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In Cyber-Physical Systems (CPS), cyber and physical components must work seamlessly in tandem. Runtime
verification of CPS is essential yet very difficult, due to deployment environments that are expensive,
dangerous, or simply impossible to use for verification tasks. A key enabling factor of runtime verification
of CPS is the ability to integrate real-time simulations of portions of the CPS into live running systems.
We propose a verification approach that allows CPS application developers to opportunistically leverage
real-time simulation to support runtime verification. Our approach, termed BRACEBIND, allows selecting, at
runtime, between actual physical processes or simulations of them to support a running CPS application.
To build BRACEBIND, we create a real-time simulation architecture to generate and manage multiple real-
time simulation environments based on existing simulation models in a manner that ensures sufficient
accuracy for verifying a CPS application. Specifically, BRACEBIND aims to both improve simulation speed and
minimize latency, thereby making it feasible to integrate simulations of physical processes into the running
CPS application. BRACEBIND then integrates this real-time simulation architecture with an existing runtime
verification approach that has low computational overhead and high accuracy. This integration uses an
aspect-oriented adapter architecture that connects the variables in the cyber portion of the CPS application
with either sensors and actuators in the physical world or the automatically generated real-time simulation.
Our experimental results show that, with a negligible performance penalty, our approach is both efficient
and effective in detecting program errors that are otherwise only detectable in a physical deployment.
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1. INTRODUCTION

Cyber-Physical Systems (CPS) entail complex software and exhibit sophisticated inter-
actions among digital devices, analog components, and the surrounding world, includ-
ing humans in that world. CPS are often safety critical and must be reliable. However,
CPS contain both digital and analog components and must be modeled as hybrid sys-
tems, which are known to be hard to formally verify [14]. Simulation-based approaches
to verification, on the other hand, are restrictive both in expressiveness (e.g., of quan-
titative properties) and coverage (i.e., the cyber part is modeled instead of testing the
real implementation). Thus, common but subtle bugs that result from the interaction
of cyber and physical components are often not detectable.

Runtime verification of CPS provides a middle-ground between formal verification
and simulation. Our recent work on runtime verification [36] can check both qualitative
(e.g., safety, liveness) and quantitative (e.g., bounded safety and liveness, responsive-
ness) properties. However, to detect the insidious CPS bugs that are manifest only in
a specific deployment environment, this runtime verification requires repetitive de-
ployments that are either too expensive (e.g., in labor, time, and/or money), dangerous
(e.g., involving autonomous vehicles), or infeasible. As an example, an unmanned rover
deployed to the moon was unable to move after the first lunar night. A post hoc analysis
found that the temperature on the moon is considerably lower than the rover’s com-
ponents had accounted for; as a result, the rover effectively suffered from frostbite.1
Runtime verification of CPS in general requires a repetitive and flexible test environ-
ment, where settings can be changed easily to determine whether the properties being
checked will hold in all situations. In the case of the rover, there are relatively accurate
models of involved physical processes (e.g., rover dynamics and moon environment).
However, these models are separate from the runtime verification of the system’s cy-
ber components, ultimately leading to the failure. Our goal in this work is to create a
middleware that enables the seamless integration of these expressive models with the
cyber portion of a CPS application.

The state-of-the-practice in creating a repetitive and flexible test environment is
to use real-time simulation, where computer models are used to accurately produce
values of internal variables; these models are designed to operate on the same time-
scale as the corresponding physical system [5]. However, to date, the application of
real-time simulation in CPS verification is limited. In hardware-in-the-loop tests [7,
35], a physical controller is connected to an executing real-time simulation representing
a virtual plant, and this is used to verify the controller. In software-in-the-loop tests
[23], both controller and plant are simulated. Besides being expensive (e.g., requiring
proprietary hardware) and bound to a specific simulation platform (e.g., Simulink), all
these approaches use testing to check the controller algorithm that resides in the cyber
components of a CPS. In comparison, an intuitive and generic way of leveraging real-
time simulation with a more formal runtime verification would give more thorough bug
detection not limited by the coverage of a particular suite of tests.

However, there are nontrivial research challenges in integrating real-time sim-
ulation with runtime verification. First, many CPS systems have heterogeneous

1Chen, Stephen. “Last-ditch efforts to salvage mission of China’s stricken Jane Rabbit Lunar rover.” South
China Morning Post 18 April 2014 (http://tinyurl.com/oq5qnqx).
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components (e.g., automobiles have mechanical, thermodynamic, and electrical
sub-systems); data exchange and time synchronization among the simulation models
for these heterogeneous components are very challenging in the real-time simulation
environment. For instance, simulations of different physical components have different
step sizes depending on the attributes of the underlying physical process (e.g., a car
engine requires a millisecond level step size, while an actuator for an automatic
window normally requires a step size on the order of seconds); different solvers may be
required depending on the complexity of linear/differential equations underneath; and
different simulation environments (e.g., LabVIEW or Simulink) may be required for a
specific subsystem due to particularities of the verification task (e.g., the underlying
language used in the application, built-in solvers and libraries, knowledge of a multi-
disciplinary team). Another challenge in CPS simulation stems from the fact that the
step size needed for each model may not always be easy to estimate a priori, especially
for the physical portions of the system. When integrating real-time simulation with
a verification environment, another issue is the impact of this integration on the
monitored CPS application. For instance, several monitoring and verification tasks are
quite computationally intensive. Effectively managing the computational overhead of
the intended verification environment is a real and as yet unresolved challenge [36].
Finally, the verification environment integrated with real-time simulation inevitably
has latency and clock drift. Minimizing the impact of these on the accuracy and
scalability of our verification approach is another research challenge.

In this article, we motivate an integrated runtime verification, BraceBind, that al-
lows a developer to specify “hooks” that can be connected, at verification time, to
either simulated models of physical processes or to the physical processes themselves;
in a given “run” some hooks can be connected to models while others are connected
to physical components. We can change parameters of the models to mimic differ-
ent kinds of deployment environments, making it possible to detect bugs that appear
only in a specific environment. The approach can therefore be used to identify in-
correct assumptions about environments that are expensive or infeasible to replicate
in hardware-in-the-loop or software-in-the-loop tests alone. Concretely, we make the
following contributions:

• We propose a real-time simulation architecture (which we abbreviate as RTS) to
generate, manage, and optimize an integrated real-time simulation with input from
heterogeneous models.

• We create a software architecture based on an aspect oriented adapter (abbreviated
as AOA) to integrate existing representative real-time verification tools with the
automatically generated RTS to effectively manage the computational overhead and
latency of the integrated verification environment.

• We evaluate our solutions using a real world multi-agent vehicle system2 to demon-
strate that the real-time simulation is highly compliant with the original simulation
models and that the integrated verification environment is both efficient and effective
in detecting real bugs.

2. RELATED WORK & RESEARCH GAPS

We combine the strengths of real-time simulation (where interactions between cyber
and physical components can be easily analyzed and tested for various settings) and
runtime verification (where properties are formally specified and checked at runtime).

2This CPS application is used as the motivating application throughout the article. In the application, a
number of autonomous rovers are assigned dynamically to visit a set of provided tasks, where each task is
an obligation to visit a waypoint.
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Either alone is insufficient for CPS verification. With only real-time simulation, many
aspects are either not representative of an actual deployment or are intractable; run-
time verification alone requires access to a complete deployment environment, which
may be difficult or infeasible. Although high-quality simulations of physical processes
exist and are widely used, significant gaps remain in making these models usable for
verification alongside cyber components. We overview the related work, identify the
gaps, and preview how we address them.

Challenges in Establishing Accurate Real-time Simulation. Real-time simu-
lation is an “online” version of discrete-time simulation, where time moves forward in
steps of pre-defined duration [33]. To solve the underlying mathematical equations (e.g.,
differential equations) at a specific time step, the model is solved using the input of the
variables or states from the preceding time step. As compared to an “offline” version, the
execution time TE required to solve the equations for a time step must be shorter than
the specified step size TS, otherwise the real-time simulation is considered erroneous
[5]. Since CPS often entail multiple physical processes, and each physical process may
be modeled separately, different real-time simulations must be able to coordinate, even
potentially exchanging state information during a single time step TS. Different simu-
lation models and platforms may have different time steps, depending on their physical
laws (e.g., a dynamic electrical system has a fast time step while a dynamic thermal sys-
tem may have a much slower one). Each real-time simulator (i.e., the executable imple-
menting the simulation for a given model) has to execute a number of tasks within TE,
including reading inputs, solving model equations, generating outputs, and exchanging
results with other simulation models. All these tasks are important, and failures or
inaccuracies in any of them can render the real-time simulation useless [5]. Accurate
synchronization among different simulation models is crucial to ensuring simulation
stability [4].

The Functional Mockup Interface (FMI) [6] is an independent standard to create a
co-simulation environment where C code for a specific dynamic system model is gen-
erated in the form of an input/output block, and two or more models (with different
solvers) can be coupled. FMI requires each simulation platform provider (where each
dynamic model is created) to explicitly support an FMI interface for model exchange
so it is possible to automatically generate a Functional Markup Unit (FMU) from the
dynamic model. A FMU is a combination of C code and a helper XML specification
that has definitions for all the variables in the given dynamic model. However, the
two fundamental challenges in establishing real-time simulation, namely time syn-
chronization and data integration among simulation models, are left for developers to
implement in the form of Master Algorithm. The MODELISAR [29] project supports
FMI and includes a prototypical implementation of a Master Algorithm. However, the
existing implementation does not guarantee the efficiency and simulation speed, which
largely depend on the problem to be solved (e.g., the size of the underlying ordinary
differential equation or differential algebraic equation) and the host computer’s power
[2]. This kind of implementation of the Master Algorithm is not acceptable for an inte-
grated runtime verification environment, where efficiency and speed of the real-time
simulation must be optimized to guarantee necessary precision of the outputs; further,
writing a suitable master algorithm is very error-prone and poses significant challenges
for developers [2]. Since numerical integrations deal with approximations, it is of vital
importance to have an alternative automated solution that can guarantee efficiency
and speed of the real-time simulation (instead of an interface or a requirement for
data integration and time synchronization) to maintain a satisfactory balance between
the simulation speed (i.e., latency) and precision (i.e., simulation errors) [20]. In Ref.
[1], a co-simulation platform is proposed to integrate the ns-2 network simulator with
the Modelica physical systems simulator. The simulation platform is able to support
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asynchronous events inside both physical and network systems. The main contribu-
tion of the work is to solve real-time synchronization to make sure both simulators
will advance at the same wall-clock rate. Our work is similar in terms of time synchro-
nization; however, we are more focused on building an integrated runtime verification
suite for a real implementation of the cyber part instead of studying and analyzing
only simulation.

In industry, real CPS practitioners guarantee the simulation speed and precision by
using dedicated machines and software to build the real-time simulation environments
(i.e., NI PXI server [30] and LabVIEW real-time module [24]). However, this approach
is very expensive (e.g., a basic NI PXI server costs around 10,000 USD [31]) and is
not scalable. Also, this approach does not provide a solution for complex CPS where
sub-system models must be created in different simulation platforms for a variety of
reasons (e.g., knowledge and preference of the interdisciplinary team, different costs,
and different built-in solvers). In Ref. [20], a fine-grained co-simulation method is ex-
plored that enables numerical integration speed-ups. The method is to partition the
existing models into loosely coupled sub-systems with sparse communication between
partitioned modules. The parallel execution is mainly to exploit multi-core processors
to deal with originally sequential ordinary differential equations in CPS sub-system
models. Our work is similar to this approach but we extend the parallel simulation
into a coordinated distributed simulation, which is more suitable for complex CPS with
different sub-systems, where models of each sub-systems can be executed in separate
physical computation units. In Ref. [22], a time-predictable computer architecture for
digital emulation is proposed for CPS. The architecture can be implemented on top of
a Field Programmable Gate Array (FPGA) to provide low latency emulation. This so-
lution is a hardware based approach; in contrast, we take a software approach that we
argue is more automated and accessible. In Ref. [34], an integrated platform is proposed
to integrate Matlab/Simulink simulation tool with the DETERLab emulation testbed.
The runtime environment provides time synchronization and data communication to
coordinate two simulation platforms for security experiments. The work is very similar
to ours; however, our contribution is more targeted to generating a distributed real-
time simulation environment for fairly large size simulation models as compared with
creating a runtime environment to integrate simulation with emulation. Also, the ap-
plication of this approach is suitable for simulation-based testing by observing signals
(e.g., recording the signals received for a unmanned aerial vehicle controller), while
our approach is specifically designed for integrated formal verification that integrates
the real-time simulation with runtime verification tools.

The above motivates us to create a Real-Time Simulation (RTS) architecture to
generate, manage, and optimize a distributed simulation environment in which models
of each subsystem are converted automatically into executables and deployed into a
designated machine. Our previous work in Ref. [7] provides a highly efficient and
inexpensive technique to build a real-time simulation environment for powertrain
simulation of an electric vehicle. The existing work, however, is restricted to converting
a relatively simple simulation model (e.g., a Vehicle Control Unit) into a C++ executable.
Building on this work, the RTS described in this article is able to convert multiple
simulation models across different underlying subsystems of a CPS into a distributed
real-time simulation environment with a group of C++ executables running on variety
of platforms. RTS also provides two modes of data integration services depending on the
specific requirement of each model and both in-model and cross-model synchronization
for the real-time simulations; this synchronization maximizes simulation speed and
minimizes latency.

Limited Use of Real-time Simulation. For real-time simulation in CPS verifi-
cation, hardware-in-the-loop testing [7, 11, 13, 35] is becoming increasingly common.
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In Ref. [13], a real-time simulation environment with microsecond latency is estab-
lished to test AC motors. However, the environment is specially designed for AC motors,
and each simulation module is hard-wired to a specific processor. Our solution ties the
(automatically generated) real-time simulation to a compatible runtime verification
tool using a message based middleware that requires developer’s annotations in the
implementation. Our solution is not constrained to any specific hardware or tied to any
specific processors, nor is it limited by the coverage of a particular suite of tests. Work
in co-design [12, 27] validates device function for a wide range of operating conditions.
A real device communicates to mathematical models that are implemented as FPGA
circuits or processor instructions; the models are executed in real-time to simulate the
interacting environment. In comparison, our solution can build the required real-time
simulations based on existing physical models (which are often created anyway during
a prototyping phase) from off-the-shelf simulation platforms as long as they provide
a mechanism to convert models into executables (e.g., C and C++). The annotations
supported by our approach enable switching the test environment from a physical set-
ting to a real-time simulation and enable test settings that consist of combinations of
physical devices and simulation models.

3. AN ASPECT ORIENTED ADAPTER TO INTEGRATE WITH RUNTIME VERIFICATION

One major intellectual contribution of our work is to create a middleware based on
Aspect Oriented Programming [21]. Specifically, we develop an Aspect Oriented Adap-
tor (AOA) to connect cyber components to values that reflect the physical environ-
ment, whether through real-time simulation or physical transducers (e.g., sensors and
actuators).

This AOA allows CPS developers to use existing runtime verification tools to repeat-
edly verify important properties of the system in a well-controlled environment. The
use of the AOA greatly increases our ability to reproduce those “hidden” bugs that
are very hard to reproduce and detect in a real deployment environment but are mis-
sion critical. We discuss the details of BraceBind’s AOA architecture, including how
we manage to reduce computational overheads while preserving accuracy in detecting
errors.

3.1. Foundations

Before we detail the design of our AOA and its integration with runtime verification
of CPS, we first review some foundations of our runtime verification architecture more
generally. To support runtime verification of CPS, we integrate an existing runtime
verification tool [36] with real-time simulation. We assume that the runtime verification
tool models the execution of a CPS application as an infinite sequence of observations
δ = δ0δ1 · · · δn · · · . Each δi ⊆ 2E, where E is a set of propositions that describes the
observed state of the application. Since a CPS application is also a real-time system,
timing information must be captured. A timed trace is a pair � = (δ̄, τ̄ ), where δ̄ is a
trace and τ̄ is an infinite sequence of non-negative real numbers representing the time
of each event. The timing sequence respects monotonicity and progress (τi < τi+1 and
∃i ∈ N,∀ j ∈ R, τi > j).

In our work, we name those variables that are associated with sensor data and actu-
ator commands from the observed CPS application as Physical Variables. At runtime,
the timestamped values of designated Physical Variables are recorded into a program
trace file. This trace file can be merged with a trace file for existing runtime monitor-
ing tools (e.g., a trace capturing the logical elements of the program state), assuming
the runtime verification tool has the same (timed) execution model as above. The use
of a dedicated trace file is just an implementation choice; the needed values could
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also be made accessible through an established programming interface or stored in a
concurrent lock free queue, for example.

We also assume for each physical deployment environment, a hardware abstraction
layer like Ref. [37] is available; we assume that this layer allows a CPS developer
to pass a value to a specific actuator by knowing the actuator’s unique name and to
retrieve a value from a sensor by knowing the sensor’s unique name.

3.2. AOA and AOP

BraceBind’s AOA is designed to intercept value changes in Physical Variables and
to inject them into the running CPS application so the application can be run against
either a real-time simulation or a physical deployment environment or a combination of
the two. To reduce the computation overhead and its potential impact on the observed
CPS application, BraceBind’s AOA uses Aspect Oriented Programming (AOP) [21].3
AOP enables behavior to be added to an application without changing the original
code; using the approach, the same program can be compiled either with or without
the added behavior.

When the CPS developer wants to execute the program without the supporting
structure of BraceBind’s AOA, he can do so without making any additional alterations
(outside of recompiling the program without the AOA interceptors). AOP achieves this
flexible behavior by monitoring a specific action of the application (e.g., a method call
or an object initialization) and executing a piece of code associated with the action.
The target action is called a pointcut, which generically identifies a set of points in the
control flow of the application. The piece of code associated with the pointcut is defined
by the AOP programmer as advice. Both the pointcut and advice are defined outside
of the application’s source code. However, it is not straightforward to apply AOP to
a CPS application in this way as there are no existing specifications to differentiate
Physical Variables from other program variables, and it is quite error prone to ask CPS
developers to manually create the underlying pointcuts and pieces of advice that are
essential in AOP.

Therefore, our first effort in creating the AOA is to create customized annotations
that are able to provide a view that unifies a CPS application’s physical variables and
cyber variables, thereby explicitly capturing something the CPS developer knows but
is difficult to automatically infer; these annotations also specify how the simulation or
transducers can connect to that view.

To use BraceBind’s AOA architecture, a CPS developer is only required to augment
the CPS application with the necessary subset of these customized annotations. Then
the CPS developer can execute the CPS application within BraceBind’s AOA framework
without requiring the developer to have detailed knowledge of AOP. Using the CPS
developer’s provided annotations, BraceBind’s AOA automatically generates a pointcut
for each identified physical Variable. To do this, AOA generates a “pseudo method call”
for the assignment to each such variable; this method is called every time the value
of the indicated variable is changed (i.e., actuator input) or is accessed (i.e., sensor
output). These pseudo method calls are invisible to the CPS developer.

Our AOA also uses the CPS developer’s annotations to generate the corresponding
advice. In AOA’s use of AOP, the advice is invoked every time the pseudo method is
called; the advice directs the interaction of the physical variable to either the real-time
simulation or physical environment, depending on the annotation. Figure 1 shows this
general process.

A developer uses a customized annotation class called PhysicalVariable to explicitly
identify variables in the cyber part of the implementation that reference the physical

3In its implementation, our prototype specifically uses AspectJ: http://aspectj.2085585.n4.nabble.com.
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Fig. 1. Underlying Annotation and AOP.

world. This reference may be because a variable’s value comes from one or more sensors
or because the value is used (often as a result of a control algorithm) to command
one or more actuators. These annotations indicate points in the CPS program where,
when directed to do so, AOA can replace the interaction with the physical world by an
interaction with an appropriate real-time simulation.

In the annotation, the CPS developer states the physical variable’s type, which de-
termines whether the value is used as an input to the physical world or the real-time
simulation (i.e., it acts on actuators by sending information to the physical world) or as
an output from the physical world or the real-time simulation (i.e., it receives informa-
tion from the physical world that is used in the application). The developer’s annotated
program is passed to BraceBind’s AOA, which automates the remainder of the process
by automatically generating the necessary pointcuts and advice. Ultimately, these an-
notations make it possible to pass information about changes in PhysicalVariables to
and from the CPS application.

We give an example of an AOA annotation in Figure 2; this example is drawn from
our rover application introduced previously and used in Section 5. In this example,
when the rover senses a change in any of several monitored properties, it executes the
onSensorChanged method. Within this method, the program determines a new value for
the angle variable, which determines future movements of the rover. In this example,
the CPS developer has declared a physical variable called Angle_Change and linked
that physical variable to the local program variable angle. This variable is an actuator,
meaning that its value, when changed, should propagate to the executing CPS system;
in fact, in this case, the change should propagate to a simulation of the actuator.

For the example in Figure 2, without the AOA, when the program changes the value
of angle, it is effectively directly setting a new value for angle. When the developer’s
annotations are compiled with BraceBind’s AOA, BraceBind automatically generates
a pseudo method for the angle variable4 and inserts a pointcut that calls this pseudo

4If the angle variable is referenced in multiple annotations (e.g., in different methods, since angle appears to
have scope wider than the method), then does BraceBind generate multiple pseudo methods? Does it matter?
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Fig. 2. Physical variable annotation example.

Fig. 3. AOA Adapter Model.

method after each assignment to the variable (e.g., the last line in Figure 2). Given
the particular annotation here, the pseudo method connects the CPS program code
with the simulation of the Angle_Change physical variable, using BraceBind’s Cyber
Delegate model.

The Cyber Delegate in Figure 3 is a core component of the AOA. The Cyber Delegate
is responsible for intercepting and handling the value changes for Physical Variables.
Based on directions from the CPS developer’s annotations, the Cyber Delegate main-
tains the mapping from each Physical Variable to the corresponding sensor output or
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actuator input in either a real-time simulation environment or a real-world deployment
environment. Specifically, the Cyber Delegate synthesizes an Adapter for each Physical
Variable.

An Adapter functions as a software interface that connects the value of a particular
physical variable with either the physical world or a simulation of that world. Each time
a piece of AOA’s advice is activated, if that advice is associated with data acquisition, the
relevant Adapter pulls the latest sensor data from the real-time simulation, replaces
an explicit access to a sensor with access to the simulation, or, in the case that the AOA
intends for the variable to access the physical world, simply passes the access along to
the sensor.

In contrast, if the activated advice is associated with sending a command or variable
assignment to an actuator, the Adapter pushes the command or variable assignment
to the real-time simulation or passes the original action through to the actuator. Every
action from the Adapter generates a signal that is recorded in a AOA program trace
file that can be merged with a global program trace file and used as input to a runtime
verification tool (e.g., Ref. [36]).

Algorithm 1 shows the main logic of the synthesized Adapter. If the variable associ-
ated with the Adapter is targeted to real-time simulation, then the Adapter synthesizes
a publisher and pushes the data into a Real-Time Simulator (RTS) to be delivered to
any subscribed models internal to the RTS (if the variable is an actuator command),
or generates a subscriber and retrieves the sensor output from RTS (if the variable is
a sensor output). Either type of action is recorded, along with the corresponding times-
tamp into the AOA program trace to be merged with existing real-time simulation trace
files (lines 2–11). If the variable associated with the Adapater targets a specific element
of a real-world deployment environment, then the Adapater passes the action directly
to the specified actuator or retrieves the requested data from the specified sensor. As
in simulation mode, the behavior is recorded into AOA trace file (lines 12–21).

ALGORITHM 1: Adapter Algorithm
1 if mode is Simulation then
2 if type is Actuator then
3 registerIntoTrace (name,value) registerPublisherInRTS (name, value)
4 end
5 if type is Sensor then
6 registerSubscriberInRTS (name) value = retrieveDataIntoQueue (name)

registerIntoTrace (name,value) infoDataChangeToAOA (name)
7 end
8 end
9 if mode is Real Deployment then

10 if type is Actuator then
11 registerIntoTrace (name,value) passToActuator (name, value)
12 end
13 if type is Sensor then
14 value = retrieveDatafromSensor (name) registerIntoTrace (name,value)

infoDataChangeToAOA (name)
15 end
16 end

For the example in Figure 2, the pseudo method in the AOA-generated advice con-
nects to the Cyber Delegate that intercepts the variable assignment and determines
whether the actuation should occur in the real world (in which case the synthesized
Adapter does nothing but perform the original assignment) or in simulation (in which

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 106, Publication date: May 2017.



Real-Time Simulation Support for Runtime Verification of CPS 106:11

case the Adapter passes the change into the real-time simulation of the rover’s move-
ment model).

The semantics of the developer’s annotation that connect the angle variable in the
CPS program to the Angle_Change physical variable are passed from the pseudo method
as input to the Cyber Delegate. The Cyber Delegate will then generate an Adapter for
the angle variable. Since the semantics of this specific example require access to real-
time simulation and the action is an actuator command (i.e., to change the setting for
the rover’s movement angle), the Adapter registers with the RTS as a publisher for
Angle_Change data, and the relevant models inside the RTS will be updated every time
the application invokes the onSensorChanged event (which triggers the pseudo method
for setting the value of the physical variable angle).

While the example shows the annotation attached to a particular method, our pro-
totype of AOA also allows annotation at the class level. Another thing to note from
the example is the property “mode.” The value “Simulation” means the variable is con-
nected to the real-time simulation, while “Physical” means the variable is connected
to a real device. There is also a project level “mode” that can connect the entire cyber
part with a real-time simulation or with a physical environment. By employing a mix
of granularities, a CPS developer can simulate all or just parts of the physical system,
making it possible to perform hybrid verification that mixes real-time simulation and
real world interaction.

4. REAL-TIME SIMULATION ARCHITECTURE (RTS)

The second significant intellectual contribution of our work is to provide a Real-Time
Simulation architecture (RTS), tailored to CPS, as a software solution to automate the
generation of an integrated real-time simulation environment. Using guidance from
the CPS application developer, RTS combines existing simulation models and connects
them to a runtime verification architecture in a way that supports high-fidelity runtime
verification and maintains a satisfactory level of simulation accuracy by improving
simulation speed and reducing latency. We start by describing our assumptions and
other foundational material and then present the architecture of BraceBind’s RTS,
including the details of some of its core algorithms.

4.1. Foundations and Functional Overview

The RTS design is based on a few key assumptions. First, we assume the simulation
platforms in which the models are created provide utilities to generate executables
(e.g., as done by Simulink Coder and LabView C Code Generator) and we assume that
the generated code faithfully implements the models. BraceBind’s RTS requires that
essential information about these models is provided in summary form by the CPS
developer in an intuitive way. In our prototype, we use an XML schema, though we
could alternatively rely on FMI as a de facto standard.

Within this description, RTS requires the model’s inputs and outputs and some other
basic information about the model and its realization to be able to connect it properly
to the CPS implementation. This information includes the simulation platform (e.g.,
Simulink), the file name for the model, and the solver algorithm (e.g., Runge-Kutta,
Dormand-Prince, or Euler), as required by those utilities (e.g., Simulink Coder) to
generate executables.

We assume that each simulation model can be deployed to its own machine to exe-
cute and that these machines’ local clocks are sufficiently synchronized (i.e., that the
worst case drift is below a small and acceptable σ ); this is achievable using established
clock synchronization algorithms [10, 28]. The isolation of models to machines gives
required flexibility for RTS to deploy simulation models with optimal performance. For
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Fig. 4. RTS Architecture Overview.

instance, for a specific simulation model requiring a very small step size (e.g., at the mi-
croseconds level), it is highly ideal to deploy the model to its own machine to guarantee
required simulation speed and to reduce simulation latency. In this article, we allow
the separation of simulation models so these simulation models can be deployed to a
separate deployment machine. We leave the study of more optimized and cost saving
solutions as independent studies for future work.

In building BraceBind’s RTS, we focus on improving simulation speed and reduc-
ing simulation latency as they are two important factors that determine the output
accuracy of a real-time simulation environment. Failure to do so would result in in-
consistencies between simulated and actual dynamics, which can render the entire
real-time simulation untruthful and misleading [32]. There are a few other factors
that are also important to the success of a real-time simulation architecture, including
the complexity of models, the experience of CPS developers in creating the simulation
models, and the amount of effort required to create the simulation models. We leave
the study of these factors as independent studies for future work.

Figure 4 shows how BraceBind’s RTS generates and manages real-time simula-
tions using existing simulation models. The RTS has four main components: Model
Exchanger, Time Manager, Data Integrator, and Master Controller. First, using the
information provided by CPS developers regarding the simulation models to employ,
the Model Exchanger invokes the associated vendor-provided utilities to generate exe-
cutables (e.g., in C or C++) for each model. These executables are generated in such a
way to make it possible for them to exchange data with other models in the real-time
simulation (e.g., consider the data exchanged between the rover dynamic model and the
moon model for the example in Section 1). The challenges in constructing the Model
Exchanger are primarily in its engineering (e.g., creating a façade for each vendor
provided utility); we skip the details for brevity.
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The output executables from the Model Exchanger are then processed by the Time
Manager, which adds code to implement time synchronization to the executables to
guarantee that outputs from these executables in the real-time simulation environ-
ment are consistent with outputs from the actual dynamics simulated by the original
physical models. Details of the Time Manager are elaborated in Section 4.3. The
output executables from the Time Manager are then processed by the Data Integrator.

The Data Integrator adds code to provide data integration to allow optimized data
synchronizations across the executables in the real-time simulation environment. For
instance, for the rover application introduced before, there are essentially three physi-
cal models: the rover motor model, the rover dynamic model, and the rover environment
model. Velocity output from the rover motor model is required as one of the inputs to
the rover environment model. The frictional force on x and y axles output from the
rover environment model are required as inputs to the rover dynamic body model.5
The output executables from the Data Integrator are then processed by the Master
Controller.

The Master Controller synthesizes a publisher (the Controller Agent) in each exe-
cutable with a fixed length queue. The default length is 50, which implies that each
executable can store a maximum of 50 historical instances for the outputs. This number
is retrieved empirically based on the smallest step size of this rover simulation models.
We leave the investigation of the optimal value (as a balance between accuracy and
the memory cost) as our future work. As for now, a CPS developer can overwrite this
setting empirically depending on how fast the underlying simulation model is expected
to run and the memory restriction on the host machines in the real-time simulation
environment. After each time step, the simulation’s Controller Agent stores the sim-
ulation’s output to the fixed length queue and listens to subscriptions from outside
the real-time simulation (i.e., reserved for the integration with runtime verification
tool). The Master Controller then deploys the executables, which we called Real-Time
Units (RTUs) based on the deployment instruction for each model provided by the CPS
developer as part of model specifications. That is, for each model, the CPS developer
can specify the deployment machine’s IP Address, File Path, and the Port Number for
publishing output data in XML.

For each real-time simulation, the Master Controller also synthesizes and deploys a
Real-Time Simulation Monitor (RTSM) to a dedicated Monitor node (i.e., a computer
that is connected to every machine hosting an RTU). The Monitor node monitors the
running status of each RTU by subscribing to the output data from each RTU.

In summary, the Time Manager is used to reduce simulation latency by maintaining
synchronization among all models in the real-time simulation. The Data Integrator is
used to improve simulation speed and scalability and to reduce latency by allowing
multiple ways for models in the real-time simulation to effectively exchange input and
output data. We will walk through these two components in more detail.

4.2. Data Integrator

The Data Integrator supports two modes of data integration: one based on message
queuing (e.g., MQTT [16]) and another based on a shared memory architecture (e.g.,
OpenMP [8]). Before the RTS deploys an RTU, based on each model’s input and output
information provided by CPS developers, the Data Integrator constructs a dependency
graph among those models. Based on each model’s deployment information, the Data
Integrator assigns the shared memory data integration mode for those deployment
models in the same machine (i.e., deployed to the same IP address). This scenario is
applicable to those models requiring faster simulation speed and allowing low latency

5Details of the Data Integrator are elaborated in Section 4.2.
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to maintain accuracy required by the underlying models, which have very small step
size (e.g., models for car engine electronic control units).6

In shared memory data integration mode, all RTUs deployed into a single machine
are managed by a Delegate RTU (automatically synthesized by the Data Integrator)
that executes each RTU in parallel and exchanges data among these RTUs using
shared memory. For those models that must exchange data but are deployed as RTUs
across different deployment machines, the Data integrator automatically synthesizes
for each RTU a message subscriber for every single input data and a message publisher
for all output data. To reduce latency in message queuing mode, the Data Integrator
also automatically synthesizes a directory look-up agent called the Message Hub, which
contains the IP address and port number for each RTU.

Each RTU participating in message queuing mode can look up from the Message
Hub all the required information for designated publishers and later establish direct
connection to each publisher required. The Message Hub essentially provides a direc-
tory service for the RTUs and allows direct connection between publishing RTUs and
subscribing RTUs to reduce communication latency.

4.3. Time Manager

In a system that combines real-time simulation with runtime verification, it is essential
to guarantee that the real-time simulation produces outputs and internal states at a
rate corresponding to the physical process (e.g., if a water tank takes ten minutes to fill
in the real world, then a real-time simulation should take exactly or very close to ten
minutes to fill a virtual tank with simulated water). To make a real-time simulation
valid, the time that elapses in executing a single step of the real-time simulation model,
that is, TE, must be shorter than the wall clock duration of each fixed step size of each
model (TS). For the duration of a model’s idle-time (i.e., TS − TE), the simulation must
wait until the clock ticks to the next step. This is needed to guarantee that all of the
components in Figure 3 (i.e., the simulations, the real world, and the CPS program
itself) are in sync. Without this, the simulation is considered erroneous (i.e., “overrun”
occurs) [5].

We omit the synchronization algorithms for TE and TS in each real-time simula-
tion model (i.e., in-model synchronization); our in-model synchronization algorithms
are able to automatically detect the deployment environment (e.g., in our prototype,
we support Windows, Ubuntu, and Mac OS) and activate required platform-specific
library calls to get wall-clock time and build a nano-second accurate wait function.
In this section, we instead elaborate on our solution of creating the Time Manager
to guarantee accurate time synchronization and find optimal synchronization across
real-time simulation models in the deployment environment.

In real-time simulation, physical models with a smaller step size should wait for
those (often interactive) physical models with a larger step size to achieve true real-
time simulation. To deal with this challenge efficiently, BraceBind’s Time Manager
enforces a concept of TimeZone. The Time Manager groups RTUs with similar timing
requirements into a single TimeZone based on user provided model information (e.g.,
step size). For instance, in our running example, the Time Manager groups the rover
dynamic RTU and the moon environment RTU into one TimeZone that supports mi-
crosecond level time synchronization. Other less stringent RTUs can be placed in a
different TimeZone with a larger time step.

Ideally, all the RTUs in a given TimeZone are deployed into one machine whose
capabilities are matched to the requirements of the TimeZone. Alternatively, the RTUs
can execute in an intra-net with a clock synchronization algorithm with sufficient

6Message queuing is the default model for across machines.
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ALGORITHM 2: Find Optimal StepSize
input : TimeSyncZones for all TimeZones registered
output: Each time zone is configured with optimized step size

1 for ∀zone ∈ TimeSyncZones do
2 for ∀model ∈ zone.models do
3 if !run(model.maxSize, model) then
4 reportT imeOutError(model)
5 end
6 end
7 existingMaxSize ← f indMax(zone) maxSize ← findMax(zone, existingMaxSize)

maxMinSize ← findMaxMin(zone) for maxSize ≥ maxMinSize do
8 for ∀model ∈ zone.models do
9 if model.maxSize > maxSize ∧ !run(maxSize, model) then

10 goto nextTimeZone
11 end
12 end
13 if maxSize == maxMinSize then
14 goto nextTimeZone
15 end
16 existingMaxSize ← maxSize maxSize ← f indCandidateMax

(zone, existingMaxSize) if maxSize == existingMaxSize then
17 maxSize = maxMinSize
18 end
19 end
20 nextTimeZone: apply( zone, maxSize)
21 end

accuracy [18] (to account for clock drifts among those deployment machines). For each
TimeZone, the Time Manager automatically synthesizes a dedicated timezone delegate
agent that subscribes to input data and publishes output data for the RTUs inside that
TimeZone and performs each time step while fully synchronizing with other TimeZone
delegate agents.

We are also motivated to optimize time steps within each TimeZone; reducing the
step size of a model’s ODE solver by a factor of λ can reduce local error (per time step) by
approximately λ ∗ n+1 and global error by approximately λ ∗ n, where n is the order of
the ODE solver [25]. The Time Manager balances accuracy and computational efficiency
by computing the best step size for each TimeZone at deployment time (Algorithm 2).

We iterate through each zone to test, for each model, whether the default step size
works for the deployed machine (i.e., we check that TS for the TimeZone is larger than
TE). If not, then the algorithm indicates that either the deployment machine is not
suitable or the step size is not set correctly (lines 3–4). For each model in the zone, the
CPS developer provides a minimum and maximum step size; based on these inputs,
we iteratively reduce the step size for the TimeZone without causing overrun for any
models in the TimeZone (lines 8–18).

In Summary, RTS provides an automatic real-time simulation platform that seam-
lessly works with BraceBind’s AOA to provide an integrated solution for runtime ver-
ification of CPS. In comparison with the state of the art and state of the practice in
real-time simulation, RTS is highly compliant with the original models, guarantees
the accuracy of the integrated runtime verification, and is cost-effective (without the
need to purchasing expensive and dedicated real-time simulation machines like NI PXI
servers [30]).
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5. CASE STUDY AND EVALUATION

In this section, we describe our empirical design and explain the results, ending with
a discussion of validity.

5.1. The Empirical Design

As an evaluation application, we used an existing CPS application based on the Soft
Real-Time Agent Control Architecture [15] and GPGP coordination architecture [26],
which are representative of common CPS systems. We acquired this application from
other engineers in the CPS domain in an attempt to mitigate biases introduced in
using applications implemented just for the purpose of evaluating BraceBind’s dual
architecture, namely the RTS and AOA. The autonomous vehicles we used are based
on the Rover 5 Platform7 equipped with accelerometer and orientation sensors. The
application is built in Android and deployed to Samsung Galaxy S3 phones that control
the rovers. The application coordinates the rovers to visit a set of provided waypoints by
assigning each rover a set of tasks, where each task is an obligation to visit a waypoint.

We implemented a prototype of RTS in C++ and conducted an experiment E1 to
evaluate the accuracy of RTS by checking whether RTS-generated simulations are
compliant with original simulation models. To rule out the compliance’s reliance on the
complexity of the simulation models and the knowledge of CPS developers of using RTS,
before the experiment, an independent electrical engineer specialized in autonomous
vehicles and who was not aware of RTS created and tested physical models for the
vehicle, including its motor, dynamics, and sensors. Some of these physical models
are fairly complex, containing dozens of differential equations, while others are fairly
straightforward containing only a few linear equations. The models are all in Simulink.
We also asked the engineer to create specifications for each model as input to RTS. The
generated real-time simulation environment executed on two laptops, one running Mac
OS X 10.9.3 with 2.5GHz Intel Core i5 and 8G memory and a second running Ubuntu
12.04 with 2.5GHz Intel Core i5 and 4G memory. The models requiring microsecond
level latency executed in the first machine; the other models executed in the second
machine.

We created a single large simulation combining all the models and ran it in Simulink
on the Mac OS X machine (as compared to executing each model as an independent
RTU across separate machines in the real-time simulation environment). We created a
program that provides inputs for the actuator models and records the outputs from the
sensor models in the RTS-generated real-time simulation, and we use this program to
feed randomly generated inputs to the real-time simulation; we execute this scenario
20 times. Each time, we used the same input to feed into the big Simulink model. The
running time of the real-time simulation and the big Simulink model are the same in
each run, but they vary together across executions from 5 to 30min. We then compared
the outputs, which include the rover’s position, velocity, and angle, between this big
model and the real-time simulation that RTS automatically generates from the models
and input specifications. E1 is designed to answer the research question

• RQ1: How compliant is real-time simulation established by RTS with original sim-
ulation models?

We implemented a prototype of AOA in C++ and AspectJ and then asked develop-
ers familiar with the evaluation application to annotate the code’s PhysicalVariables
using AOA annotations. We conducted another experiment E2 in a lab to test AOA’s
computation overhead on the observed CPS application and its efficiency of detecting

7https://www.sparkfun.com/products/10336.
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subtle bugs that are closely related to a specific deployment environment. We deployed
the evaluation application to a lab with three surfaces to mimic different physical de-
ployments (wood, grass, and linoleum8) and an overhead camera for both positioning
and recording video of the tests. The wood environment has a few bumps that we did
not include in the environment model. We use this environment to check how AOA
works given stochastic factors that cannot be easily captured in the physical models.
The grass is actually a synthesized grass, while the corresponding simulation model
is for true grass. In addition, in the grass environment, we reduce the rover’s actual
weight by one third while keeping the original weight in the simulation model. This
environment exposes how AOA works when CPS developers are unable to get accurate
values for model parameters and must rely on estimates. The linoleum environment
and corresponding simulation model are highly consistent with one another. This envi-
ronment represents how AOA works when a CPS developer is confident in the accuracy
of the simulation models. We asked the same electrical engineer in E1 to create the
corresponding simulation models. We deployed and tested the application in the corre-
sponding simulation deployment environments.

We used BraceBind’s AOA to connect the application with either the physical deploy-
ment environment (physical rovers and a specific lab environment) or the simulation
environment (simulated rovers and a specific simulated environment established by
RTS). We used a lock free linked list to merge the trace file from AOA with the trace file
from an existing runtime verification tool [36]. The verification tool is used to detect
violations of the following properties in the CPS application: the completion time for a
given task is bounded (P1); the integral of cross track error is bounded (i.e., the vehicle
is not weaving) (P2); and the duration of the main control loop is bounded (P3). Since
the verification tool has no knowledge of whether the application is deployed to a phys-
ical environment or to a real-time simulation environment, we recorded the number of
property violations found by the runtime verification both for the physical deployment
and the real-time simulation by manually checking the violations report generated by
the verification tool after each test and compared the two versions. We instructed the
application to issue 180 tasks to the rovers for each test. We also recorded the CPU and
Memory usage when the AOA runtime is executing along with the observed applica-
tion and compare this overhead against the application running without the AOA. To
understand more what impacts the monitoring accuracy (when the verification tool is
running against the real deployment environment or against the real-time simulation),
we also compare the timestamped positions of each rover across the physical deploy-
ment and the real-time simulation. E2 is designed to answer the following research
questions:

• RQ2: How effectively does AOA detect bugs when integrated with an existing veri-
fication tool?

• RQ3: What is the computational overhead of running AOA along with the observed
application?

• RQ4: How truthful is the real-time simulation connected by AOA in comparison
with the modelled physical deployment environment? In our case study application,
this means, in particular, how faithful is the simulation connected by AOA in cap-
turing the movement behavior of the rovers relative to the physical environment.
What factor, in terms of errors and uncertainties for the values of parameters in the
underlying simulation models, affect the truthfulness?

8Sample videos at: https://goo.gl/PkxDa4 (wood); https://goo.gl/Vv3fF2 (grass); and https://goo.gl/s097Ag
(linoleum).
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Fig. 5. RTS vs. Simulink.

5.2. Empirical Results

RQ1 - Compliance with Simulation Models. Figure 5 plots the average difference
between each output parameter using the RTS real-time simulation versus the big
simulation in Simulink. The outputs from the big simulation are the X position, the Y
position, the velocity of X, the velocity of Y, and the angle of a rover. These differences
are very small (the maximum error, across all runs and all variables, was 0.029%),
demonstrating that RTS’s real-time simulation environment is highly compliant to the
original simulation models. The big simulation model is ideal in terms of accuracy but
very expensive in computational overhead. When executing the big simulation model
in the Mac OS X machine used for the experiments, we noticed the CPU quickly surged
to more than 95% utilization, which shows that the real-time simulation version of
the big simulation model most likely requires a dedicated real-time simulation server
[30]. Our empirical results are similar to the findings in Ref. [3], which also found
this type of simulation model requires a long time to complete the needed calculations.
RTS’s accuracy is attributable to highly accurate time synchronization, low latency
data integration, and step size optimization (i.e., improve simulation speed and reduce
latency).

RQ2 - Effectiveness of AOA to detect “Wild” Bugs. Figure 6 shows that we were
able to detect “Wild” bugs in both the physical deployment and real-time simulation as
supported by AOA. In the Linoleum environment, six of the errors (for P1) were con-
firmed by the CPS developers to be actual bugs. The remaining errors are assumed to
be true positives if they were found in the physical deployment and false positives oth-
erwise. For the Linoleum environment, runtime verification supported by BraceBind’s
AOA-integrated real-time simulation had 0 false negatives (i.e., no (known) errors were
not detected) and 1 to 3 false positives (i.e., errors “detected” based on the real-time
simulation that were not actual errors). In the Wood environment, the AOA-integrated
real-time simulation actually missed some confirmed errors (for P1) and some assumed
errors for P2 and P3. This implies a (likely small) false negative rate for the AOA case
and a false positive rate that is on par with prior results [36]. These false negatives
are mainly attributed to the bumps in the wood floor that are not accounted for in
the physical model. Finally, in the Grass environment (where the simulation models
deviated substantially from the physical deployment), there is, as expected, a larger
number of false positives (i.e., 5 for P1, 2 for P2, 3 for P3), meaning that there is a limit
to the applicability of AOA for runtime verification when the simulation models are not
accurate.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 106, Publication date: May 2017.



Real-Time Simulation Support for Runtime Verification of CPS 106:19

Fig. 6. Detection of Bugs in the Wild.

RQ3 - Computational Overhead & RQ4-Accuracy of Real-time Simulation.
We measured the CPU and Memory overhead for running the evaluation application
with and without the AOA runtime on a PC running Ubuntu 12.04 with 2.5GHz Intel
Core i5 and 4G memory (average from 5 runs). We notice only a negligible increase in
CPU usage and about 5–7% memory increase, which is reasonable given that the AOA
runtime architecture is based on well established AOP and message queueing. The
memory increase is related to the memory requirement for both AOP, generall, and,
specific to BraceBind, the use of lock free queues to store values for Physical Variables.
Figure 7 (top) shows the trajectories of one test vehicle for 19 assigned waypoints, both
in the Linoleum environment and in AOA-integrated simulation of that environment.
This trajectory is representative of trajectories for both vehicles across all waypoints.
The Y axis shows the distance to the next waypoint. The Waypoints Range series shows
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Fig. 7. Faithfulness of BraceBind to Simulation.

the acceptance range of each waypoint (e.g., if the vehicle is within 25 centimeters of
a waypoint, the vehicle is considered to have reached the waypoint). The simulation
result from the AOA case is very consistent with the real deployment environment with
average error (over both vehicles and across all trajectories) between 5.76% to 11.20%.
The errors result from:

• though the physical models used are thoroughly tested, they still contain small errors
with respect to their representation of the physical world; and

• we did not build a model of the battery into the simulation environment; we at-
tempted to experiment with fully powered batteries in each experiment, but battery
dissipation does have a small impact on the error.
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Figure 7 (middle) shows the wood deployment. In this environment, there are a few
bumps that cause the vehicle to stray slightly from the expected track (e.g., the spike
around 43s). The error for the real-time simulation in this test is from 5.77% to 11.33%.
Even with unexpected physical conditions, BraceBind’s AOA can still guarantee accept-
able error. Further, a more detailed model of the physical environment (e.g., one that
models bumps) would give real-time simulation results that more faithfully represent
the physical deployment (although the trajectories themselves may not line up if the
arbitrary bumps in the real-time simulation are not in the same locations as in the
physical world).

In the grass environment, the simulation deviated significantly from the actual
environment, resulting in unacceptable error ranges (from 17.3215% to 81.7556%).
This is a direct result of the settings for this scenario; we crafted it to intentionally
demonstrate how BraceBind performs when the simulation model is not a faithful
representation of the real physical deployment. However, the execution with AOA
provides a decent representation of the trajectory, and AOA can still give a rough feel
about how an application might behave in an “uncertain” environment.

In summary, these experiments show that BraceBind’s AOA is highly effective and
efficient in capturing “wild” bugs that are otherwise hard to detect (at least repeatedly)
from a specific deployment environment. The reason behind BraceBind’s demonstrated
effectiveness and efficiency is its dual architecture, in which the real-time simulation
(RTS) is deployed to separate machines to run in parallel and is ready to provide
data whenever it is required. At the same time, the aspect-oriented architecture (AOA)
runs on top of an existing well established AOP framework (e.g., in our case AspectJ)
and high throughput concurrent data structure to store the latest values for relevant
Physical Variables (in Figure 3).

5.3. Discussion

In addition to the results here, we have tested the impact of less accurate time syn-
chronization. The result is that vehicles in the simulated environments often get stuck
in an endless loop while trying to reach a waypoint, because the position data becomes
completely out of sync. We also tried a message passing system with more latency (i.e.,
MQTT9) instead of ZeroMQ; the output data from the real-time simulations cannot
reach the models fast enough for the view of the (simulated) physical world to remain
consistent. The message passing system chosen must be suitable for the application;
this concern may be largely mitigated by advances in networks and communication
protocols.

Our prototype of RTS can support simulation platforms beyond Simulink. We have
used LabView to create the vehicle motor model and used it in the experiments. The
accuracy is good; however, the LabView generated C code is more computationally in-
tense than the Simulink converted C++ code, causing the CPU utilization in our test
machine to climb over 100%. This finding bolsters the need for RTS; without its op-
timizations, simulation-based run-time verification almost certainly requires special
hardware. Compared with the state of the art using dedicated simulation servers run-
ning all simulation models together, RTS provides a more scalable and cheaper solution
for a real-time simulation environment. Moreover, AOA integrates real-time simulation
with runtime verification tools seamlessly, which is not provided by existing tools.

The empirical results in E3 use our runtime verification framework as the baseline,
which has demonstrated a very low number of false positives with negligible (and most
of time with no) false negatives [36]. Moreover, for P2 where we do have existing logs
to confirm the real number of errors, we provide the confirmed errors to prove the

9http://mqtt.org/.
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trustworthiness of the runtime verification framework and increase the accuracy of
the test results.

When measuring computational overhead for AOA, we cannot simply measure the
CPU and Memory overhead on Android phones (where the evaluation application is
really deployed) as all the existing measurement tools incur too much computational
overhead on the phones and stop the evaluation application from running properly.
Instead we run the evaluation application with AOA runtime enabled or disabled to
check the overhead for AOA on a standard PC. The real result of computation overhead
incurred by AOA might be even better considering any real sensor/actuator access
would incur additional computation overhead (while in our environment with a PC,
there would be no such cost).

Though we use a relatively simple and low-speed physical rover, the physical models
we use are quite representative of any electric vehicle models both in terms of number of
sub-models and types (e.g., sensors, actuators, environment, and dynamic models). As
future work, we intend to apply our approach to verify safety properties for a humanoid
robotics application [9] and safety properties for modern vehicle systems.

In terms of the limitations of our approach, our RTS requires the domain expert to
possess detailed knowledge of the physical systems underlying the application’s im-
plementation and to be familiar with using simulation platforms (e.g., LabView and
MatLab) to create high-fidelity models for the underlying systems to achieve robust
verification results. If the simulation models miss some important features of the de-
ployment environment, then the real-time simulation environment produced by RTS
would result in large errors, and our approach could miss some bugs. This is demon-
strated in the grass deployment environment, where the grass model (for real grass)
in the real-time simulation is different from the deployment environment (synthesized
grass) and the rover’s weight in simulation is one third heavier than the real rover
in the deployment environment. We crafted this scenario specifically to mimic one in
which important physical features are misrepresented in the models. In our future
work, we can bring stochastic features into RTS to compensate for potentially flawed
simulation models (e.g., stochastic differential equation model in Ref. [19]). Finally, our
approach also requires explicit formal properties to be written for the CPS systems,
thus is not applicable to legacy systems where the original requirements are largely
missing. In our future work, we can use data mining techniques to generate formal
properties for systems from existing logs or simulation traces as in Ref. [17].

6. CONCLUSION

In this article, we created a dual architecture to leverage real-time simulation to aid
CPS runtime verification. The dual architecture requires a CPS developer to provide
annotations and then relies on Aspect Oriented Programming to seamlessly integrate
real-time simulation with runtime verification tools. In our implementation, we tackled
challenges in establishing real-time simulation with affordable, scalable, and highly ac-
curate solutions. In our case study, we proved that the real-time simulation established
is highly compliant with existing simulation models, highly accurate compared with
the corresponding deployment environments, and, most importantly, provides a repet-
itive and flexible environment to aid runtime verification in finding bugs detectable
otherwise only in a physical deployment environment.
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[3] Marcin Baszyński. 2016. Low cost, high accuracy real-time simulation used for rapid prototyping and
testing control algorithms on example of BLDC motor. Arch. Electr. Eng. 65, 3 (2016), 463–479.

[4] R. Bednar and R. E. Crosbie. 2007. Stability of multi-rate simulation algorithms. In Proceedings of
Summer Computer Simulation Conference (SCSC’07). 189–194.

[5] J. Bélanger, P. Venne, and J. N. Paquin. 2010. The what, where, and why of real-time simulation. Planet
RT 1.1: 25–29.

[6] T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauss, H. Elmqvist, and others. 2012. Functional
mockup interface 2.0: The standard for tool independent exchange of simulation models. In Proceedings
of the 9th International Modelica Conference. 173–184.

[7] H. X. Chen. 2010. Simulink and VC-based hardware-in-the-loop real-time simulation for EV. In Pro-
ceedings of Electric Vehicle Symposium (EVS-25’10).

[8] L. Dagum and R. Enon. 1998. OpenMP: An industry standard API for shared-memory programming.
Comput. Sci. Eng. IEEE 5, 1 (1998), 46–55.

[9] Robocup Federation. Robocup Normal League. Retrieved at http://www.robocup.org/leagues/5.
[10] C. Fetzer and F. Cristian. 1995. An optimal internal clock synchronization algorithm. In Proceedings of

the Conference on Computer Assurance (COMPASS’95).
[11] A. Gholkar, A. Isaacs, and H. Arya. 2004. Hardware-in-loop simulator for mini aerial vehicle. In Pro-

ceedings of the Real-Time Linux Workshop.
[12] D. Goswami, R. Schneider, and S. Chakraborty. 2011. Co-design of cyber-physical systems via con-

trollers with flexible delay constraints. In Proceedings of the Asia and South pacific design Automation
Conference (ASP-DAC’11).

[13] M. Harakawa et al. 2005. Real-time simulation of a complete PMSM drive at 10 μs time step. In
Proceedings of the International Symposium on Parameterized and Exact Computation (IPEC’05).

[14] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1995. What’s decidable about hybrid automata?
In Proceedings of the Symposium on Theory of Computing (STOC’95).

[15] B. Horling, V. Lesser, R. Vincent, and T. Wagner. 2006. The soft real-time agent control architecture.
Auton. Agents Multi-Agent Syst. 12, 1 (2006), 35–91.

[16] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. 2008. MQTT-SâĂŤA publish/subscribe protocol for
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