
Enabling Deliberate Design for Energy
Management in Pervasive Systems

Angela Dalton and Christine Julien
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

adalton,c.julien@mail.utexas.edu

Carla Ellis
Department of Computer Science

Duke University
Durham, NC 27708
carla@cs.duke.edu

Abstract—This paper argues for explicit consideration of data
fidelity during development of context-aware systems. Increasing
the amount of data captured, stored, and distributed does not
always translate into into increased fidelity, and we can leverage
this to avoid unnecessary energy overhead and increase device
battery life. We introduce Context-Awareness Fidelity Expression
(CAFE) as a framework for deliberately specifying application
data fidelity adaptation with the aim of using context-awareness
to reduce energy consumption.

I. INTRODUCTION

Mobile devices and wireless sensors often provide the
user interface, sensing, and data collection infrastructure for
context-aware and ubiquitous computing systems. Mobile de-
vices continue to advance in their computing power, stor-
age capacity, display resolution, display brightness, network
interfaces, and sensing capabilities. There is also a trend
toward smaller and more compact mobile devices. While
these advances make devices more appealing for consumers
and more able to provide rich functionality, improvements in
battery lifetime have been limited. Even though new devices
are designed using low-power electronics, they have only a
finite, highly constrained battery life.

We address this challenge through careful consideration of
data fidelity, meaning the accuracy of the representation of true
context, in terms of the amount of data captured, stored, and
distributed by context-aware systems. Increasing the amount
of data necessarily increases energy consumption, however it
is not as simple as assuming that the most or least amount
of data, which in turn results in the highest or lowest average
energy consumption, provides the greatest or lowest level of
fidelity. To this end, we have developed the Context-Awareness
Fidelity Expression (CAFE) framework to guide reasoning
about the energy/data fidelity relationship in context-aware
applications, which can greatly benefit through better accuracy
and lower energy overhead.

We begin this position paper with a discussion of con-
text data fidelity in three dimensions: capture, storage and
distribution. We overview related work in the next section.
In Section IV we describe CAFE, our approach to directly
managing data fidelity in context-aware systems. Section V
summarizes and concludes.

II. RELATED WORK

Our work fits in with a variety of tools that exist to aid in
the development of context-aware applications. These tools
include middlewares, prototyping environments, modelling
languages, and programming libraries.

Perhaps the most well known development aid, The Con-
text Toolkit [6] provides abstractions for building context-
aware applications that allow the use of context information
without requiring direct control over context sensing. Context
Modelling Language (CML) [11] is a tool that assists a
developer in formally specifying the context requirements of
an application, including required context information and
sources for that information. The Java Context-Awareness
Framework (JCAF) [1] is a programming API for developing
context-aware applications. The Sentient Object Model [7]
provides abstractions for using sensor information, represent-
ing it as context, and actuating objects based on the context.
A framework for developing context-aware applications based
on the sentient object model is presented in [2].

Many efforts exist to develop context-aware middlewares.
The CAMPUS middleware [9] targets applications that will
run on PDAs, phones, and wearable devices. CAMPUS pro-
vides a rules system for deriving context following events.
CARISMA [3] uses reflection to adapt to context changes and
resolve conflicts that arise when peers have different context
requirements. Another approach, introduced in [13], is the use
of design patterns for improving the quality of context-aware
applications.

None of these tools specifically address the requirements
for context data fidelity, which differentiates our work. We
believe that our work could be used in conjuction with other
development tools to provide structure specific to data fidelity
considerations in context-aware applications.

III. CONTEXT DATA FIDELITY

Characteristics of context data can be quantified in terms
of context data fidelity. We define context data fidelity as the
level of representation provided by context data with respect to
a specified reference, which can be considered as the “truth”
that the context data are supposed to determine. Context data
fidelity is in effect an error metric. Assigning a value to context
data fidelity is done by first defining the reference that the



context data are to determine. The context data fidelity level is
then the statistical error between the context result determined
from the context data and the defined reference.

It has been a widely accepted hypothesis that there exists
an increasing relationship between the amount of data used
to determine context state and the context fidelity level, i.e.,
more data provides higher accuracy. Due to the heterogeneous
nature of context sources, however, this is not always the case
for context-aware systems [5]. For example, if we are using
a camera to collect images to detect presence of a person,
the image resolution must be high enough to perform the
detection, but should it be set too high, people in the distance
might cause false positives for presence detection. We address
context data fidelity in three dimensions: capture, storage, and
distribution.

A. The Capture Dimension

Context-aware systems designed to run on mobile devices
rely to a large degree on data collected by sensors to determine
context. Many different sensors can be used, and these vary
widely in the type, amount, and precision of information
they capture. Parameters characterizing sensor data capture,
including individual as well sets of sensors, form the capture
dimension of context data fidelity.

B. The Storage Dimension

Data about past context can provide information for pre-
diction of future context or analysis of current context. Such
prediction or analysis can be done both by detecting patterns
of context or by extrapolating new context either entirely or
partially from recent contextual data. Obviously it is necessary
for some context data to be retained in some form and for
some lifetime by the system to enable the capabilities of many
context-aware applications that use historical data. Finally,
some context-aware applications include historical data or a
logging mechanism as a fundamental component of the service
they are designed to provide. Parameters characterizing the
retention of data form the storage dimension of context data
fidelity.

C. The Distribution Dimension

Due to the resource limitations of mobile devices, context-
aware systems that run on them often rely on wireless com-
munication with external infrastructure to offload intensive
computing tasks as well as for expanded data storage. Sensor
data can also be collected by sensors external to the mobile
device and transmitted to the device. Externally collected
sensor data could first be analyzed by external infrastructure
components of the system, and then some set of results
might be sent to the device for use by the system. Context-
aware systems that involve sharing context data with other
users or with a context-aware infrastructure necessarily require
distribution of some context data. Parameters characterizing
how data is distributed comprise the distribution dimension of
context data fidelity.

D. Fidelity and Energy Consumption

The adaptation of what has been referred to as data fidelity
has been one of the most important techniques employed in
energy-aware software design [8], [12], [4]. Reducing fidelity
has been traditionally viewed as a way to reduce the amount
of work required and, consequently, the energy consumed to
deliver a service. However, for context-aware applications,
increased amounts of data capture, storage, and distribution
do not necessarily result in increased context data fidelity.
Instead, there can be a sweet spot, after which context data
fidelity either does not improve or even degrades. Energy
consumption is non-decreasing as the amount of data captured,
stored, and distributed increases due to a necessary increase in
usage of energy consuming resources to perform the capture,
storage and distribution of the context data. This can be used
to improve the energy consumption characteristics of context-
aware systems.

IV. CAFE

As we discussed in the previous section, careful considera-
tion of the amount of data captured, stored, and distributed by
context-aware systems can be useful in optimizing context data
fidelity and system level energy consumption. In this section
we present a framework for reasoning about data fidelity as it
relates to the amount of data captured, stored, and distributed
in context-aware systems.

Our framework, called Context-Awareness Fidelity Expres-
sion (CAFE), can be used as a tool by developers to assist with
specification of application behavior. CAFE is a method for
describing the capture, storage, and distribution dimensions
that, when combined, determine data fidelity in a context-
aware system. It can also be incorporated into an application
through the use of a set of Java objects we provide that allow
application developers to ensure data resolution or granularity
consistent with the specified requirements of the application.
By using CAFE enablement objects in coding their applica-
tions, developers have a defined structure for incorporating
fidelity related behavior, and making later changes easier to
implement. By incorporating the CAFE ideas, system energy
consumption overhead caused by working with excessive
amounts of context data can be reduced without compromising
the effectiveness of the service provided.

A. The CAFE Method

Context-Awareness Fidelity Expression provides a proce-
dural method for specifying the behavioral requirements of
context sources in context-aware systems with respect to
three dimensions: capture, storage, and distribution of sensor
and context data. Expressing sensor and context data fidelity
requirements of context-aware systems in terms of the amount
of data captured, stored, and distributed by context-aware
systems gives developers a way to understand and compare
characteristics of the system relating to energy consumption.

Context data fidelity refers to the level of accuracy of rep-
resentation with respect to a reference. Of course, the relevant
features of the real world to which the sensor and context



data are compared, the reference, are application-specific and
must be specified for this to become meaningful. The CAFE
procedure consists of four steps that provide the basis for
specifying the CAFE dimensions in a particular system. Each
step builds on the previous one, and the procedure taken as
a whole is used as a guide for designing the behavior of an
application with respect to capture, storage, and distribution
of context data. The initial step in the CAFE procedure is to
list the high-level context types that are used by the system to
influence its behavior. The context states determined by each
context type correspond to the defined reference by which
fidelity is measured.

The next step is to inventory the context sources available to
the system. Context sources include individual sensors as well
as system properties or system data sources relevant to the
context-aware application for which the expression is being
developed. The context sources must be assigned parameters
that indicate the amount of data the source is providing to
the system. Parameters are specific to each context source
and represent attributes such as resolution, noise level (which
would have a negative value), acquisition frequency, field of
view, and many others. The parameters may have a specific
value, a range of possible values, or a set of possible values.

Next in the procedure is a pairing step, which involves
matching context types with the context sources used to
determine them. Multiple pairings can exist for a given context
type, and the pairing can match a context type to a tuple
of context sources that contribute to analysis of that context
type. Sources in the tuple can be either required or optional.
The pairings correlate the high-level context types with the
individual context sources or aggregation of sources from
which data can be collected and analyzed to determine their
state.

A pairing in which specific context sources can be optional,
for example, might be a Location context type paired with the
context sources of GPS and Wireless Radio. The Location
state provided by this pairing might be determined by taking
the midpoint between the coordinates provided by the GPS
and Wireless Radio context sources. However, if one or the
other method is unable to provide a fix, the Location would
be based solely on the available source.

As the final step in the CAFE procedure, a context value
specification is created for each pairing. The data fidelity
values assigned to context type data should approximately
reflect the level of representational accuracy to which the
context can be determined by the set of sources in the pairing.
Specifications used to approximate the level of fidelity have
different properties based on the context type and characteris-
tics of the context sources in the pairing.

For example, in a pairing with location as its context type
and where the context source is a GPS receiver, the context
source data from the GPS can be expected to provide location
within 3 meters of actual location if at least 4 satellites are
visible. When 3 satellites are visible, only a 2D position can be
determined. When fewer than 3 satellites are visible, a location
cannot be determined, and the data value would be considered

negligible [10]. Pairings and specifications are application-
specific, therefore a pairing of the same context type and
sources might have different specifications for different ap-
plications. The process of creating a context value specifica-
tion for an application is the most involved step of CAFE,
which we will summarize herein. A detailed explanation and
examples for each dimension can found in [5]. This step is
comprised of specifying attributes in each of the three CAFE
dimensions.

The context value specification for a pairing’s capture,
storage, and distribution dimension defines a value for each
CAFE Parameter specific to the context sources in the pairing.

To provide a relative valuing among pairings or a relative
valuing among similar applications, we quantify each dimen-
sion through a summation of the parameters of the context
sources. In the case of the storage dimension, we apply a
reduction factor, rhos, to the source parameters, representing
the degree to which the data stored is reduced from that
captured. We also apply a lifetime variable, tau, incorporating
restrictions on storage duration. In the case of the distribution
dimension, we apply a reduction factor, rhod, for the same
reason, and a freshness variable, phi, representing a loss of
fidelity as data ages. We use a summation of normalized
parameters as a simple way of accounting for heterogeneous
context sources and their parameters with equal weight.1 The
minimum possible value for the capture dimension is then
the total of least possible values for all parameters and the
maximum possible value is the total of highest possible values
for all parameters. The lower bound for capture could be zero
if every context source had zero as a possible value. Although
a context-aware application would seem by definition to be
unable to function without any context information, instead of
the capture dimension providing context information locally,
it could be obtained through the distribution dimension, for
example receiving context data from a source external to the
system. Even in the case of an application in which capture
is required for obtaining context information, zero as a lower
bound indicates that no single context source alone is critical
to the system functioning; instead alternative sources may be
used. Examples of this include the ability to use either RFID
tag data or face recognition from images captured to determine
identity, and the ability to use either GPS or WiFi-based
location sources. In these cases, only one source is required,
though both might be available.

Once all of the steps of the CAFE procedure are complete,
one can quantify the fidelity behavior of an application as the
vector (c, s, d), where c is the capture value, s is the storage
value, and d is the distribution value.

B. CAFE Enablement

CAFE can be used by developers as a tool for reasoning
about and appropriately specifying data fidelity requirements
and corresponding capture, storage, and distribution settings.

1More complex methods than summation might better represent capture
values, but we want to provide simple initial comparitive values.



It can also be used as a method for estimating and comparing
relative energy consumption characteristics of context-aware
systems. Finally, CAFE can serve as the basis for enforcing
data fidelity behavior in each of the fidelity dimensions when
incorporated into context-aware systems using the Java CAFE
Enablement Environment. The CAFE Enablement Environ-
ment is a Java-based implementation of the CAFE framework
that can be incorporated into a context-aware system to provide
enforcement of the characteristics and settings defined by the
application, as well as providing a structure for a developer
to incorporate fidelity settings into the application. The imple-
mentation includes classes for the components described in the
previous section as well as a CAFE Manager (CM) class. The
CAFE Enablement Environment uses the Java event model
as the basis for handling capture, storage, and distribution of
sensor and context data. The CM also initiates updates of the
CAFE determined settings upon the occurance of a context
change requiring re-evaluation of the settings. Again, this is
handled through the use of Java events triggered by context
changes.

Every sensor available in the system is represented by a
Context Source object, as are other system-internal sources of
context data. The capture, storage, and distribution behaviors
required by the application are enforced on these objects
through the CM. Applications provide the CM with pairings
between context sources and types and a context value speci-
fication for each pairing.

The CM orchestrates the overall functionality of CAFE
Enablement through state change listeners that monitor the
states of all Context Type objects. It performs the translation
using application specific Context Value Specifications and the
Context Source capabilities to actual sensor settings (or access
control settings for system resource context sources) to reflect
the correct capture, storage, and distribution dimension values.
The CM dynamically determines and controls the Context
Sources and Context Types’ settings using the application
defined Context Value Specifications, the current context state,
and the settings available for Context Sources.

The CM directly actuates each sensor’s hardware settings
to ensure that the application will capture only the CAFE
specified amount of context data based on its Context Value
Specification for the current context state. The CM controls
the storage and distribution of context data by performing
the translation from specified requirements to settings. In
addition to controlling the storage and distribution of data
from low-level context sources, such as sensor data, the CM
controls the settings for high-level context information that
have been determined through analysis of context source data.
It provides applications with interfaces through which they
can perform store and send operations on sensor data and
context information. This level of indirection allows the CAFE
Enablement Environment to guarantee that the data stored or
disseminated matches the CAFE specifications for storage and
distribution. To this end, a store request includes the lifetime
allocated for the data being stored. The CM schedules the
removal of the data from the file system within a short time

Fig. 1. Average FaceLog Power Consumption

of the item’s time of death.

C. A CAFE Example: FaceLog

To provide a simple and concrete example of the use of
CAFE Enablement in a context-aware application, we have
developed FaceLog. FaceLog is a context-based auditing tool
for keeping a record of users of a shared system, logging
information about the users of that system. The record contains
an initial image of each user when his or her attention is first
detected, stored along with the time of initiation. Subsequently,
the corresponding time of departure of that user is determined
and stored when his or her attention is no longer detected.
These individual sessions provide a record of system usage
for auditing purposes.

A simple and naive implementation of FaceLog might
simply set the camera resolution to be able to meet all
application requirements, using 640x480, the highest reso-
lution supported by the camera, allowing user identification
through face recognition. Figure 1 shows the average power
when running FaceLog and storing images at each supported
camera resolution. Using CAFE, we can specify the appli-
cation requirements at a finer granularity, specifically that of
each context state, and provide appropriate fidelity adaptation
through the CAFE Enablement objects, allowing the system to
stay at the lower levels of power consumption for the majority
of execution.

We have implemented FaceLog both with and without
the CAFE Enablement framework, using identical fidelity
characteristics in both versions to provide a fair comparison. In
an implementation done without specifically reasoning about
fidelity requirements in each context state, it is likely that
system energy consumption would be higher, especially in
more complex applications than FaceLog.

We compared the standalone FaceLog implementation with
the CAFE Enabled version to understand what, if any, over-
head was added by incorporating the CAFE Framework. We
instrumented each version of the FaceLog code to measure
time for operations performed when the attention context type
was in each possible state, and therefore caused different



Fig. 2. Operation Times for Stand-alone vs. CAFE Enabled FaceLog

application behavior. An operation for the context state in
which the user “starts looking” requires the camera resolution
to be changed to the highest supported resolution (so as to
enable face recognition), the subsequently captured image to
be stored, and the time of initiation to be logged, which
matches the image filename. Two operation types exist for
the context state in which the user is “looking.” In the first
operation, the camera resolution is changed to the lowest sup-
ported resolution in addition to the capture and analysis of an
image, since face recognition support is no longer necessary.
The common case operation in this state is simply capture
and analysis of the image. The “not looking” state similarly
involves only capture and analysis of the image. The “stop
looking” state requires storage of the time of departure. Our
findings (Figure 2) show negligible performance difference
between the standalone version of FaceLog and the CAFE
Enabled version for each type of operation.

The behavior of both versions of FaceLog is the same, with
each version optimized based on our consideration of the cap-
ture and storage requirements and the fidelity characteristics
we found in our previous analysis. Clearly it is possible, then,
to develop a stand alone application that uses the optimal
capture, storage, and distribution settings for the data fidelity
characteristics of the system. We argue, however, that the
CAFE Enablement framework provides the application devel-
oper with the basic code infrastructure that guides him or her
through the process of considering data fidelity requirements
and corresponding specifications for each dimension. In the
case of FaceLog and without the framework, it would certainly
be plausible, if not likely, that a developer would simply select
the camera resolution required for storage at the beginning
of each session and leave the camera set at that resolution
throughout execution. We developed both versions to provide
the same functionality so that we could fairly evaluate the
overhead of using the CAFE framework for implementation.

V. CONCLUSION

Energy management continues to be a primary challenge
for context-aware applications on mobile devices. In this

position paper we have argued that developers of context-
aware systems should explicitly specify data fidelity behavior
of their applications. Appropriate data fidelity specification
leads to energy usage matched to the demands and state
of the application, and avoids excessive overhead. In order
to address the need for tools to guide users and developers
in understanding and specifying fidelity requirements, we
created the Context-Awareness Fidelity Expression (CAFE)
Framework. CAFE provides a procedural method that can be
used for specification and evaluation of data capture, storage,
and distribution characteristics in context-aware systems. We
created a set of Java objects that we refer to as a CAFE
Enablement Environment. The CAFE Enablement Environ-
ment allows developers to incorporate CAFE specifications
into their applications and ensures behavior matching the
specifications. We evaluated CAFE by developing in parallel
two versions of FaceLog, a context-aware application for user
auditing, one using the CAFE Enablement Environment, and
one standalone version. We showed that deliberate consider-
ation of fidelity requirements can produce significant energy
savings. Our comparison of the two FaceLog versions showed
that CAFE did not add performance overhead.

VI. ACKNOWLEDGEMENTS

The authors would like to thank the Center for Excellence
in Distributed Global Environments for providing research
facilities and the collaborative environment.

REFERENCES

[1] J. E. Bardram. The java context awareness framework (jcaf) - a
service infrastructure and programming framework for context-aware
applications. In Pervasive, pages 98–115, 2005.

[2] G. Biegel and V. Cahill. A framework for developing mobile, context-
aware applications. percom, 00:361, 2004.

[3] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware
reflective middleware system for mobile applications. IEEE Transactions
on Software Engineering, 29(10):929–945, 2003.

[4] S. Chandra, C. S. Ellis, and A. Vahdat. Multimedia web services for
mobile clients using quality aware Transcoding. In WoWMoM, Seattle,
WA, August 1999.

[5] A. Dalton. Data Fidelity Mechanisms for Enhancing Energy Manage-
ment in Context-aware Systems. PhD thesis, 2007.

[6] A. Dey and G. Abowd. The context toolkit: Aiding the development of
contextaware applications, 1999.

[7] A. Fitzpatrick, G. Biegel, S. Clarke, and V. Cahill. Towards a sentient
object model, 2002.

[8] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In SOSP, pages 48–63, December 1999.

[9] K. Hisazumi, T. Nakanishi, T. Kitasuka, and A. Fukuda. Campus: A
lightweight and dependability oriented context-aware middleware. In
The 3rd CREST/ISWC Workshop on Advanced Computing and Commu-
nicating Techniques for Wearable Information Playing, 2004.

[10] G. Ltd. What is gps? http://www.garmin.com/aboutGPS.
[11] T. McFadden, K. Henricksen, and J. Indulska. Automating context-aware

application development, 2004.
[12] D. Narayanan and M. Satyanarayanan. Predictive resource management

for wearable computing. In MobiSys 2003, pages 113–128, New York,
NY, USA, 2003.

[13] G. Rossi, S. Gordillo, and F. Lyardet. Design patterns for context-
aware adaptation. In SAINT-W ’05: Proceedings of the 2005 Symposium
on Applications and the Internet Workshops (SAINT 2005 Workshops),
pages 170–173, Washington, DC, USA, 2005. IEEE Computer Society.


