of wij is the time required for a message to travel
between two nodes.

The application agent also provides a cost function; a simple one to use with
this weight definition is the same as in the hop count example:

f0(Pk) = f0(Pk−1) + wk−1,k,

where the cost of the path from node 0 (the reference) to node k along path Pk

is the sum of the cost to the previous node plus the weight of the new link. A
bound on this cost function is defined by a bound on the total allowed latency.



Physical Distance Next we present a general-purpose metric based on physical
distance. Agents running on cars traveling on a highway collect information
about weather conditions, highway exits, accidents, traffic patterns, etc. As a
car moves, its agent wants to operate over the information that will affect the
driver’s immediate route, so the data should be restricted to information within
a certain physical distance (e.g., within a mile).

The agent’s calculated context should be based on the physical distance be-
tween the reference host and other hosts. For this example, a link’s weight re-
flects the distance vector between two connected nodes, accounting for both the
displacement and the direction of displacement between the two nodes:

wij = IJ
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Fig. 2. (a) Physical distance only; (b) Physical distance with hop count, restricted due
to distance; (c) Physical distance with hop count, restricted due to hop count; (d) The
correct cost function

Fig. 2a shows an example network where specifying distance alone causes
an agent’s context to not be easily bounded. This results from the fact that a



cost function based on distance alone is not strictly increasing as the number of
hops from the reference host grows. To overcome this problem, the car agent’s
cost function should be based on a combination of the distance vector and a hop
count. The cost function’s value (ν) at a given node consists of three values:

ν = (maxD ,C ,V)

The first value, maxD , stores the maximum distance seen on this path. This may
or may not be the magnitude of the distance vector from the reference to this
host. The second value, C , keeps the number of consecutive hops for which maxD
did not increase. The final value, V, is the distance vector from the reference
host to this host.

Specifying a bound for this cost function requires bounding both maxD and
C . A host is in the context only if both its maxD and C are less than the bound’s
values. Neither the value of maxD nor the value of C can ever decrease, and, if
one value remains constant for any hop, the other is guaranteed to increase.

Fig. 2d shows the cost function. In the first case, the new magnitude of the
vector from the reference host to this host is larger than the current value of
maxD ; maxD is reset to the magnitude of the vector from the reference to this
host, C remains the same, and the distance vector to this host is stored. In the
second case, maxD is the same for this node as the previous node; maxD remains
the same, C is incremented by one, and the distance vector to this host is stored.

Fig. 2b shows the same nodes as Fig. 2a using this new cost function. The
agent specified bound shown in Fig. 2b is D = (10, 2) where 10 is the bound on
maxD and 2 is the bound on C . This cost function can be correctly bounded,
and no hosts that should qualify are missed. Fig. 2c shows the same cost function
applied to a different network. In this case, while the paths never left the area
within distance 10, node Z still falls outside the context because the maximum
distance remained the same for more than two hops.

2.3 Protocol Overview

An agent desires the guarantee that any message it sends will be received only
by hosts within its context and that it is received by all hosts within its context.
Our protocol builds a tree over the network based on an application agent’s
specification, defining a single route from the reference host to all other hosts in
the context. In this section, we provide an overview of the protocol in preparation
for a discussion of its implementation and analysis. More details of the protocol
can be found in [11] and [12].

In general, the protocol can be divided into two components. The first deals
with the dissemination of an agent’s one-time queries on its context. Such queries
may require replies from context members, but the context that is built need not
be maintained. This lack of maintenance is beneficial when an agent’s operation
over its context occurs in a periodic polling fashion, because it reduces the over-
head needed to maintain the context in a highly dynamic network. The second
portion of the protocol deals with maintaining the context when the agent needs



continuous information. Due to the maintenance cost involved, ideal interactions
would extend one-time queries to larger contexts (e.g., poll for traffic conditions
for the next five miles), but only maintain smaller contexts (e.g., react to cars
within potential collision range of my car).

Assumptions The protocol assumes a message passing mechanism that guar-
antees reliable delivery with associated acknowledgements. The protocol also
assumes that when a link disappears, both hosts that were connected by the
link can detect the disconnection. The protocol requires that all configuration
changes and an agent’s issuance of queries over the context are serializable with
respect to each other. A configuration change is defined as the change in the
value of the distance metric at a given link and the propagation of those changes
through the tree structure. Finally, we assume that the underlying system main-
tains the weights on links in the network by responding to changes in the con-
textual information required by application agents.

The Query Component The protocol is on-demand in that a tree is built
only when an agent sends a data query. Piggy-backed on this data message
are the context specification and the information necessary for its computation.
Specifically, the query contains the context’s definition of link weight, the cost
function, and the bound. The protocol uses this information to determine which
hosts should receive this message.

Tree Building Because any information required for computing an agent’s
context arrives in a query, hosts need not keep information about the system’s
global state. An agent with a data query to send bundles the context specifica-
tion with the query and hands it to the protocol implementation which in turn
determines which of the reference host’s neighbors are within the context and
sends them the query. Due to the wireless nature of the network, this can be
accomplished via one message transmission broadcast to all the neighbors; those
not in the context disregard the message. Neighbors in the context determine if
any of their neighbors are also in the context and, if so, rebroadcast the message.
In the course of query propagation, every context member remembers the previ-
ous hop in its shortest path back to the reference host. A node only rebroadcasts
a duplicate message if its cost has decreased since this may cause inclusion of
additional nodes in the context. When the query reaches the bound, it will not
be forwarded on; the query distribution stabilizes when every node in the con-
text knows its shortest path to the reference host. Each node that receives the
context message for the first time also passes the application level information
carried with the query to the designated application agent(s) running on the
host.

Tree Maintenance As discussed above, contexts over which an agent issues
persistent queries require maintenance. One example of an application that needs



such a persistent query is one in which the application agent wishes to notify the
driver of the car if any other cars come within a potential collision radius. The
protocol for maintaining the context builds on the one-time query protocol above.
Ultimately, the entire protocol is an extension of a distance-vector protocol with
modifications for managing the distance metric and bound. To achieve context
maintenance, hosts within the context must react to changes that affect their
cost. The new cost may push the node (or other downstream nodes) out of
the context or pull them in. Because all needed information is stored within the
hosts in the context, the reference host need not participate in this maintenance;
instead it is a local adjustment to a local change. Due to the nature of distance
vector routing, this protocol suffers from the count-to-infinity problem, where,
upon loss of a link, two nodes both believe their route back to the reference node
is through each other. Under the assumption that maintained contexts will be
small, this problem can be overcome by maintaining the entire routing path.

2.4 Practical Research Issues

In the remainder of this paper, we present an implementation and analysis of
the protocol described above. The particular reference implementation discussed
allows us to explore the range of distance metrics and cost functions application
agents can use and to build an extensive software system for operating over
contexts in a dynamic mobile environment. We also provide an analysis of the
protocol over a simple metric (the hop count example discussed previously) used
to examine the feasibility of the consistency assumptions we make and to study
the performance of the protocol in a variety of networks. Specifically, we test
the limits of the network changes our protocol can handle and measure the
correctness of the context building mechanisms.

3 Implementation

Our implementation is written entirely in Java. This decision is driven by the
fact that we aim to ease application development, which means placing control
over the context in the hands of novice programmers. We feel that by using Java
to provide interfaces to application programmers, we can leverage its object-
oriented abstractions to ease the programming task. It is also imperative that
we provide a flexible protocol that an application developer can tailor to its
needs. Thus, application agents can define individualized distance metrics and
add new environmental monitors to the system to increase the flexibility of link
weight definitions.

The implementation allows issuance of both one-time and persistent queries
and maintains contexts which have persistent queries. We include built-in met-
rics (e.g., hop count) but also provide a general framework for defining new
metrics. Our implementation uses the support of two additional packages; one
for neighbor discovery and one for environmental monitoring. We describe these
two packages briefly before detailing the protocol implementation.
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Fig. 3. Architecture of a system using Network Abstractions

3.1 Support Packages

Fig. 3 shows the overall architecture of a system utilizing the Network Abstrac-
tions protocol we will describe. The Network Abstractions protocol assumes a
physical network and a message passing mechanism to exist. It also relies on
two additional packages: a neighbor discovery protocol and an environmental
monitoring component comprising both local sensing and neighborhood sensor
monitoring.

Neighbor Discovery A node in our protocol receives knowledge of its neigh-
bors from a discovery service. This service uses a periodic beaconing mechanism
and can be parameterized with policies for neighbor addition and removal (e.g.,
a neighbor is only added when its beacon has been heard for two consecutive
beacon periods, and a neighbor is removed when it has not been heard from for
10 seconds).

Environmental Monitoring Our protocol relies on the availability of context
information from the environment. To perform this context-sensing service in
mobile ad hoc networks, we use the CONSUL monitoring package [13]. As shown
in Fig. 3, two components contribute to providing environmental monitoring
functionality: the sensing component and the sensor monitoring component. The
sensing component allows software to interface with sensing devices connected
to a host. Each device has a corresponding piece of software (a monitor) within
the CONSUL service. An application (or in this case, the Network Abstractions
protocol) can interact with a monitor by polling for its value or by reacting to
changes in its value. The sensor monitoring component maintains a registry of
monitors available on the local hosts (local monitors) and on hosts found by the
discovery package (remote monitors). Local monitors make the services available
on a host accessible to applications on that host. To gain access to local monitors,
the application provides the name of the monitor (e.g., “location”) to the registry.



To monitor context information on remote hosts (i.e., on neighboring hosts),
the registry creates local proxies that connect to and interact with monitor
components on the remote devices. To access remote monitors, the application
provides the ID of the remote host (which can be retrieved from the discovery
package) and the name of the monitor. The behavior of this package is similar
to that provided by the Context Toolkit [14]. Instead of gathering information
directly from hosts an arbitrary distance away, however, we focus on gathering
context information only about the links that connect a node to its neighbors
as defined by the discovery package. This allows the CONSUL package to not
rely on any centralized infrastructure or even any a priori knowledge, making it
highly applicable to dynamic ad hoc networks.

3.2 Network Abstractions Protocol Implementation

Before defining a context, an agent must build a distance metric. This requires
developing an object that adheres to a well defined metric interface and includes
two methods. The first determines the weights on links to neighbors using mon-
itors available on the local host and its neighbors. Because this link weight def-
inition is a Java method in the base class that is overridden by the application
agent’s subclass, it can include arbitrary code. The second method determines
the cost of a path, given a previous cost and a next hop weight. Again, because
this can include any code, the cost function definition can be tailored to the
application’s needs.

While some application programmers enjoy the flexibility this open interface
provides them, the complexity increases the development burden, especially for
those programmers unfamiliar with the inner workings of the Network Abstrac-
tions protocol. To further ease the use of the protocol, we provide several build
in distance metrics and cost functions. These include commonly used metrics,
e.g., a cost function based on hop count and a cost function based on physical
distance.

An agent defines a context by providing the aforementioned distance metric
and a bound. Until a query is registered on the context, however, the protocol
simply stores the information locally. It returns to the application agent a handle
to the defined context.

To send a one-time query, the application passes a data packet to the protocol
with a handle to a context. The protocol layer uses information provided by the
neighbor discovery and environmental monitoring services to determine which
neighbors must receive the message, if any. If neighbors exist that are within the
context’s bound, the local host packages the application agent’s data with the
context information and broadcasts the entire packet to its qualifying neighbors.

Upon receiving a one-time context query, the receiving host stores the pre-
vious hop, and repeats the propagation step, forwarding the packet to any of
its neighbors within the bound. It also passes the packet’s data portion to ap-
plication level listeners registered to receive it. These listeners are registered by
agents or services running on the receiving host that can respond to the send-
ing agent. If this same query (identified by a sequence number) is received from



another source, the new information is remembered and propagated only if the
cost of the new path is less than the previous cost.

An agent or service on a host receiving a query can reply to a data packet.
The protocol uses the stored previous hop information to route the reply back to
the reference host and ultimately the sending agent. Because this reply is asyn-
chronous and the context for a one-time query is not maintained, it is possible
that the route no longer exists. In these cases, the reply is dropped. To provide
a stronger guarantee on a reply’s return, an agent should use a persistent query
which forces the protocol to maintain the context.

The structure of a persistent query differs slightly from a one-time query in
that it must include the entire path. This information is used to overcome the
count-to-infinity problem encountered in distance vector protocols. The distri-
bution of the query is the same as above, but the actions taken upon query
reception vary slightly. The receiving host must remember the entire path back
to the reference host. When the same query arrives on multiple paths, the host
remembers every qualifying path. If the currently used path breaks, the protocol
can replace it with a viable path. To keep both the current path and the list
of possible paths consistent, the protocol monitors the aspects of the context
that contribute to distance definition; if these values change, the cost at this
host or its neighbors could also change. For example, to maintain a context built
around physical distance, the protocol must monitor the physical location of
this host and the physical locations of all neighbors also in the same context.
This is accomplished through the local and remote monitors of the environmen-
tal monitoring package. The protocol reacts to these changes and updates its
cost information locally. It also propagates these changes to affected neighbors.
Therefore local changes to the metric do not affect the entire context; instead
they only affect nodes from the point of change out to the bound. Before replac-
ing a path, the protocol checks that the new path is loop-free.

Replies to persistent queries propagate back towards the reference host along
the paths maintained by the protocol. A query is not guaranteed to reach the
reference. Our practical experience shows, however, that, in reasonably sized
networks with a fair amount of mobility, the delivery assumption is likely to
hold. Section 4 provides an empirical evaluation of this assumption.

3.3 Demonstration System

Fig. 4 shows a screen capture of our demonstration system. In this example, each
circle depicts a single host running an instance of the protocol. Even though, in
this case, all of the code runs on one machine, the demonstration system uses
the network for communication, which allows this system to display information
gathered from actual mobile hosts. This figure shows a single context defined
by an agent on the reference host (the gray host in the center of the white
hosts). This context is simple; it includes all hosts within one hop. When a
host moves within the context’s bound, it receives a query registered on the
context that causes the node to turn its displayed circle white. When the node
moves out of the context, the persistent query is removed, and the pictured node



Fig. 4. Screen capture of demonstration system

turns itself black. The demonstration system allows simulation of a variety of
mobility models, including a Markov model, a random waypoint model [15], and
a highway model. It is useful to developers who wish to visualize the behavior of
their context definitions (distance metrics and cost functions) before deploying
an application in the real world.

3.4 Example Usage

The protocol implementation described here is currently in use to support the
ongoing implementation of a middleware model for ad hoc mobile computing. In
this system, called EgoSpaces [16], application agents operate over projections
(views) of the data available in the world. EgoSpaces addresses the specific needs
of individual application agents, allowing them to define what data is to be
included in a view by constraining properties of the data items, the agents that
own the data, the hosts on which those agents are running, and attributes of
the ad hoc network. This protocol provides the latter in a flexible manner, and
EgoSpaces uses the Network Abstractions protocol to deliver all communication
among agents.

4 Analysis and Experimental Results

The previous sections have overviewed the Network Abstractions protocol and
its implementation. In this section, we further motivate the use of this package
by developers of mobile agent systems by providing some performance mea-
surements. Ideally, a suite of such measurements will be used by application



developers in determining which context definitions are appropriate for different
needs or situations.

To examine the practicality of defining contexts on real mobile ad hoc net-
works, we used the ns-2 network simulator, version 2.26. This section provides
simulation results for context dissemination. These simulations are a first step
in analyzing the practicality of the protocol we have implemented. Not only do
they serve to show that it is beneficial to define contexts in the manner described
in ad hoc networks, the measurements also provide information to application
programmers about what types or sizes of contexts should be used under given
mobility conditions or to achieve required guarantees. All of the simulations we
describe in this section implement a context defined by the number of hops from
the reference node. Because this is the simplest type of context to define using the
Network Abstractions protocol, this provides a baseline against which we can
compare simulations of more complex or computationally difficult definitions.
Before providing the experimental results, we detail the simulation settings and
parameters we used.

4.1 Simulation Settings

We generated random 100 node ad hoc networks that use the random waypoint
mobility model [15]. The simulation is restricted to a 1000x1000m2 space. We
vary the network density (measured in average number of neighbors) by varying
the transmission range. We measured the average number of neighbors over our
simulation runs for each transmission range we used; these averages are shown in
Fig. 5. While the random waypoint mobility model suffers from “density waves”
as described in [17], it does not adversely affect our simulations. An average of
1.09 neighbors (e.e., 50m transmission range) represents an almost disconnected
network, while an average of 23.89 neighbors (i.e. 250m transmission range) is
extremely dense. While the optimal number of neighbors for a static ad hoc
network was shown to be the “magic number” six [18], more recent work [17]
shows that the optimal number of neighbors in mobile ad hoc networks varies
with the degree of mobility and mobility model. The extreme densities in our
simulations lie well above the optimum for our mobility degrees.

Range (m) 50 75 100 125 150 175 200 225 250

Neighbors 1.09 2.47 4.21 6.38 9.18 12.30 15.51 19.47 23.89

Fig. 5. Average number of neighbors for varying transmission ranges

In our simulations, we used the MAC 802.11 standard [19] implementation
built in to ns-2. Our protocol sends only broadcast packets, for which MAC
802.11 uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 3.
3 In CSMA/CA a node ready to send senses the medium for activity and uses a back

off timer to wait if the medium is busy. When the node senses a clear medium, it
broadcasts the packet but waits for no acknowledgements.



This broadcast mechanism is not reliable, and we will measure our protocol’s
reliability over this broadcast scheme in our simulations. We implemented a sim-
ple “routing protocol” on top of the MAC layer that, when it receives a packet
to send simply broadcasts it once but does not repeat it.

We also tested our protocol over a variety of mobility scenarios using the
random waypoint mobility model with a 0s pause time. In the least dynamic
scenarios, we use a fixed speed of 1m/s for each mobile node. We vary the
maximum speed up to 20m/s while holding a fixed minimum speed of 1m/s to
avoid the speed degradation described in [20].

4.2 Simulation Results for Context Query Dissemination

The results presented evaluate our protocol for three metrics in a variety of
settings. The first metric measures the context’s consistency, i.e., the percentage
of nodes receiving a context notification given the nodes that were actually
within the context when the query was issued. The second metric measures
the context notification’s settling time, i.e., the time that passes between the
reference host’s issuance of a context query and the time that every node in the
context that will receive the query has received it. The third metric evaluates the
protocol’s efficiency through the rate of “useful broadcasts”, i.e., the percentage
of broadcast transmissions that reached nodes that had not yet received the
context query.

The first set of results compare context definitions of varying sizes, specifi-
cally, definitions of one, two, three, and four hop contexts. We then evaluate our
protocol’s performance as network load increases, specifically as multiple nodes
define contexts simultaneously. Unless otherwise specified, nodes move with a
20m/s maximum speed.

Increased Size of Logical Context Decreases Consistency. In compar-
ing contexts of varying sizes, we found that as the size increases, the consistency
of the context decreases. Results for different context sizes are shown in Fig. 6.
These results show a single context definition on our 100 node network. The
protocol can provide localized contexts (e.g., one or two hops) with near 100%
consistency. With broader context definitions, the percentage of the context no-
tified drops to as low as 94%. The disparity between large and small context
definitions becomes most apparent with increasing network density. At large
densities, the extended contexts contain almost the entire network, e.g., at a
transmission range of 175m, a four hop context contains ∼80% of the network’s
nodes. In addition, the number of neighbors is 12.3, leading to network conges-
tion when many neighboring nodes rebroadcast. This finding lends credence to
the idea that applications should define contexts which require guarantees (e.g.,
collision detection) as more localized, while contexts that can tolerate some in-
consistency (e.g., traffic information collection) can cover a larger region.

Larger Contexts Take Longer to Settle. As the size of the defined con-
text increases, more time is required to notify all the context members. For a
two hop context with a reasonable density (9.18 neighbors at 150m transmission
range), the maximum time to notify a context member was 20.12ms. Results



 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 50  100  150  200  250

P
er

ce
nt

ag
e 

of
 c

on
te

xt
 r

ec
ei

vi
ng

 m
es

sa
ge

Transmission range (meters)

one hop context
two hop context

three hop context
four hop context

Fig. 6. Percentage of context members receiving the message for contexts of varying
sizes

for this measurement are shown in Fig. 7 The settling times for different sized
networks eventually become similar as network density increases. This is due to
the fact that even though the context is defined to be four hops, all nodes are
within two hops of each other, effectively rendering a four hop context definition
a two hop context.

Efficiency Decreases Almost Linearly with Increasing Density. Fig. 8
shows the protocol’s efficiency versus density for different sized contexts. First,
notice that the efficiency for a one hop network is always 100% because only one
broadcast (the initial one) is ever sent. For larger contexts, the efficiency is lower
and decreases with increasing density. Most of the lower efficiency and the de-
scending nature of the curve results from the fact that rebroadcasting neighbors
are likely to reach the same set of additional nodes. This becomes increasingly
the case as the density of the network increases. Even at high densities, however,
a good number (> 20%) of the broadcasts reach additional context members.

This drop in efficiency as the density increases (as well as the corresponding
drop in context consistency) is caused in part by a “broadcast storm,” a com-
monly known problem well defined even in ad hoc networks. Previous work [21]
has quantified the additional coverage a broadcast gains in mobile ad hoc net-
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works. Several alternative broadcasting mechanisms have been proposed, many
of which are compared in [22]. Integrating these or similar intelligent broad-
cast mechanisms may increase the resulting consistency and efficiency of context
notification.

Increased Network Load Decreases Consistency. The remainder of
the analysis focuses on an increasing load in the network, caused by multiple
simultaneous context definitions by multiple nodes in the network. In all cases,
the multiple registrations were issued at randomly distributed times within a
100ms window. We show only results for four hop contexts; results for smaller
contexts are discussed in comparison. As Fig. 9 shows, five context definitions
have no significant impact on the consistency as compared to a single definition.
This is due to the fact that, on average, the different contexts issue queries after
other queries have had time to settle. For ten definitions, the atomicity starts
to decrease, bottoming out at ∼80% at a 200m transmission range. With more
registrations, especially at the larger densities, the different context messages
interfere with each other. This has two ramifications. The first is that the broad-
cast messages collide and are never delivered. The second results from the fact
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that MAC 802.11 uses CSMA/CA. Because the medium is busier (more neigh-
boring nodes are broadcasting), nodes are more likely to back off and wait their
turn to transmit. During this extended waiting time, the context members are
moving (at a maximum speed of 20m/s). By the time the medium is available,
context members that were in the context initially have moved out of it and will
not be notified. These effects decrease significantly with smaller context sizes,
e.g., at a transmission rate of 175m, ten definitions on a two hop context can
be delivered with ∼97% consistency, and twenty can be delivered with ∼89.5%
consistency.

Extensions to this protocol may be able to start to handle the negative effect
that increased network load has on the atomicity metric. These extensions could
include reusing information available about already constructed contexts to limit
the amount of work required to construct another context for a new agent. Also,
one-time context distributions may be able to use information stored on nodes
servicing persistent queries over maintained contexts.

Increased Network Load Increases Settling Time at High Densities.
Given the previous results, it is not surprising that increasing the network load
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to five context definitions does not increase settling time. As shown in Fig. 10,
however, increasing the network load to ten definitions increases settling times
of networks with high densities. Again, when the network density is large and
multiple nodes are building contexts, the dispersions of their contexts queries
interfere with each other, causing the broadcasting nodes to use their back off
timers. This increased back off causes a longer delay in the delivery of context
messages, especially to outlying context members.

We do not present any results for efficiency with changing network load, since
network load seems to have no real effect on the percentage of useful broadcasts.

Changing Speed has No Impact on Context Notification. In our
analysis of this protocol over a variety of network speeds, we found that the
dissemination of context messages is not greatly affected by the speed of the
nodes. This is because the queries are only being sent out, and replies are not
attempted. Were we to provide results for reply transmission back to the refer-
ence host, we would see that the routes are less likely to hold up for the scenarios
with higher node speeds. This concern is addressed by the maintenance protocol,
but simulation results for this portion of the protocol are outside the scope of
this paper.
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5 Conclusions

The ideas behind this work are rooted in the notion that communication in
multi-agent systems for mobile ad hoc networks is an essential component of
any environment supporting the execution of such agents. These types of sys-
tems are open, decentralized environments in which no centralized authority can
control who enters into communication range or even mediate communication
among agents who do manage to connect. The agents themselves are often quite
autonomous, each with its own independent task and goals to meet. This paper
demonstrates the feasibility of the Network Abstractions protocol to specifically
support the communication needs of such agents. While the protocol was pre-
sented and has been used within the context of mobile ad hoc networks, it can
extend to other genres of multi-agent systems in which the communication re-
quirements of the agents can be expressed in some form of a strictly increasing
distance metric. The dynamic nature of the protocol allows it to adapt to the
openness and unpredictability of a variety of multi-agent environments. In the
Network Abstractions protocol, the notion of an agent’s context is broadened to
include, in principle all available information, yet it can be conveniently limited



in scope to a neighborhood whose size and scope is determined by the specific
needs of a particular application agent as it changes over time.

This work implements and analyzes a protocol for providing contexts in mo-
bile ad hoc networks. The protocol provides a flexible interface that gives the
application agent explicit control over the expense of its operation while main-
taining ease of programming by making the definition of sophisticated contexts
simple. This protocol generalized the notion of “distance” to account for any
properties, allowing an application agent to adjust its context definitions to
account for its instantaneous needs or environment. Most importantly, the pro-
tocol explicitly bounds the computation of the agent’s context to exactly what
the application needs. In general, in an ad hoc network, these interactions will be
localized in the neighborhood surrounding the host of interest, and therefore the
agent’s operations do not affect distant nodes. This bounding allows the agent
to tailor its context definitions based on its needed guarantees. The protocol has
been integrated with EgoSpaces, a middleware system for mediating coordina-
tion among distributed agents in mobile ad hoc networks. This, coupled with
extensions to the analysis presented in this paper will provide further evaluation
and feedback for protocol refinement and extension.
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