
Data-Directed Contextual Relevance in the IoT

Colin Maxfield and Christine Julien
The University of Texas at Austin

{colinmaxfield, c.julien}@utexas.edu

Abstract—The relevance of data created in or about the IoT
has a strong reliance on the context, especially spatiotemporal
context, of the device and application perceiving it. To ensure that
applications perceive data items that are relevant to the current
context, it is necessary to restrict when each item is available.
To control an application’s perceptions of data availability, data
items are often put in a group with other similar items, and a
static rule is applied to determine when that data can be seen
by applications. Such rules are fairly rigid, and the burden is
on application developers to manage individual data items and
their access policies, including making sure data distribution
stays up to date relative to the context that influences data
availability. We posit that the development of applications that
need to access contextually relevant data can be greatly simplified
by enabling a data item itself to control how and when it is
available to applications. To realize this simplified programming
paradigm, we introduce the datalet, an abstraction of a piece of
data that understands its contextual relevance and dictates how
(i.e., when and where) it is available based on that application’s
context. The datalet allows the application developer to focus
on the application logic that relies on available data, without
worrying about how to store, update, and distribute contextually-
sensitive data to (distributed) application instances. To show
how datalets are used by application developers to construct
an application, we create an augmented-reality game that uses
datalets to make elements of game play available based on the
player’s spatiotemporal context. The video of this demonstration
is on YouTube at: https://youtu.be/snFhokswWpc

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), every-

day physical spaces are embedded with digital capabilities.

Context greatly influences what data a user of an application

should perceive, given the current time and the user’s current

location. As this vision of the IoT is becoming a reality,

application developers need to be able to respond by taking ad-

vantage of the contextual relevance that is inherent in IoT data.

Programming abstractions should allow developers to focus on

the application logic that consumes contextually relevant data

while hiding the details of how data is produced, maintained,

and distributed. Existing work in supporting IoT application

developers focuses on discovering devices, establishing con-

nections to them, and passing messages across connections.

Instead, the above motivates us to focus on the data itself.

Because of the obvious importance of contextual relevance,

we are particularly interested in how data accessibility and

availability relate to application context. Concretely, it should

be straightforward for application developers (and potentially

end users who create data) to provide declarative specifications

of the contextual elements of data availability (in particular

space and time), delegating to an implementation layer the

nuts and bolts of how data is made available in a way that

matches the application’s specification.

We examine three applications, one of which we use

throughout and as the driver of our demonstration. First,

consider an application to support the safe mobility of children

to school, for example in support of walking school buses or

bicycle trains1. A walking school bus entails one parent who

is responsible for chaperoning several children together to or

from school. An application on a parent’s smartphone could

communicate with small sensors in each child’s backpack,

ensuring the status of each child relative to the bus. Data

about a child should be available only in the vicinity of the

child, only during school transit hours, and only to authorized

adults. Second, consider a restaurant that uses coupon adver-

tisements to attract customers off the street. These coupons

may be shared only with people within walking distance of

the restaurant and only during times when the restaurant’s

capacity is under 60%. Finally, consider an augmented reality

game, similar to the wildly popular game Pokémon Go2. In this

game, players attempt to find (and fight) “nearby” monsters.

The particular monsters available to a given player at a given

time are dependent on that player’s context, most notably on

the player’s proximity to the monster’s location.

Using existing programming abstractions, a developer is

focused on how to use available communication links to

request and distribute data. Consider the augmented reality

game; when the player is active, the game should periodically

send the player’s location to a backend server, which compares

the player’s location to the locations of the existing monsters,

determining which are sufficiently close to the player. While

there is significant work on contextually indexed databases,

the data is still fundamentally static and unaware of the

rules imposed on its consumption. That is, data simply exists,

with all control over how it is consumed relegated to the

application. Our view is a fundamental shift; our goal is to

allow data items themselves to define and execute policies
that specify how, when, where, and to whom the data item is

available given the context. We encapsulate this perspective

as a datalet, which captures both the information content

and the spatiotemporal availability policies associated with it.

From this perspective, a datalet is a spatiotemporal scope
that defines the application-level accessibility of a piece of
data. This perspective, described in Section III, is abstract

and declarative and relates naturally to the physical world that

1http://www.walkingschoolbus.org/
2http://pokemongo.nianticlabs.com/en/

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.13

43

the data captures. However, system support requires a more

pragmatic and imperative perspective tied to the fact that a

datalet must be realized within limitations of real hardware

and networks. From this alternative perspective, a datalet is the
combination of a data item and its replicas, and the associated
policy governing their placement, replication, migration, and
persistence, based on properties of the physical, system, and
application context; we describe this perspective and how it is

presented to application developers in Sections IV and V.

Our datalet approach simplifies application development in

the following concrete ways:

• Elevating data items and their availability as programming

primitives is intuitive for application developers in the IoT.

• It is easy to implement different availability policies for

different data items; this is in contrast with current practice,

in which application-specific server logic must be aware of

and control individual data items’ policies.

• Changes to a data item’s availability rule are isolated from

other availability rules, minimizing the impact of changes.

• The server logic is entirely application-agnostic; datalet

programmers can instead focus on (a) defining application-

level data via datalets and (b) the application logic for

consuming available datalets.

This demonstration showcases the datalet abstraction, show-

ing how applications create datalets and define data availabil-

ity, and the programming abstractions presented to application

consumers of datalets. We also demonstrate how datalets

simplifies the backend since executing rules that determine

datalet availability is delegated to the data items themselves.

II. RELATED WORK

Other work in mobile and pervasive computing also focuses

on data as a programming primitive. This work is largely

founded on tuple spaces. However, as with other recent efforts

in the IoT, this work focuses primarily on programming

abstractions that direct the dissemination of data across devices

in an area. TOTAM [9] allows a tuple’s propagation rules

to generically reference the context to determine if a tuple

should be propagated before it is transmitted to a neighboring

device. This is similar to our approach in that it imbues the

data itself with some control, but the focus remains on active

dissemination and not simple availability. Further, the allowed

context rules only look for the presence of specific other tuples

in the local tuple space. This approach has been extended to

allow each tuple to determine whether it is in the right context

or not [10]. Although similar to our idea of datalets in that

the data itself understands its own relevance, the context rules

and their implementation are entirely left up to the application

developer, requiring the developer to focus explicitly on how

communication is implemented relative to the context. Instead,

we promote abstracting away communication as well. This has

the added benefit of allowing diverse underlying communica-

tion implementations to be exchanged for one another without

impacting the application logic. For instance, the centralized-

server based implementation of datalets we describe in this

paper can easily be replaced with a peer-to-peer dissemination

with no impact on the application implementation.

Modern systems make it straightforward to explicitly search

for (or register for notifications about) location-based data.

These approaches are driven by applications that request
location-tagged data. Therefore, while the user’s experience

appears seamless as the user moves through space and time,

the application interaction programmed by the developer is a

potentially inefficient series of interactions with some com-

munication substrate. In contrast, adaptive data dissemination

preemptively pushes data in opportunistic networks (e.g.,

among vehicles [5] or wireless sensors [6]) to make it available

at the time and place an application requires. Data persistence

and replication in mobile networks [2] can adapt to devices’

connectivity to each other or to an infrastructure [11]. Mobile

bazaars connect “publishers” to “subscribers” [4], [7]. Floating
content is attached to spatial anchor zones [3], [8], and hover-
ing data clouds periodically refresh data that “hovers” on co-

located devices (e.g., in a traffic jam) [12]. These target areas

are defined by the presence of devices or humans, and while

they support expressive notions of “context-awareness” [1],

they do not put data producers in charge of data availability. In

contrast, in datalets, data itself drives its availability, defining

where, when, and to whom it should be made available.

III. DATALETS LANGUAGE

A datalet consists of: (i) a unique identifier; (ii) a data item
that can, in principle, be anything; (iii) an owner that can

update the data item; and (iv) a spatiotemporal policy that

defines the data item’s availability. A policy includes access

control, which may be influenced by the (spatiotemporal) con-

text. A policy’s precondition controls the datalet’s existence

(when the precondition is true, the datalet is available), while

its availability specifies where, when, and to whom the datalet

is available. It is intuitive to think about availability from the

perspective of an entity that views the data item; the data

item is available to an entity if (i) the precondition is satisfied

and (ii) the entity satisfies the availability constraints. These

constraints can be based on time, location, or the values of

other properties of the entity. Any combination of constraints

can be specified using Boolean logic operators.

As an example, Fig. 1 gives a conceptual specification of

a datalet that describes a monster. The monster datalet is

created by the game administrator and exists for some preset

amount of time (specified in the precondition). During that

time, the data associated with the monster is available to nearby

players that are of the specified level. As players move around

and their location changes, they might gain or lose access

depending on their new location. To illustrate the availability

policy, Fig. 2 shows a chupacabra monster and the zone where

it is available. Two players are shown in green inside the zone

that have access to that monster; the two players in red inside

the circle do not have access because they do not meet the

level requirement; and two in red outside of the zone do not

have access due to not meeting the spatial requirement.

44444444444444444444

/∗ the monster datalet only exists for a set time and is
available only to nearby players of the required level ∗/

datalet monster
dataletID : id
owner : gameAdminID
data : name, description, image, type, location
policy
precondition : time ∈ [tstart , tend]
availability : (within(50m) AND level([7,15]))

Fig. 1. Example datalet for a monster

Only the datalet knows its availability policy and how that

policy is related to context. In the example above, a player’s

device only receives data items about monsters that the player

is allowed to see, but the player does not know what rules

made that possible. The screenshot on the right of Fig. 2 is a

view of the indicated player (Joe Smith) from the screenshot

on the left. Joe sees two available monsters, but he does not

know each monster’s region of availability or the level required

to view the monster. The datalet model also greatly simplifies

the server implementation. Instead of having to understand and

enforce application-specific rules, the server can simply ask

the datalet if a given user should have access, given that user’s

context and profile. This allows for a datalet’s conditions to be

easily changed without affecting other parts of the system. It

also makes the backend implementations of applications that

rely on datalets completely generic.

Fig. 2. Monster with nearby players (left); the monster is available to players
within the green circle of a certain level. Player view of nearby monsters
(right); note that the player cannot see the broader availability of the monsters.

IV. PROGRAMMING WITH DATALETS

Our programming support for creating and using datalets is

built around classes and methods exposed by the datalet API3.

In this section, we walk through those abstractions, using our

3App/API Source code can be found at https://gitlab.com/mpc-research/
datalets-app and can be used under the MIT license.

augmented reality game on Android as an example. We look

first at the steps necessary to create a datalet; then we examine

the programming steps involved in using datalets.

The most novel aspect of creating a datalet is defining

its precondition and availability policy. These policies have

elements of three types: a schedule, which constrains the

time of availability; a location, which constrains the space of

availability, and a profile, which constrains availability based

on aspects of the data consumer. Each type derives from

the Condition class. To combine these in more complex

expressions, an application uses the Policy class, which can

contain a group of conditions that are evaluated together using

a single Boolean operator (i.e., “AND” or “OR”). A Datalet
contains fields to represent a datalet and allows for the

developer to easily interact with the data and its precondition

and availability policies. The User class encapsulates the

profile of an individual user. Fig. 3 shows how an application

developer creates datalets representing monsters.

/* create a policy that checks a schedule;
the datalet is available from 6:30-6:45PM
starting 11/3/2016 and repeats daily
until 11/30/2016 */

Policy precondition =
Condition.schedule("<", "15", "6:30 PM",

new LocalDate(11, 3, 2016))
.repeatsDaily(new LocalDate(11, 30, 2016))
.finish();

/* create a policy that checks a user’s
location and profile; the datalet is
available to players within 50 meters and
of levels 7-15 */

Policy availability =
Policy.createAnd(

Condition.location("<", "50").finish(),
Condition.profile("range", "7,15",

"application.beasthunter.level")
.finish());

Map<String, String> data = new HashMap<>();
data.put("id", "B_125asd90124");
data.put("name", "Chupacabra");
data.put("description", "A goat sucking

monster that is relatively easy to
catch");

Datalet monster =
new Datalet("ADMIN_ID",

new GPSPoint(30.4441245,
108.012490124),

data, precondition,
availability);

Fig. 3. Application code for creating a monster datalet

To ease application development on the data consumer side,

we define a RESTful interface. After a datalet has been created

or edited, the application developer can use the provided rest

client to retrieve available datalets from the server. Figure 4

shows the major components of this interface. To adhere to

the RESTful properties, each method takes a callback that

it uses to invoke the appropriate application code once the

45454545454545454545

necessary communication has finished. The first three methods

are used by the datalet creator; the last method is used by

a data consumer to retrieve datalets that are available to a

given user given his current context. Note that we opted to

implement a pull mechanism for retrieving available datalets;

an alternative implementation would be for the server to push

the available datalets based on periodically updated knowledge

of the potential consumers’ profiles.

public class DataletsRestClient {
void createDatalet(datalet, callback);
void updateDatalet(datalet, callback);
void deleteDatalet(dataletID, callback);

void getAvailableDatalets(userID, callback);
}

Fig. 4. API of the provided rest client

V. REALIZING DATALETS

A major advantage of the datalets approach is that, once

datalets are defined, the backend server implementation can

remain entirely application-agnostic. Specifically, to enable

datalet applications requires a server that stores the datalets

and evaluates each datalet’s individual precondition and avail-

ability policies. The prototype datalet server is written in Java

using the Spring Web Framework4. To store datalets and users,

the server uses MongoDB, which allows individual policies

and data items to be easily changed by their owners.

Any application using datalets interacts with the server

through the RESTful API in Fig. 4 to create, update, and

retrieve datalets. This model allows an application to easily ask

for the available datalets for a given user. In our example, when

the game application uses the RESTful API to request the

datalets for a given user, the server asks each monster datalet

to evaluate its availability policy using the player’s profile

(including the player’s location). The datalet simply evaluates

whether the player should have access to it; if the result is

positive, the server includes the datalet’s data item in the result

it returns to the application. The server does not know what

the datalet is used for, what specific policies the datalet has,

or what data is inside the datalet. This model allows the server

to handle any datalets for any application without having to

be at all aware of the application’s implementation.

VI. PROOF OF CONCEPT AND EVALUATION PLANS

To evaluate datalets as an abstraction, we used them in

developing the monster game, which serves to demonstrate

that the datalet concept fits very naturally into an application’s

programming interface. We also demonstrated that the backend

can, in fact, remain completely application agnostic.

Since the policies themselves are focused on basic parts of

context relevance in the IoT and not just our augmented-reality

game, we also plan to evaluate their use in other applications

and by other developers. Alongside the proof of concept, we

include a few descriptions of applications for the IoT. Potential

4Server source code can be found at https://gitlab.com/mpc-research/
datalets-server and can be used under the MIT license.

application developers can use these application descriptions,

along with the API of datalets, to write their own datalets to

create data items for these applications.

We plan a more extensive controlled empirical study as

part of our future research agenda. The goal is to assess how

intuitive it is for an application developer to use datalets in the

process of writing an application. By providing the abstraction

of datalets, we aim to determine if, by assuming a datalet

perspective in the design stage of an application, developers

can spend the majority of their time on the application logic

and user experience instead of on figuring out how to represent

the needed data and how to control its availability.

VII. CONCLUSIONS AND FUTURE WORK

We presented datalets as a way to enable applications to

leverage data-directed contextual relevance in the IoT. Using

current approaches to share contextually relevant data, a devel-

oper spends a considerable amount of time writing a system to

control data access that results in a set of static rules that are

not trivial to adapt with the growth of the application. With

datalets, an application developer can focus on the application

logic and user experience, while retaining the flexibility to

easily generate complex data availability policies that can

be different for each data item. Our implementation uses

a centralized server to store and maintain user profiles and

datalets. In future work we want to explore a hybrid approach

that combines centralized storage and processing with local

capabilities via cloudlets and device-to-device communication

as we explore additional application uses of datalets.

ACKNOWLEDGEMENTS

The authors thank Gian Pietro Picco and Amy L. Murphy

for discussions that formed the genesis of this work.

REFERENCES

[1] S. Ali et al. A simple approximate analysis of floating content for
context-aware applications. In MobiHoc, 2013.

[2] D. Gavidia and M. V. Steen. A probabilistic replication and storage
scheme for large wireless networks of small devices. In MASS, 2008.

[3] E. Hyytia et al. When does content float? characterizing availability
of anchored information in opportunistic content sharing. In Infocom,
2011.

[4] U. Lee et al. FleaNet: A virtual market place on vehicular networks.
IEEE Trans. on Vehicular Tech., 59(1):344–355, 2010.

[5] I. Leontiadis et al. Persistent content-based information dissemination
in hybrid vehicular networks. In PerCom, 2009.

[6] C. Lu et al. A spatiotemporal query service for mobile users in sensor
networks. In ICDCS, 2005.

[7] M. Motani et al. PeopleNet: Engineering a wireless virtual social
network. In MobiCom, 2005.

[8] J. Ott et al. Floating content for probabilistic information sharing.
Pervasive and Mobile Comp., 7(6):671–689, December 2011.

[9] C. Scholliers, E. G. Boix, and W. D. Meuter. Totam: Scoped tuples
for the ambient. In Proc. of the CAMPUS Workshop collocated with
DisCoTec’09 federated event, volume 19, pages 19–34. EASST, 2009.

[10] C. Scholliers, E. G. Boix, W. D. Meuter, and T. D’Hondt. Context-aware
tuples for the ambient. In On the Move to Meaningful Internet Systems,
OTM 2010, pages 745–763, 2010.

[11] K. Thilakarathna et al. MobiTribe: Cost efficient distributed user
generated content sharing on smartphones. IEEE Trans. on Mobile
Computing, 13(9):2058–2070, 2014.

[12] A. Wegener et al. Hovering data clouds: A decentralized and self-
organizing information system. In IWSOS, 2006.

46464646464646464646

