
BLOC: A Game-Theoretic Approach to Orchestrate

CPS against Cyber Attacks

Mina Guirguis∗, Alireza Tahsini∗, Khan Siddique†, Clara Novoa†, Justin Moore∗,

Christine Julien‡ and Noah Dunstatter∗

∗Department of Computer Science, Texas State University
†Ingram School of Engineering, Industrial Engineering, Texas State University

‡ Department of Electrical and Computer Engineering, University of Texas at Austin

Abstract—Securing Cyber-Physical Systems (CPS) against
cyber-attacks is challenging due to the wide range of possible
attacks – from stealthy ones that seek to manipulate/drop/delay
control and measurement signals to malware that infects host
machines that control the physical process. This has prompted the
research community to address this problem through developing
targeted methods that protect and check the run-time operation
of the CPS. Since protecting signals and checking for errors
result in performance penalties, they must be performed within
the delay bounds dictated by the control loop. Due to the large
number of potential checks that can be performed, coupled with
various degrees of their effectiveness to detect a wide range of
attacks, strategic assignment of these checks in the control loop
is a critical endeavor. To that end, this paper presents a coherent
runtime framework – which we coin BLOC – for orchestrating
the CPS with check blocks to secure them against cyber attacks.
BLOC capitalizes on game theoretical techniques to enable the
defender to find an optimal randomized use of check blocks
to secure the CPS while respecting the control-loop constraints.
We develop a Stackelberg game model for stateless blocks and a
Markov game model for stateful ones and derive optimal policies
that minimize the worst-case damage from rational adversaries.
We validate our models through extensive simulations as well as
a real implementation for a HVAC system.

I. INTRODUCTION

Motivation: Cyber-Physical Systems (CPS) will be core to

most emerging computing systems. A myriad of activities in

our lives will rely on the correct operation of these systems,

from the transportation and energy domains, to manufacturing

and healthcare. Across these domains, ensuring the correctness

of our CPS is essential, making them not just trusted systems

but trustworthy ones. Recently, however, new classes of cyber

attacks have emerged that demonstrate a true lack of rigorous

approaches in ensuring the resiliency of CPS against them

especially in highly dynamic and unpredictable environments

in which they are required to operate. From the infamous

stuxnet worm that targeted the Iranian nuclear plants to the

more recent attack on the power grid in Ukraine, cyber attacks

on CPS are becoming appealing vehicles for terrorism and

terrorism-related activities [6]. Anecdotally, the vast majority

of the CPS built are validated through ad hoc trial-and-error

approaches. Photographs of CPS engineers in hard hats with

laptops debugging their CPS attached to buildings and bridges

dominate the general opinion of CPS. A recent empirical

study of verification and validation techniques used by CPS

experts [22] has demonstrated a pervasive frustration with the

lack of rigorous tools; confirming that in situ trial-and-error

debugging is the most commonly used approach.

Despite the recent (and rich) research efforts in identifying

attacks on CPS and developing resilient defense mechanisms

against them (which we discuss in more details in Section

II), a coherent approach in which these mechanisms can be

“put” together is lacking. Blindly throwing more checks and

defenses at the CPS may not just be unnecessary, but could

negatively impact the stability margins of the system allowing

more attacks to be mounted. Moreover, once the attacker

discovers a particular defense, he can change the attack.

Problem Statement: Ensuring the correctness, timing and

integrity of the control and measurement signals requires

orchestrating the control loop with various “check blocks” –

such as threshold checks, model predictors, learning modules,

assertions and action blocks. Due to their different timing,

overhead and effectiveness characteristics, it becomes chal-

lenging to choose the right one(s), specially against a rational

adversary who is aware of the blocks present and seeks to

inflict the maximum damage. Moreover, they must abide by

the capacity constraints dictated by the process controlled. In

this paper, we present a game-theoretic framework – which

we coin BLOC – that dynamically equips the control loop

with the appropriate blocks at the right location(s) to protect it

against a rational adversary. Through an optimal orchestration

of blocks that are the results of mixed strategies, the system

can be defended against an adversary that can choose the

best attack method against the system. BLOC considers the

range of possible attacks, the importance of each measurement

and control signal, the nature of each block (e.g., stateless or

stateful) as well as the effectiveness and timing of each block.

Contributions: We summarize our contributions below:

1) We present the BLOC framework, which orchestrates the

CPS with various check blocks in a coherent manner.

These blocks are enabled at four strategic locations with

access to the intended control and measurement signals.

2) We present a Stackelberg game formulation between the

defender and the adversary. We obtain optimal marginal

assignments of stateless check blocks that maximize the

utility of the defender subject to the adversary’s best

response.

3) We develop a Markov game model in which the defender

uses the maximin value iteration approach to obtain an

optimal policy for assigning check blocks and applies

it over a series of sub-games. This model captures the

statefulness of the check blocks assigned.

4) We assess and validate our models through extensive

simulations as well as through a real orchestrated CPS

composed of a domestic Heating, Ventilation and Air

Conditioning (HVAC) system.

Paper organization: In Section II we discuss related work.

In Section III we present our proposed BLOC framework, and

Sections IV-A and IV-B present our game-theoretic models

for stateless and stateful blocks, respectively. We present

our numerical and implementation results in Section V and

conclude the paper in Section VI.

II. RELATED WORK

There has been a lot of research efforts in securing CPS

and networked control systems against spoofing (e.g., [2], [9],

[11], [15], [16], [18]) and jamming/delaying attacks (e.g., [7],

[13], [21]). These studies differ in their assumptions about

the attacker’s knowledge and the types of signals that can be

attacked. In [9], the authors show false data injection attacks on

state estimators in power grids. The idea is to craft an attack

vector – in which each element corresponds to an injected

measurement from a meter – that when combined with the

state estimators, would still pass detection. The authors assume

the attacker knows the configuration of the power system but

may not have access to all the meters. The work in [11]

generalizes false data injection attacks on control systems with

specific controllers (e.g., Kalman) and shows that these attacks

can cause the system to become unstable. In [16], the authors

illustrate a scheme in which the control signals can be spoofed

in tandem with the measurement signals to hide the effect of

the attack. This scheme in effect hijacks the operation of the

CPS. In terms of jamming attacks, the authors in [1] study

the performance of a linear control system subject to various

Denial of Service (DoS) attack models on the measurements

and control signals (e.g., random, Bernoulli, constrained and

general). Wireless jamming has been shown to cause severe

effects that may cripple the entire system (e.g., [12], [19]).

To defend against these attacks, in [15], the authors con-

struct a safety envelope from the measurements obtained under

the normal operation of the system (without attacks). Attack

detectors are then constructed that compare the measurements

received during the operation of the system to the ones

maintained by the safety envelope. The authors in [18] assume

knowledge of the state of the system and derive correlation

graphs without attacks to study how that information impacts

decisions. In [2] the authors prevent an adversary from finding

attack vectors through identifying two sets: a set of sensors to

protect and a set of state variables that can be independently

verified. While the authors in [17] investigate the combina-

tion and configuration of various defense mechanisms using

stateless and stateful detection schemes for CPS, they do not

consider a game-theoretic approach. In our work, we present

a framework in which these defenses – in addition to other

blocks – can be orchestrated through rigorous game-theoretic

approaches. The use of game theory has been instrumental

in advancing the state-of-the-art in security games and their

wide range of applications (e.g., [23], [3], [14]) as it operates

under the worst-case scenario. In [23], the authors propose

a hybrid game-theoretic approach for resilient system control

that also considers the system security and robustness. The

scenario is stated as a cross-layer design in which two games

are intertwined – a zero-sum differential game is used for

robust control and a stochastic one is used for the design

of the defense mechanisms. Unlike this work, our framework

captures details about the exact blocks used, their effectiveness

and impact on the signals propagated in the network. We

utilize the Stackelberg formulation that resembles the models

that screen for threats [3], [14]. Our model is different,

however, as it focuses on stateless check blocks applied to the

CPS with delay constraints. Furthermore, we consider stateful

check blocks and develop a maximin value iteration approach

that derives optimal randomized strategies.

III. THE BLOC FRAMEWORK

In this section, we present a general model for CPS, the

adversary model, the check blocks, and the BLOC framework.

Plant

Controller

Network

Control

Signals (u)

Measurement

signals (y)

Network

Cyber

 attacks

Cyber

 attacks

Check

Blocks

Check

Blocks

Check

Blocks

Check

Blocks

[Uin]

[Yin][Uout]

[Yout]

Fig. 1: A general block diagram for a CPS.

A. The CPS model

Figure 1 shows a generic block diagram of a CPS composed

of a plant and a controller. Let xk denote the state of the system

at time k. A vector of measurement signals yk is generated

from the CPS and is fed to decision making entities (e.g.,

controllers that are centralized or distributed systems). The yk
signals intend to capture the state xk in as representative way

as possible, for instance by sensing the xk values directly or by

inferring the desired components from other dependent ones.

The decision making entities process the yk (measurement

signals) and take control decisions uk that change the state

of the CPS. The dynamics of the plant and the controller

can be captured through various models such as linear time

invariant, linear time variant, non-linear or hybrid models.

We assume that measurement signals and/or control signals

traverse network components that are subject to cyber attacks.

B. The Adversary Model

We consider an adversary who is choosing different attack

vectors on the measurement and control signals. If we let

Γu(u) and Γy(y) denote the attack function on the control

and measurement signals, respectively, then ū = Γu(u) and

ȳ = Γy(y) are the bad control and measurement signals

received and acted upon by the CPS components. In case

of a jamming attack, the attacked signal is simply omitted

from the vector. Such “attacks” could just as easily be non-

malicious but just as dangerous errors or unknowns, whether

in the communication medium, in sensing, in actuation, or in

some combination. We adopt a rational adversary model who

is effectively selecting the Γu() and/or Γy() to bypass the

check mechanisms in place to achieve the maximum damage.

C. The Check Blocks

Check blocks are the components that check signals and

take actions (e.g., watermark, encrypt, alert, etc). In general,

they can be divided into stateless blocks that operate instanta-

neously on the signal received, and stateful ones that maintain

and utilize a state of previous values. Our models treat these

checks as parameterized components in which their operations

and parameters impact their effectiveness. For example, a

cusum (cumulative sum for change detection) check block

is an example of a stateful one that is required to keep

a history and can have different effectiveness based on the

threshold chosen; whereas a simple threshold check would

be considered stateless. Check blocks include differentiators,

aggregators, model predictors, state estimators, etc. as well

as more sophisticated elements that utilize machine learning

methods. We present examples of them within our BLOC

framework.

D. The BLOC Framework

BLOC orchestrates the CPS control loop with various

“check blocks” within four major locations as depicted in

Fig. 1. The four major locations are: [Yin], [Yout], [Uin] and

[Uout]. Due to their unique locations, each one processes

different types of signals—some are guaranteed to be valid

(e.g., because of a tight coupling to a physical component),

while some may be spoofed or distorted by noise.

• The [Yin] location: This location has access to all the

previous measurement signals received ȳ1, ȳ2, ... ȳk
(which could have been spoofed or otherwise exhibit

errors) and uses these historical values and the most

recent measurements to calculate a current best estimate

of the actual physical state. A common check that fits in

this block is to measure the standardized residual using

the χ2 statistic which ensures that the received measure-

ments do not deviate from the estimated state based on a

threshold typically chosen based on a hypothesis testing

criterion [20]. As illustrated in [9], such a check would

not be enough to protect against spoofing attacks. Another

component that fits in this location is a safety envelope

test in which the new measurement signals received, ȳk,

are compared against a measurement data model obtained

under no attack using machine learning algorithms [15].

• The [Uin] location: This location receives all the new

control signals, ū1, ū2, ..., ūk (which could have been

spoofed) and also has access to the current state of the

physical system. It is also reasonable to assume that this

component knows the initial state of the system, x0,

and thus can track the evolution of the state based on

the control signals received (subject to the computational

capabilities available). One of the primary goals of this

block is to assert that the control signals received will not

cause immediate violations of any of the system’s target

invariant properties if the actions embedded in the ūk

are applied to the system (i.e., it simulates the result of

applying the control signal). Because it has access to the

historical state, this component can also verify properties

relating to control signals changing too fast or too slow.

• The [Yout] Location: This location has access to all the

previously generated measurements, y1, y2, ..., yk and

it can compare the new measurements to previous ones

to detect immediate inconsistencies—in essence ensuring

that the applied control did not violate any of the system’s

constraints. This location can also infer across elements

within yk over time to determine whether the vector of

measurement signals is internally consistent. Finally, and

perhaps the most useful against spoofing attacks, a check

block can watermark yk deliberately, so that the Yin block

can detect any tampering [5].

• The [Uout] Location: This location can run/utilize a

predictor (e.g., Model Predictive Control [4], [10]), given

the current state estimate and the new control signal

generated. Doing so, this block predicts the expected

state of the physical elements of the system and verifies

that this expected state does not violate any of the

system properties. It assumes that a component in this

location has access to the state space parameters, which

is reasonable. Much of what is possible in this block

is analogous to that in the [Uin] block, but blocks in

this location operate before the signals have traversed the

network, where errors and attacks can happen.

As in the [Yout] location, a block in the [Uout] location

can watermark the control signals and have a block in

the [Uin] location verify their presence to protect against

spoofing attacks.

Within each of the above locations, “check blocks” are

assigned based on the types of possible attacks, their effective-

ness in detecting attacks, the overhead in running them and

the importance of the signal(s) checked. Our game-theoretic

assignment approaches are presented next for stateless (Sec.

IV-A) and stateful (Sec. IV-B) blocks.

IV. RANDOMIZED CHECK BLOCKS ASSIGNMENTS

A. Stackelberg One-Shot games

We consider a game-theoretic formulation of a 2-player

game between the defender and the adversary. The defender

seeks to protect the CPS against various attacks through

enabling a set of check blocks. The adversary seeks to attack

the CPS through selecting a target signal (e.g., a measurement

or a control signal) to attack and a particular attack method to

employ (e.g., spoof, jam, delay). We assume a cost is incurred

with each enabled block since it would operate on incoming

signals to detect attacks. Given a certain performance budget

that the CPS can tolerate in the presence of these blocks,

the defender seeks to assign blocks within the [U] and [Y]
locations to maximize their utility subject to the adversary

choosing her best response. In this problem we have:

• Signal Targets T : The adversary can choose to attack

different target signals – measurements or control. The

defender gains a utility U
p
t when signal t is protected

and a utility Uu
t when signal t is unprotected.

• Attacks A: The adversary can choose an attack method

a from a set of available attacks A to attack target t. We

let c denote the attack category which is the tuple 〈t, a〉.
• Check Blocks B: The defender can choose to protect

signals from attacks by enabling check blocks. We let

Ea
b denote the effectiveness (i.e., the probability) of block

b in protecting against attack a. Furthermore, we let Tb

denote the time taken in executing block b to check a

signal. We assume that we know the number of signals

Nt that arrive under each target t.

• Adversary Type Θ: The model assumes the existence

of different types of adversaries that may value targets

differently.

We model this game as a Stackelberg one in which the

defender commits first to an assignment that seeks to minimize

the attacker’s best response. We let nb,t denote the assignment

of check block b to target signal t. The solution to the

following optimization problem leads to such an assignment.

max
n

∑

θ∈Θ zθsθ (1)

sθ ≤ xcU
p
t + (1− xc)U

u
t ∀θ, c (2)

xc = 1−Πb∈B(1− Ea
b × nb,t) ∀c (3)

∑

b∈B

nb,t ×Nt × Tb ≤ Ct ∀t (4)

nb,t ∈ {0, 1} ∀b, t (5)

The objective function 1 maximizes the defender’s worst

case possible utility, sθ, given the probability zθ of encounter-

ing an adversary of type θ. In equation 1, n represents the

set of all feasible assignments of blocks to target signals.

Constraint 2 enforces that the defender’s utility, sθ, is the

worst possible over all possible attack categories c ∈ C that

the adversary could choose from. Equation 3 calculates the

probability xc of thwarting an attack of category c, given

the assignment of blocks to targets nb,t. Given that a subset

of blocks are used to detect an attack a, the attack will go

undetected only if all the blocks fail (hence, the product).

Constraint 4 enforces that the performance of the set of

enabled blocks to protect target t would not exceed a delay

capacity Ct for any target t as dictated by the control loop.

Equation 5 ensures that we have a valid assignment of each

block being enabled or disabled.

To solve the above optimization problem, we perform two

relaxations. Equation 3 presents a non-linear constraint which

we simplify by considering the most effective block (rather

than a function of all of them). Equation 5 makes the optimiza-

tion model a Mixed Integer Program (MIP) and by replacing

constraint 5 with 0 ≤ nb,t ≤ 1 ∀b, t, we obtain a marginal

assignment of blocks to targets. This marginal assignment is

implementable in two ways: (1) The check blocks are not

operating at their full scales (e.g., encrypting a signal with

fewer bits, averaging over a smaller number of signals, or

watermarking with fewer resolution), and (2) the block is using

a sampling approach to only check a subset of the signals and

that percentage is given by nb,t directly.

B. Markov Games

In our exposition thus far, we have assumed that once state-

less blocks are applied, they become effective immediately. In

many cases, however, blocks may need to observe the target

signal(s) over time to detect attacks (i.e., to warm-up). For

example, consider a spoofing attack on a HVAC system in

which the measured temperature is off by a small value. This

attack would not be instantaneously detected since it can pass

as legitimate noise, but may cause the system to continuously

operate. Thus, we let Wb denote the maximum warm-up period

(i.e., number of steps needed) for block b to be effective which

is given by:

Wb =
Rb

mint∈T Ft × P
, (6)

where Rb is the number of required signals by block b, Ft is

the signal transmission rate for target t and P is the duration of

a time-step in seconds. To capture environmental uncertainty

in terms of the signals transmission rates due to the transient

and steady-state operations of the system, we let the warm-up

period be a random variable with a maximum value of Wb. As

a proxy for Ct and to capture the delay constraints dictated

by the control loop, we assume each target has a capacity in

terms of the maximum number of assigned blocks.

To address the statefulness property, we model the problem

as a two-player zero-sum Markov game, in which a sub-game

is played in every time-step. The game is represented by the

tuple 〈S,Aa,Ad, T ,R, β〉 where:

• S is the finite set of system states, where each s ∈ S
describes the assignment of blocks to targets as a matrix

in which rows corresponds to targets and columns to

blocks. The value of each element indicates its remaining

warm-up time until the block becomes effective or if the

block is not deployed. A value of zero indicates that the

block has become effective. Since the warm-up time is

bounded for all blocks, |S| is bounded by the number of

possible combinations of these values raised to the power

of the number of targets.

• The attacker has a finite set of actions (Aa) – each

corresponds to a different attack method to be played in

every sub-game. Conversely, Ad is the finite set of actions

of the defender. We let Ad(s) denote the available actions

in state s. Actions include adding or removing one block,

or making no changes to the current block assignment.

• T : S × Aa × Ad × S ⇒ Π(S) is the state evolution

function based on the agents action pair, where Π is a

discrete probability distribution over S . Accordingly, we

let T (s, a, d, s′) denote the probability of transitioning

into state s′ from state s when the attacker and the

defender take actions a ∈ Aa and d ∈ Ad, respectively.

• R : S ×Aa×Ad×S ⇒ R is the reward obtained by the

defender. We let R(s, a, d, s′) denote the reward received

going from s to s′ under actions a ∈ Aa and d ∈ Ad.

R(s, a, d, s′) =
∑

t∈T

xa,t,dU
p
t + (1− xa,t,d)U

u
t , (7)

where xa,t,d is the effectiveness of assignment d against

attack action a for target t (which is computed as in

Equation 3). Due to the zero-sum nature of the game,

one reward function suffices for both agents.

• β : is the discount factor such that 0 < β < 1.

To derive optimal strategies we apply value iteration [8] on

the Markov game. Equations 8-9 describe the value iteration

over the states, in which V (s) is the expected reward for

the defender when starting from state s and following the

optimal policy thereafter. The quality function Q(s, a, d) is

the immediate reward obtained from action pair a and d, plus

the expected discounted future reward the defender expects to

receive over the successor states following the optimal policy.

Q(s, a, d) =
∑

s′∈S

T (s, a, d, s′)R(s, a, d, s′)

+ β
∑

s′∈S

T (s, a, d, s′)V (s′), (8)

V (s) = max
π∈Π(Ad)

min
a∈Aa

∑

d∈Ad

π(s, d) Q(s, a, d). (9)

In every sub-game, we generate a payoff matrix with

dimensions defined by the players’ action spaces. Each entry

holds the quality value of each action pair. We then solve

that sub-game by finding Nash equilibrium whose pure or

mixed strategy, π(s, d), is the probability distribution over the

available actions. The linear program described in Equations

10 - 13 guarantees the worst-case payoff z over the attacker’s

available actions, while ensuring a valid distribution over the

defender’s actions.

max
π(s,d)∈Π(Ad)

z (10)

z ≤
∑

a∈Aa

π(s, d)Q(s, a, d) (11)

∑

d∈Ad(s)

π(s, d) = 1 (12)

0 ≤ π(s, d) ≤ 1 ∀d ∈ Ad(s) (13)

V. PERFORMANCE EVALUATION

In this section, we present the evaluation of our game-

theoretic block assignments.

A. Stateless Check Blocks Assignments

To assess the performance of our Game-Theoretic ap-

proach (captured by the optimization problem presented in

Equations 1-5 and the relaxations described in sub-section

IV A), we compare its outcome to four other approaches:

Random, Greedy, Greedy-LP, and the game-theoretic Mixed

Integer (GT-MI) approach. In the Random approach, a random

assignment of check blocks is performed while still satisfying

the capacity constraints in Equation 4. In the Greedy approach,

a weighted effectiveness for each block is calculated by

dividing its effectiveness by its execution time. The total

effectiveness of the blocks is then computed by summing their

weighted effectiveness over the different attacks they cover.

The blocks are then sorted in a list by their total weighted

effectiveness in descending order. We assign the first block to

the most valuable target at the the highest possible coverage

(subject to the capacity constraints) and consecutively to the

remaining less valuable targets. The procedure continues as

long as the capacity constraints are not violated. In the Greedy-

LP approach, a mathematical program (not presented due to

space limitation) is solved with the objective to maximize the

defender’s utility when targets are undefended. We used the

same capacity, most effective block, and partial assignment

constraints, but added a new constraint that ensures that each

target has a minimum coverage. We labeled the approach as

Greedy-LP because in this model the integrality on assignment

constraints is relaxed. Finally, in the GT-MI approach, we let

the check blocks be either fully assigned or not and solved the

model using the Branch and Cut algorithm.

We consider a CPS composed of 6 target signals that are

subject to 3 attacks from 1 type of adversary. The defender has

3 check blocks to enable. We consider 3 levels of effectiveness

for the check blocks: low, medium and high, that are chosen

uniformly at random below 0.5, between 0.5 and 0.7 and above

0.7, respectively. To study the impact of the importance of the

target signals, we consider 3 cases of utilities: low, medium

and high. We kept the total utility fixed at 700 to compare

between the cases. In the low utility case, all the targets have

an equal value of 116.67. In the medium case, one of the

targets has a higher utility randomly chosen between 200 and

300 and the rest have equal values. In the high case, one target

has a higher utility randomly chosen between 300 and 450

and the rest have an equal value. Thus, we had a total of 9

experimental cases. In each case, the results are computed and

averaged over 5 independent runs.

Fig. 2 presents the average worst case utility for different

effectiveness and utility levels. Fig. 2 (left), (center), and

(right), presents the average worst case utility, under low,

medium and high utility cases, respectively. One can see that

across all the cases our game-theoretic assignment achieves

the best worst-case followed by the mixed integer approach.

The random approach gives the lowest worst-case utility in

all cases. In the low and medium utility level cases, Greedy-

LP achieves better results than the Greedy approach, whereas

in the high level of utility, Greedy achieves better results than

Greedy-LP. Since Greedy-LP aims to increase coverage across

targets, it performs well when the variance in the utilities is

small (i.e., in the low and medium utility cases). Greedy, on

the other hand, seeks to protect the most valuable targets, and

thus may leave one (or more) targets undefended which results

Low Effectiveness Medium Effectiveness High Effectiveness
−350

−300

−250

−200

−150

−100

−50

0

W
o
rs

t
C

a
s
e

Game Theory

Greedy−LP

Greedy

Random

Game Theory−MI

Low Effectiveness Medium Effectiveness High Effectiveness
−350

−300

−250

−200

−150

−100

−50

0

W
o

rs
t

C
a

s
e

Game Theory

Greedy−LP

Greedy

Random

Game Theory−MI

Low Effectiveness Medium Effectiveness High Effectiveness
−350

−300

−250

−200

−150

−100

−50

0

W
o

rs
t

C
a

s
e

Game Theory

Greedy−LP

Greedy

Random

Game Theory−MI

Fig. 2: Impact of different assignment strategies under low (left), medium (center) and high (right) utilities.

0 50 100 150 200 250 300 350
10

20

30

40

50

60

70

80

90

100

% Deviation from Game Theory

%
 D

a
ta

 P
o
in

ts

Random

Greedy

Greedy−LP

Game Theory−MI

Fig. 3: Performance profile between defender strategies.

in a better worst-case over Greedy-LP at high levels of utility.

Fig. 3 shows the relative performance of the Game Theory-

MI, Greedy, Greedy-LP and Random in comparison to our

optimal Game-Theoretic approach. The x-axis represents %
of absolute error in worst-case utility and y-axis represents %
of data points that fall within that % of error. For example,

if we compare the Greedy approach with Game Theory, we

can observe that approximately 77% of data points (Worst-

case utility) are within 20% deviation from the Game Theory

approach. Random and Greedy-LP gave the same worst-case

utility as Game Theory in less than 20% of the experiments.

Also, in nearly 95% of the experiments, Greedy has below

50% error. For Greedy-LP and Random, the percentage of

instances with error below 50% is only about 40-50%.

B. Stateful Check Blocks Assignments

To assess the behavior of our game-theoretic approach in

comparison to other strategies in the presence of stateful

blocks, we conducted extensive experiments on a number

of scenarios for a system with 3 targets, 4 blocks and 3
types of attacks. Each scenario is described by a maxi-

mum warm-up vector [W1,W2,W3,W4], which we chose

from the set {[1, 1, 1, 8], [1, 2, 3, 4], [2, 2, 2, 2], [1, 2, 4, 8]} and

a block capacity vector [C1, C2, C3], which we chose from

the set {[3, 2, 1], [2, 2, 2], [3, 3, 3]}. For example, the scenario

[1, 2, 4, 8] − [3, 2, 1] means that the 4 blocks require 1, 2,

4 and 8 maximum time-steps to be effective, with the 3
target signals having capacities corresponding to 3, 2 and 1
maximum assigned blocks. In each scenario, we studied 9

settings with low, medium, and high effectiveness in conjunc-

tion with low, medium, and high utilities (computed similar to

the previous section). Additionally, we generated the warm-up

values randomly based on a geometric probability distribution

in the range [0,Wb), where 0 (no warm-up time) is the least

probable outcome.

[1, 1
 ,1

 ,8
] -

[3, 2
, 1

]

[1, 1
 ,1

 ,8
] -

[2, 2
, 2

]

[1, 1
 ,1

 ,8
] -

[3, 3
, 3

]

[1, 2
 ,3

 ,4
] -

[3, 2
, 1

]

[1, 2
 ,3

 ,4
] -

[2, 2
, 2

]

[1, 2
 ,3

 ,4
] -

[3, 3
, 3

]

[1, 2
 ,4

 ,8
] -

[3, 2
, 1

]

[1, 2
 ,4

 ,8
] -

[2, 2
, 2

]

[1, 2
 ,4

 ,8
] -

[3, 3
, 3

]

[2, 2
 ,2

 ,2
] -

[3, 2
, 1

]

[2, 2
 ,2

 ,2
] -

[2, 2
, 2

]

[2, 2
 ,2

 ,2
] -

[3, 3
, 3

]

Cases: [Block state] - [Capacity]

0

20

40

60

80

A
v
e
ra

g
e
 C

o
n

v
e
rg

e
n

c
e
 P

o
in

t

Fig. 4: Average number of iterations until convergence.

We first trained both agents against each other through the

value iteration algorithm. We used a discount factor β of 0.99

and the convergence point is assumed to be the iteration, in

which the change in the average value function is less than 1

percent of the previous value. Fig. 4 shows the average number

of iterations until convergence over the 9 settings.

Once the agents were trained, we simulated the system

and assessed the behavior of the rational strategy against

random, greedy and myopic strategies. The rational strategy

picks actions based on the learned policy. The myopic strategy

picks actions based on the immediate rewards in the current

sub-game. The random strategy picks actions at random. The

greedy defender strategy picks actions that assign the most

effective block to the highest utility target, while the greedy

attacker strategy picks the attack action that is the least

detectable.

[1, 1
, 1

, 8
] -

[3, 2
, 1

]

[1, 1
, 1

, 8
] -

[2, 2
, 2

]

[1, 1
, 1

, 8
] -

[3, 3
, 3

]

[1, 2
, 3

, 4
] -

[3, 2
, 1

]

[1, 2
, 3

, 4
] -

[2, 2
, 2

]

[1, 2
, 3

, 4
] -

[3, 3
, 3

]

[1, 2
, 4

, 8
] -

[3, 2
, 1

]

[1, 2
, 4

, 8
] -

[2, 2
, 2

]

[1, 2
, 4

, 8
] -

[3, 3
, 3

]

[2, 2
, 2

, 2
] -

[3, 2
, 1

]

[2, 2
, 2

, 2
] -

[2, 2
, 2

]

[2, 2
, 2

, 2
] -

[3, 3
, 3

]

Cases: [Block state] - [Capacity]

0

0.2

0.4

0.6

0.8

1

R
a
ti

o Random Def

Myopic Def

Greedy Def

Fig. 5: Relative behavior of rational defender to other methods.

To assess the relative performance of the defense strategies

in comparison to the rational one, Fig. 5 shows the final payoff

ratio averaged over 50 runs under the high effectiveness - high

utility setting. One can see that the random policy is drastically

worse than the rational policy. The rational policy outperforms

the greedy approach, because the greedy defender does not

take into account the presence of the attacker. Instead, it as-

signs blocks based on their average effectivenesses. Also, even

though the greedy defender may find a good block assignment,

it leaves the system vulnerable during the intermediate time-

steps toward reaching that assignment. This becomes more

notable as the capacities of the targets increase. Myopic policy

also loses to rational strategy, as it may remove blocks that are

not effective yet, looking for a higher immediate reward. This

translates into playing a random policy if none of the blocks

are going to be effective in the next time-step.

Low Eff - Low Utility

Low Eff - Mid Utility

Low Eff - High Utility

Mid Eff - Low Utility

Mid Eff - Mid Utility

Mid Eff - High Utility

High Eff - Low Utility

High Eff - Mid Utility

High Eff - High Utility

-2

-1.5

-1

-0.5

0

P
a

y
o

ff

104

Rational Att - Rational Def

Rational Att - Myopic Def

Rational Att - Greedy Def

Greedy Att - Greedy Def

Random Att - Random Def

Rational Att - Random Def

Random Att - Rational Def

Myopic Att - Myopic Def

Fig. 6: Payoff of various strategies under different settings.

To investigate the impact of the 9 experimental set-

tings (effectivenesses and utilities), we consider the scenario

[1, 2, 3, 4]−[3, 2, 1]. Fig. 6 shows the various strategies’ payoff

for both players. Under low effectiveness, deviating from the

rational policy does not have a significant impact on the final

payoffs, because the variance in the actions’ reward values

is low. However, under high effectiveness, the differences

between policies are significant, which makes playing ratio-

nally crucial. Having highly effective blocks in real settings

requires playing rationally to optimally protect the system.

Furthermore, experiments with different utilities produce a

similar effect, but is not as notable as with the effectiveness.

Fig. 7 represents the behavior of different defense policies

under the [1, 2, 3, 4] − [3, 2, 1] scenario, where each point is

the average payoff each agent attains in every time step over

50 runs. It is clear that the rational defender has the best

final payoff in comparison to other policies. Also, the rational

attacker outperforms other attack strategies in all cases.

C. Implementation results from a real HVAC test-bed

1) The Setup: We orchestrated a standard HVAC system

with an implementation of BLOC as depicted in Fig. 8. The

system is set up with a Raspberry Pi, which we will refer to

as the controller, connected to the HVAC system in place of

a typical thermostat. A DS18B20 temperature probe is wired

to the controller that supplies the current temperature up to an

accuracy of 5 digits. The controller then uses the temperature

to generate control signals to send to the HVAC.

0 20 40 60

Time Step

-1500

-1000

-500

0

P
a
y
o

ff

Rational Defender

Greedy Random Rational

0 20 40 60

Time Step

-2000

-1500

-1000

-500

0

P
a
y
o

ff

Greedy Defender

Greedy Random Rational

0 10 20 30 40 50 60

Time Step

-2000

-1500

-1000

-500

0

P
a
y
o

ff

Myopic Defender

Greedy Random Rational

Fig. 7: Average payoff over time for various defense strategies.

Fig. 8: HVAC Setup

Fig. 9 (a). shows the operation of the system under normal

circumstances when the AC was used for cooling. The target

temperature is set to 21.94◦ Celsius (71.5◦ F), and the con-

troller is configured to turn on when the temperature reaches

a delta of 0.8◦ C from the target and turn off once it reaches

a delta of 0.1◦ C (overshooting the target).

2) Stealthy Attacks: We consider a stealthy adversary that

introduces artifacts in the HVAC system’s stability by in-

creasing the number of events (e.g., switching the AC on

and off more often than necessary) and/or extending the AC

running period. We assume the attacker has already defeated

any security measures in-place and is able to directly modify

the actual temperature y from the probe and report ȳ instead.

We consider 3 types of attacks: fuzzy, clamp, and offset.

• Fuzzy attack: ȳ = y + unif(ka, kb)
This attack adds a random offset in the range of [ka, kb] to

the input temperature to coerce the controller into sending

incorrect control signals to the HVAC system. Fig. 9 (b)

shows the effect of this attack with the range [−1, 1]. The

number of events increased by almost 4 times over the

period of the attack with the AC running around twice as

long as it would have under normal circumstances.

• Clamping attack: ȳ =

{

y y > k

k y ≤ k
This attack clamps the temperature to an arbitrary min-

imum k, to make the HVAC work more than necessary.

Fig. 9 (c) shows the effect of this attack when k = 21.94◦.

The attack is enabled at around 0:40 minutes in, and

disabled at around 1:25. One thing to note is that the

effects of this attack are felt even after it is disabled,

00:00 01:00 02:00

Time (hh:mm)

21

22

23

T
e

m
p

(C
)

HVAC On (Cooling)

HVAC Off

(a)

00:00 01:00 02:00
20

21

22

Actual (y)

Attacked (ȳ)

(b)

00:00 01:00 02:00
21

22

23

(c)

00:00 01:00 02:00
21

22

23

(d)

Fig. 9: Normal Operation (a); Fuzzy Attack: range = [−1, 1] (b); Clamp Attack: k = 21.94 (c); Offset Attack: k = 1 (d).

as it causes the HVAC system to overstrain itself, which

eventually makes it completely ineffective for a period of

time lasting around 30 minutes.

• Offset attack: ȳ = y + k

This attack adds a chosen constant offset k in the range

of [0, 1] to the input temperature, effectively changing the

target temperature by −k. Fig. 9 (d) shows the effect of

this attack when k = 1◦. This particular attack caused

the AC to continuously work while the attack was active.

Normal Fuzzy Clamp Offset

Control Events 100% 375% 50% 0%
Time Running 26.9% 55% 100% 100%

TABLE I: Impact of each attack (as shown in the graphs).

Table I shows the impact on the percentage of control events

and AC run time during attacks.

3) The BLOC Defense: We used 3 types of check blocks –

two stateful and one stateless – to protect against the attacks.

For the stateful blocks, the state is defined by its warm-up time.

When an attack is detected, an alarm is raised to the operator.

Each block is assigned a position on the control loop and its

effectiveness is driven by its likelihood to detect particular

attacks as we explain in detail below and show in Table II.

Fuzzy Clamp Offset

Control Frequency (state=6) 0.99 0 0
Delta Temp. 1 (state=2) 0.7 0 0.8
Delta Temp. 2 (state=5) 0 1 0
Watermark (stateless) 0.9 0.9 0.9

TABLE II: Effectiveness of blocks against attacks.

• Control Frequency Block - [Uin]: This block measures

the frequency at which control signals (on/off signals)

are sent to the HVAC. An alarm is raised if the rate

of control events exceeds a certain threshold (6 per hr).

Under fuzzy attacks, we calculated the effectiveness in

the worst-case scenario, wherein the current temperature

is situated evenly between the two activation thresholds.

In this spot, there is a significant chance every time-step

that the fuzzy attack will trigger a new control event.

We then calculated the probability that the fuzzy attack

will trigger 6 or more control events in an hour. Both

the clamp and offset attacks do not increase the rate of

control events, so we assumed an effectiveness of zero.

• Delta Temperature Block - [Yin]: This block mea-

sures the delta between the previously recorded temper-

ature and the current temperature. Two delta temperature

blocks have been added to the system. The first block

defines the maximum delta as 0.3◦c per minute. This

threshold was chosen as it resulted in 0% false positive

detection rate under normal operation. The second block

defines the minimum delta as 0.05◦c per every 5 minutes.

We computed the effectiveness against fuzzy attacks by

taking the percentage of values that can be chosen that

are greater than ±0.3.

• Watermark Block - [Yout] → [Yin]: This block adds

a checksum digit to the end of the 5-digit temperature

reported by the probe to create a 6-digit temperature.

The change in temperature from inclusion of this block

is insignificant and can be ignored. This block has the

effect of being able to detect 90% of any type of attack,

because each attack has a 1 in 10 chance of getting the

checksum digit correct.

4) The Markov Game (BLOC vs. Adversary): For our test

of the system, we set up a rational BLOC defender against a

rational attacker playing a Markov game with a sub-game in

every time-step (where a time-step is one minute).

00:00 01:00 02:00
21

22

23

24

Fig. 10: Rational defender vs. rational attacker.

Fig. 10. shows the results of our test. The attack is launched

a few minutes after the first hour, and left running for approxi-

mately 45 minutes. When an attack is detected, a thick vertical

line is plotted on the graph. The attacker first cycles through

his attacks and then after 8 minutes settles on the offset

attack (worst-case). This particular offset chosen happens to

be detectable by the watermark block, as shown by the solid-

shaded portion of the graph. Note that a greedy, random, or

other form of defenses would be defeated by the attacker since

it can choose the worst case attack to be mounted based on

its knowledge of the check blocks used. Our game-theoretic

approach, on the other hand, drives the optimal strategy to

minimize the worst-case damage.

VI. DISCUSSION AND CONCLUSION

Cyber attacks on CPS are becoming more sophisticated and

the defense mechanisms to check against have not just become

largely specific – but increasingly more computationally ex-

pensive (e.g., using deep learning). This work presents a coher-

ent framework – BLOC – that orchestrates the CPS at runtime

with the proper “check blocks” that are assigned through

game-theoretic approaches. From a security standpoint, our

approaches are commendable as they operate under the worst-

case scenario (which is exactly what our maximin strategy

optimizes for). Additionally, they are randomized through the

mixed-strategy of the defender and operate within the delay

bound dictated by the the CPS control loop.

We have demonstrated the superiority of our game-theoretic

approaches over a wide range of policies using stateless

and stateful blocks. In the stateless case, we formulated a

Stackelberg game and used linear and mixed integer program-

ming to obtain optimal policies. Our evaluation shows that

conventional approaches such as greedy (and its LP variant)

and random are always worse than the game-theoretical policy.

In the stateful case, we developed a Markov game model

and derived optimal policies using value iteration approach.

Despite the combinatorial nature of the problem (e.g., the

underlying Markov game can reach 8 million nodes and 500

million edges), we were able to obtain optimal mixed strate-

gies. Our results show that the derived policies outperform

myopic, greedy and random polices. They perform better than

myopic as they can account for the effectiveness of the blocks

in the future (due to their warm-up periods) whereas the

myopic policy is biased toward higher immediate rewards.

They perform better than greedy as the greedy policy does

not account for the adversary and assigns blocks with the

highest effectiveness. We observed that even in the cases when

both policies agree to the same assignment, our game-theoretic

policy intelligently protects the system in intermediate steps.

In some cases it would assign blocks with shorter warm-up

periods and lower effectivenesses to keep the system secure

until more effective blocks have warmed up that later would

replace less effective ones. Based on our extensive simulations

with various parameters for effectiveness and target utilities,

we have found that the worst-case payoff of the defender under

random, greedy, and greedy-LP were between [20%, 69%],
[0%, 29%], and [0%, 20%], respectively, worse than the payoff

achieved by the game-theoretic policy with stateless blocks.

Similarly, with stateful blocks, the rational defender outper-

forms the random, greedy and myopic defenders by attain-

ing better worst-case payoffs in the ranges of [26%, 87%],
[0%, 50%] and [0%, 24%], respectively.

ACKNOWLEDGMENTS

This research is funded in part by NSF CNS awards

#1149397 and #1239498.

REFERENCES

[1] S. Amin, A. Cárdenas, and S. Sastry. Safe and Secure Networked Control
Systems under Denial-of-Service Attacks. Hybrid Systems: Computation

and Control, pages 31–45, 2009.
[2] R. Bobba, K. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. Over-

bye. Detecting False Data Injection Attacks on DC State Estimation. In
The First Workshop on Secure Control Systems, CPS Week, 2010.

[3] M. Brown, A. Sinha, A. Schlenker, and M. Tambe. One Size Does Not
Fit All: A Game-Theoretic Approach for Dynamically and Effectively
Screening for Threats. In AAAI conference, 2016.

[4] E. Camacho and C. Alba. Model Predictive Control. Springer Science
& Business Media, 2013.

[5] R. Chabukswar. Secure Detection in Cyberphysical Control Systems.
Ph.D. Thesis – CMU, 2014.

[6] J. Finkle. U.S. official sees more cyber attacks on industrial control
systems, 2016.

[7] J. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in
Networked Control Systems. Proceedings of the IEEE, 95(1):138–162,
2007.

[8] M. L. Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In Proceedings of the eleventh international conference

on machine learning, volume 157, pages 157–163, 1994.
[9] Y. Liu, P. Ning, and M. Reiter. False Data Injection Attacks against State

Estimation in Electric Power Grids. In the 18th ACM Conference on

Computer and Communications Security, Chicago, IL, November 2009.
[10] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model

predictive control: Stability and optimality. Automatica, 36(6), 2000.
[11] Y. Mo and B. Sinopoli. False Data Injection Attacks in Control Systems.

In Proceedings of the 1st workshop on Secure Control Systems, pages
1–6, 2010.

[12] K. Pelechrinis, M. Iliofotou, and V. Krishnamurthy. Denial of Service
Attacks in Wireless Networks: The Case of Jammers. IEEE Communi-

cations Surveys & Tutorials, 13(2), 2011.
[13] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry.

Foundations of Control and Estimation Over Lossy Networks. IEEE,
95(1):163, 2007.

[14] A. Sinha, T. Nguyen, D. Kar, M. Brown, M. Tambe, and A. Jiang. From
Physical Security to Cybersecurity. Journal of Cybersecurity, 2015.

[15] A. Tiwari, B. Dutertre, D. Jovanović, T. de Candia, P. Lincoln, J. Rushby,
D. Sadigh, and S. Seshia. Safety Envelope for Security. In Proceedings

of the 3rd international conference on High confidence networked

systems, pages 85–94. ACM, 2014.
[16] N. Trcka, M. Moulin, S. Bopardikar, and A. Speranzon. A Formal Ver-

ification Approach to Revealing Stealth Attacks on Networked Control
Systems. In Proceedings of the 3rd International Conference on High

Confidence Networked Systems, Chicago, IL, April 2014.
[17] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,

J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg. Limiting
the impact of stealthy attacks on industrial control systems. In ACM

CCS, 2016.
[18] Y. Wang, Z. Xu, J. Zhang, L. Xu, H. Wang, and G. Gu. SRID: State

Relation Based Intrusion Detection for False Data Injection Attacks in
SCADA. In Computer Security-ESORICS. Springer, 2014.

[19] M. Wilhelm, I. Martinovic, J. Schmitt, and V. Lenders. Short Paper:
Reactive Jamming in Wireless Networks: How Realistic is the Threat?
In ACM conference on Wireless network security, 2011.

[20] A. Wood and B. Wollenberg. Power Generation, Operation, and Control.
John Wiley & Sons, 2012.

[21] T. Yang. Networked Control System: A Brief Survey. IEE Proceedings

Control Theory and Applications, 153(4):403–412, 2006.
[22] X. Zheng, C. Julien, M. Kim, and S. Khurshid. Perceptions on the state

of the art in verification and validation in cyber-physical systems. IEEE

Systems Journal, 11(4):2614–2627, 2017.
[23] Q. Zhu and T. Basar. Game-theoretic methods for robustness, secu-

rity, and resilience of cyberphysical control systems: Games-in-games
principle for optimal cross-layer resilient control systems. IEEE control

systems, 35(1):46–65, 2015.

