
Modeling Adaptive Behaviors

in Context UNITY

Gruia-Catalin Roman

Department of Computer Science and Engineering
Washington University in Saint Louis

roman@wustl.edu

Christine Julien

Department of Electrical and Computer Engineering
The University of Texas at Austin

c.julien@mail.utexas.edu

Jamie Payton

Department of Computer Science
University of North Carolina

payton@uncc.edu

Abstract

Context-aware computing refers to a paradigm in which applications sense aspects
of the environment and use this information to adjust their behavior in response
to changing circumstances. In this paper, we present a formal model and notation
(Context UNITY) for expressing quintessential aspects of context-aware computa-
tions; existential quantification, for instance, proves to be highly effective in captur-
ing the notion of discovery in open systems. Furthermore, Context UNITY treats
context in a manner that is relative to the specific needs of an individual application
and promotes an approach to context maintenance that is transparent to the ap-
plication. In this paper, we construct the model from first principles, introduce its
proof logic, and demonstrate how the model can be used as an effective abstraction
tool for context-aware applications and middleware.

Key words: context-aware computing, UNITY, adaptive systems, formal methods

Preprint submitted to Elsevier Science 7 May 2007

1 Introduction

Context-aware computing is a natural next step in a process that started
with the merging of computing and communication during the last decade
and continues with the absorption of computing and communication into the
very fabric of our society and its infrastructure. The prevailing trend is to
deploy systems that are increasingly sensitive to the context in which they
operate. Flexible and adaptive designs allow computing and communication
to blend into the application domain, making computers gradually less visible
and more agile. Context-awareness enhances a system’s ability to become ever
more responsive to the needs of the end-user or application domain. In an
aware home, context can be used to change applications’ behavior based on
a room’s occupants or the time of day. In an automotive application, context
such as the density of traffic or the speed of the car may change the appli-
cation’s desired functionality. With the growing interest in adaptive systems
and the development of tool kits [1,2] and middleware [3] supporting context-
awareness, one no longer needs to ponder whether context-aware computing
is emerging as a new paradigm, i.e., a new design style with its own special-
ized models and support infrastructure. However, it would be instructive to
develop a better understanding of how this transition took place, i.e., what
distinguishes a design that allows a system to adapt to its environment from a
design that could be classified as employing the context-aware paradigm. This
is indeed the central question addressed in this paper. We seek to develop
an understanding of context-aware computing by proposing a simple abstract
conceptual model of context-awareness and formalizing it. This model focuses
on the specification and verification of context-aware systems, an imperative
step in a careful design process. The provision of such a model not only sup-
ports the ability to formally express and reason about existing perspectives on
context-awareness, but also promotes methodical design of new applications
that embody a context-aware design.

The term context-awareness immediately suggests a relation between an entity
and the setting in which it functions. Let us call such an entity the reference
agent—it may be a software or hardware component—and let us refer to the
sum total of all other entities that could (in principle) affect its behavior as the
reference agent’s operational environment. We differentiate the operational en-
vironment from the context by drawing a distinction between potentiality and
relevance. While all aspects of the operational environment have the poten-
tial to influence the behavior of the reference agent, only a subset is actually
relevant to the reference agent’s behavior. In formulating a model of context-
awareness, we focus our attention on how this relevant subset is determined.

This paper presents Context UNITY, which, to the best of our knowledge,
represents the first general formal model of context-aware computing. This

2

model has its roots in our earlier work on Mobile UNITY [4,5] and in our ex-
perience with developing context-aware middleware for mobility [3,6,7]. Con-
text UNITY assumes that the universe (called a system) is populated by a
bounded set of agents whose behaviors can be described by a finite set of
program types. At the abstract level, each agent is a state transition system,
and context changes are perceived as spontaneous state transitions outside of
the agent’s control. However, the manner in which the operational environ-
ment can affect the agent state is an explicit part of the program definition. A
context definition is therefore explicitly included in a program type descrip-
tion; it is specific to the dynamic needs of each agent and is separate from
the behavior exhibited by the agent. In this way, the agent’s formalization is
self-contained, i.e., local in appearance and totally decoupled from that of all
the other agents in the system. Key to the separation of behavioral and con-
textual concerns and among agent specifications is the reliance on existential
quantification as an abstraction of the context discovery process. The design of
the Context UNITY notation is augmented with an assertional style approach
to verification facilitating formal reasoning about context-aware programs.

The remainder of this paper is organized as follows. Section 2 discusses the ba-
sic requirements for a model of context-awareness and explains why not every
model that exploits contextual information is appropriate for exploring the
fundamentals of context-aware computing. Section 3 presents our formaliza-
tion of context-awareness, explaining both the model’s organization and the
principles that governed our specific choices. Because our ultimate goal is a
better understanding of context-aware computing, we seek minimality of con-
cepts and elegance of notation while remaining faithful to our perspective on
context-awareness made explicit in Section 2. Section 4 shows how the model
can express key features of several existing context-aware applications. In Sec-
tion 5, we outline the verification techniques associated with the model and
explore both their strengths and limitations. Conclusions appear in Section 6.

2 Problem Definition and Model Requirements

We next examine the key requirements of context-awareness that must pervade
a formal model. A formalization that meets these requirements will achieve
not only the expressiveness required of adaptive and interactive applications
but also relevance to widely varied application domains.

• Expansiveness: A model of context-awareness must recognize the fact that
distant entities in the operational environment can affect an agent’s be-
havior [8]. The model should not place a priori limits on the scope of the
context associated with a particular agent, though specific instantiations of
the model may impose restrictions due to pragmatic considerations relating

3

to the cost of context maintenance or the nature of physical devices.
• Specificity: To balance expansiveness and allow agents to exercise control

over the cost of context maintenance, the model must allow context defi-
nitions to be tailored to the needs of each agent. Furthermore, as agents’
needs evolve, context definitions should be amenable to modification. To-
gether with expansiveness, specificity ensures the model’s generality.

• Explicitness: The previous requirements fail to consider how an agent forms
and manipulates its context. The only way an agent can exercise such control
is to have an explicit notion of context. This allows the agent to define and
change its context definition as best suits its processing requirements.

• Separability: An agent’s context definition must be an identifiable element
of a formal model of context-awareness, and the context definition must
capture the essential features of the agent/context interaction pattern. The
agent’s changes to its context definition(s) should be readily understood
without examining the details of the agent’s behavior.

• Transparency: Finally, the definition of context must be sufficiently abstract
to free the agent from the operational details of discovering its own context
and sufficiently precise for some underlying support system to be able to
determine what the context is at each point in time.

These requirements frame our perspective on context-awareness. To illustrate
this perspective, we examine an application in which context plays an impor-
tant role, but the criteria for employing the context-aware paradigm are not
met. Consider an agent that receives and sends messages and learns about
the presence of other agents through these messages. The agent adapts its
behavior based upon the knowledge it gains about its context. The agent im-
plicitly builds an acquaintance list of other agents in the region and updates its
knowledge using message delivery failures that indicate agent termination or
departure. We do not view this as an instance of the context-aware paradigm;
an agent’s interaction with environment is expansive but it is not specific, ex-
plicit, separable, or transparent. We next detail what is required to transform
this application into one that exemplifies the context-aware paradigm.

Specificity could be achieved by allowing each agent to individually filter which
agents should be included in its acquaintance list. Explicitness could be real-
ized by including a distinct acquaintance list—a concrete representation of the
agent’s current context—as an explicit data structure within the agent’s code.
Separability could come from designing the code that updates the acquain-
tance list to automatically extract agent information from arriving messages,
e.g., through the interceptor pattern [9]. Transparency requires the agent to
delegate the updating of the acquaintance list to an underlying infrastructure;
this, in turn, demands that the definition of the context be made explicit to
the support infrastructure. The result is an application that exhibits the same
behavior but a different design style; the agent views and interacts with its
context through a data structure that appears to be local, is automatically up-

4

dated, and is defined by the agent’s personalized admission policy controlling
which agents are included in the list.

Context UNITY formalizes applications that follow this style of context-aware
design. The model helps a developer frame his design in terms of the require-
ments described above, ensuring that it conforms to principled context-aware
design and allowing rigorous validation of the resulting application.

3 Formalizing Context-Awareness

Applications modeled in Context UNITY adhere to the perspective of context-
awareness outlined above. This section begins with an overview of Context
UNITY, highlighting its key concepts. We present the model’s notation in
detail and demonstrate its application through an example. Finally, we discuss
the special properties of Context UNITY variables, which aid in providing and
discovering context, and explain how an agent specifies its context.

3.1 Model Overview

In the dynamic mobile environments where context-aware applications are
prevalent, mobile hosts opportunistically form networks with changing topolo-
gies. Applications reside on these mobile hosts, and, in our computational
model, the applications are encapsulated as logically mobile agents that may
migrate among connected hosts. Each agent provides context information to
other reachable agents that may impact the agents’ actions, and may utilize
the context information provided by other agents. When discussing a partic-
ular agent’s context, we refer to the agent as the reference agent. We apply a
general and expansive approach to defining an agent’s context, yet the refer-
ence agent can tailor its context based on properties of the environment and
the information itself. Fig. 1 depicts our computational model from a single
reference agent’s perspective.

In Context UNITY, a complete application is represented as a community of
interacting agents that capture an application’s behavior in a system specifica-
tion. A system structures an application into component types which describe
agent behavior, the instantiation of these types as application components,
and application-wide context interactions. Each agent’s behavior is described
by a program prototype. A program explicitly separates an agent’s behav-
ior from management of its context interactions. Programs are instantiated
separately within a Context UNITY system, with each instance defining an
application agent. Multiple instantiations of the same program are differenti-

5

ated by a unique program identifier. Because some context interactions may
apply to all programs, it is also possible to specify uniform context interactions
within a Context UNITY system.

A Context UNITY program rep-

Fig. 1. Computational model. Hosts (large
rectangles) serve as containers of agents
(smaller rectangles), which provide data (cir-
cles). Bold lines illustrate physical connectiv-
ity. The reference agent is denoted by the
heavily outlined rectangle on Host 1, and
its context includes information within the
shaded cloud. Because Host 4 is not connected
to Host 1, its information is not eligible for in-
clusion in the context.

resents all of an agent’s state us-
ing variables, which allows com-
plex context-aware actions to be
modeled via simple variable as-
signments. Like UNITY [10], Con-
text UNITY’s execution model se-
lects program statements for exe-
cution in a weakly-fair manner—
in an infinite execution, each as-
signment statement in a system
is selected for execution infinitely
often. To ensure fairness, a Con-
text UNITY system must be com-
prised of a finite number of pro-
gram statements, requiring that
all instantiations of a program par-
ticipating in a system must be
specified in advance. While this
approach may seem limiting at
first, it is possible to simulate a
more dynamic view by instanti-
ating a large but finite number
of program instances in a system
beyond the expected need of the
application and activating the instances as needed using the effects of assign-
ment statements.

Each Context UNITY program can use three types of statements: simple as-
signment statements, which assign a value to a variable; transactions, which
execute multiple simple assignment statements in an atomic step; and reac-
tions, which execute in response to a specified change in the state of the system.
In Context UNITY, variables are used both to represent program state and to
facilitate an agent’s interaction with its context. Three categories of variables
appear in programs: internal, exposed, and context variables. Internal vari-
ables hold private data that the agent does not share; they do not affect the
operational environment of other agents. Exposed variables store public data;
the values of these variables can contribute to other agents’ contexts. Finally,
context variables reflect the agent’s context and can be used both to gather
information from the exposed variables of other agents and to push data out
to the exposed variables of other agents. The actions of context variables are

6

System

<Agent1>

id

Q

range

<Agent2>

id

Q

range

<Agent2>

id

Q

range

Fig. 2. A Context-Aware Acquaintance List Modeled in Context UNITY

governed by context rules specified by each agent. Assignment statements in
an agent’s internal behavior specification can include references to any of the
three types of variables, allowing the state of internal and exposed variables
to be influenced by both internal state and state from the environment.

Due to the unpredictable nature of dynamic context-aware application envi-
ronments, the Context UNITY model must handle the lack of a priori knowl-
edge about an agent’s operational environment when utilizing exposed vari-
ables in the agent’s context specification. To meet this need, Context UNITY
employs non-deterministic assignment statements and existential quantifica-
tion in context definitions. These mechanisms allow agents that contribute to
a context to be discovered based on attributes defined within their exposed
variables. Context UNITY provides additional flexibility by allowing an agent
to specify the consistency with which its context variables reflect the environ-
ment. Rules can be defined to operate in one of two modalities: normal or
reactive. Normal context rules are selected for execution in a weakly-fair man-
ner, while reactive context rules reflect a stronger level of consistency, which
is demonstrated in more detail later.

To illustrate the use of programs, their instantiations, and their uniformly ap-
plied context interactions, we return to the acquaintance list example, which
maintains a set of ids of agents operating on hosts within communication
range. This example captures a support task utilized by many context-aware
applications; several context-aware systems, e.g., Limone [7], use such a data
structure as a basis for coordination. Fig. 2 illustrates the application of Con-

7

text UNITY to describe an application that uses an acquaintance list. This
system consists of three agents of two differing types. Each agent stores its
unique agent id in an exposed variable. Because we are modeling systems that
entail agent mobility, each agent also has an exposed variable (λ) that stores
its location. Movement of the agent is outside the scope of this example; it
may occur through local assignment to the location variable or by a global
controller via a system’s uniform context definitions. Each agent declares a
context variable Q of type set to store the contents of the acquaintance list.
Each program type (in this case, Agent1 and Agent2) employs different el-
igibility criteria for the members of its acquaintance list, exemplified in the
context rules provided in each program type that describe how the context
variable Q is updated. As shown in the figure, the context rule defined by
Agent1 uses the exposed location variable of agents of type Agent2 to deter-
mine if the agent is within a prescribed range (stored in an internal variable).
If the agent is within range, its id is added to the reference agent’s acquain-
tance list by updating the context variable Q. In the case shown in the figure,
the agent at the bottom is not within range, so it is not reflected in Agent1’s
acquaintance list.

3.2 Context UNITY Notation

The notation used to represent System SystemName
Program ProgramName (parameters)
declare
internal — internal variable declarations
exposed — exposed variable declarations
context — context variable declarations

initially — initial conditions of variables
assign — assignments to declared variables
context
definitions affecting context variables—

they can pull information from and
push information to the environment

end
. . . additional program definitions . . .
Components
the agents that make up the system

Governance
global impact statements

end SystemName

Fig. 3. A Context UNITY Specification

a System is shown in Fig. 3.
The first portion of this defini-
tion lists textual descriptions of
programs that specify the be-
havior of the agent types. The
Components section declares
the instances of programs, or
agents, present in the applica-
tion. These declarations refer
to program names, arguments,
and a function (new id) that
generates a unique id for each
agent declared.

The Governance section cap-
tures uniform system interac-
tions that can impact exposed
variables in all programs in the
system. The details of an entire system specification will be made clearer
through examples later in this section.

8

Each Context UNITY program’s declare section lists the variables defining
its individual state. The declaration of each variable makes its category evi-
dent (internal, exposed, or context). The initially section defines what values
the variables are allowed to have at the start of the program. The assign
section defines how variables capturing the program’s internal state are up-
dated. Assignment statements can include references to any of the three types
of variables but can assign to only internal or exposed variables (since context
variables simply reflect some state of the environment). To provide a measure
of control over the execution of assignment statements, two additional assign-
ment constructs introduced in Mobile UNITY are also available in addition to
simple assignment statements. A transaction has the notation 〈s1; s2; . . . ; sn〉
and specifies a sequence of simple assignment statements which must be sched-
uled in the specified order with no other (non-reactive) statements interleaved.
It captures a sequential execution whose net effect is a large-grained atomic
state change. Transactions are selected for execution in the same weakly-fair
manner as normal statements. A reaction, denoted s reacts-to Q, allows a
program to respond to changes in the system’s state as given by an enabling
condition Q (where s is an assignment statement).

Context UNITY introduces context variables and a context section to contain
the rules that manage an agent’s interaction with its context. The context
section explicitly separates the management of an agent’s context from its
internal behavior. Specifically, the context section contains definitions that
sense information from the operational environment and store it in the agent’s
context variables. The rules also allow the agent to affect the behavior of
other agents in the system by impacting their exposed variables (i.e., the
context section allows changes in the state of the environment to be reflected
in the values of an agent’s exposed variables which can then affect other agents
whose context variables rely on those exposed variables). The acquisition and
provision of context in an environment full of unknown participants is achieved
in context rules by selecting exposed variables according to constraints on their
attributes.

A context rule is selected for execution like any other statement. The Con-
text UNITY execution model, like its UNITY ancestor, exhibits weakly-fair
selection of statements for execution. As in Mobile UNITY, Context UNITY
adopts a modified form of UNITY’s execution model to accommodate reac-
tive behavior. Normal statements, i.e., all statements other than reactions,
continue to be selected for execution in a weakly-fair manner. After execution
of a normal statement, the set of all reactions in the system forms a reactive
program that executes until it reaches fixed-point. The reactive program itself
is a terminating UNITY program for which a fixed point predicate can be
computed. During the reactive program’s execution, the reactive statements
are selected for execution in a weakly-fair manner while all normal statements
are ignored. When the reactive program reaches a fixed-point, the weakly-fair

9

selection of normal statements continues.

We return to the acquaintance System AcquaintanceManagement
Program Agent1
declare
exposed id ! agent id : agent id

λ ! location : location
context Q : set of agent id

assign
. . . definition of local behavior . . .
define

define Q based on desired properties
of acquaintance list members

end
Program Agent2
. . . similar to Agent1 . . .

end
Components
Agent1[new id], Agent1[new id],
Agent2[new id]

end AcquaintanceManagement

Fig. 4. A Context-Aware System for Acquain-
tance Maintenance

list application to illustrate the
structure of a system specifica-
tion. Fig. 4 provides the Con-
text UNITY specification for a
context-aware application that
relies on the usage of an acquain-
tance list. The system specifi-
cation first describes the agent
types that utilize context to
build acquaintance lists. Both
program type definitions begin
with identical declare sections
(the specifics for Agent2 are
omitted for brevity). This sec-
tion defines two exposed vari-
ables (the agent’s id and loca-
tion). Both id and λ are local
handles for these exposed vari-
ables whose names are agent id
and location, respectively. In general, the declare section of both program
types uses the notation l ! n : t to define an exposed variable with local handle
l and publicly accessible name n of the given type t. Both declare sections
also define the context variable, Q, used to store the context-sensitive ac-
quaintance list. Q is defined using the notation: local handle : type, where
type is the type of the variable. In this case, the local handle is Q and the
type is a set of agent ids. Because context variables and internal variables use
the same simple structure for representation, the same notation is applied in
the definition of the program’s internal variables. While each agent type has
individualized behavior defined via the assign section that may use context
variables once they are defined, these details are omitted. The interesting as-
pect of this example is the use of context and exposed variables to define an
acquaintance list. In each program type, the context section defines rules that
dictate how properties of exposed variables of other agents are selected and
used to update the context variable Q. Context rules for the variable Q are
presented in section 3.4.4, which details context specifications.

3.3 Variables Revisited

Context UNITY programs represent state and context using variables and
assignment. The unique needs of context-aware applications necessitate a re-
examination of variable representation and what state is required across all

10

ι the variable’s unique id

π the id of the owner agent

η the name

τ the type

ν the value

α the access control policy

Fig. 5. Components of an Exposed Variable

programs to support specification in the Context UNITY model. We address
these issues in the remainder of this section.

3.3.1 Exposed Variable Structure

In UNITY and many of its descendants, a variable is simply a reference to
an object which holds a value. In Context UNITY, both internal and context
variables adhere to this standard. However, because the handle names of vari-
ables have no meaning outside the scope of the program, references to exposed
variables appearing in the program text are actually references to more com-
plex structures needed to support context-sensitive access within an unknown
operational environment. A complete semantic representation of exposed vari-
ables is depicted in Fig. 5. Each attribute of an exposed variable is examined
in detail below:

• Each exposed variable has a unique id ι used to provide a handle to the
specific variable. Uniqueness can be ensured by making each variable unique
within an agent and combining ι with the unique agent id. This variable id
is assigned at component instantiation and cannot be changed.

• The element π of type agent id designates the agent owning the variable and
allows an exposed variable to be selected based on its owner.

• An exposed variable’s name, η, acts as a short descriptor that identifies the
variable’s role in the application; this name can be changed by the program’s
assignment statements.

• The variable’s type τ allows the variable to be selected according to its type,
e.g., integer, set, and so on. The variable’s type is immutable.

• An exposed variable’s value, ν, refers to the variable’s data value. The value
of an exposed variable can be assigned in the assign section of a program
or can be determined by another program’s impact on its context.

• The program can control the extent to which other agents access its exposed
variables using the variable’s access control policy, α, which determines
access based on properties of the particular agent attempting access. α
accepts the reference agent’s credentials as parameters and returns the set of
allowable operations on the variable, e.g., {r, w} signifies permission to both
read and write. Credentials are described in more detail later; briefly, this

11

approach models the finest-grained access restrictions possible and supports
policies which meet the needs of current context-aware systems.

3.3.2 Built-in Variables

Context UNITY programs contain three built-in exposed variables, each of
which is essential to context-aware program behavior in our model. These ex-
posed variables are automatically declared and have default initial values. An
individual program can override the initial values in the program’s initially
section and can assign and use the variables throughout the assign and con-
text sections. The first of these exposed variables has the name “location” and
facilitates modeling mobile context-aware applications by storing the location
of the program owning the variable. The definition of location can be based
on either a physical or logical space and can take on many forms. This style of
modeling location is identical to that used in Mobile UNITY. The second built-
in exposed variable has the name “type”, and its value is the program’s name
(e.g., “Agent1” or “Agent2” in the example system). The use of this variable
can help context variables select programs based on their general function.
The third of the built-in exposed variables has the name “agent id” and holds
the unique identifier assigned to the agent when the agent is instantiated in
the Components section. This variable cannot be modified.

In addition to exposed variables that represent a program’s location, type, and
id, Context UNITY programs contain an internal built-in variable fundamental
to the model’s approach to controlling access to exposed variables. This built-
in internal variable has the local handle “credentials”, and is used to store
a profile of program’s attributes (e.g., passwords, certificates, etc.). Like the
other built-in variables, a Context UNITY program’s credentials variable is
automatically declared with default initial values. Its value can be changed
in the program’s assign section and can be used in the program’s context
section. The value of the credentials variable is provided as a parameter to the
access control policies of the exposed variables of other programs. Essentially,
a reference agent communicates its credentials to the remote agent, which uses
the credentials to determine whether or not the reference agent has access to
a particular exposed variable. For example, an agent may require access to a
password protected file owned by another agent. The remote agent evaluates
its access control function over the reference agent’s credentials variable, which
must have a field containing the correct password to gain access to the file.

For reasons of mathematical convenience, the Context UNITY model supplies
the remote agent with all attribute values of the reference agent’s credentials
variable. This approach offers an abstract, general purpose construct that re-
lies on the use of a single concept to evaluate the satisfaction of access control
policies. A more sophisticated model of access control could apply a projec-

12

tion to the credentials variable to extract only the parameters needed in the
evaluation of the access control policy. In any case, a practical implementation
of Context UNITY’s approach to access control would only deliver appropri-
ate fields of the variable to the requester, and would likely use encryption
and authentication techniques to ensure secure transmission of such sensitive
information.

3.4 Context Specification

Context-aware applications rely on conditions in the environment for adapta-
tion. Context UNITY facilitates specification of context interactions through
the use of context variables that use the exposed variables of other agents
to provide exactly the context that a reference agent requires. In a Context
UNITY program, the context section of a program contains the rules that
dictate restrictions over the operational environment to define the context
over which an agent operates. Additionally, the rules in the context section
allow the agent to feed back information into its context. Structuring the con-
text section as a portion of each program allows agents to have explicit and
individualized interactions with their contexts.

In the remainder of this section, we examine the techniques utilized in Con-
text UNITY to capture context rules. We begin with an overview of how
context rules define a particular agent’s context, and introduce the mecha-
nisms used to support context-sensitive selection of the exposed variables. We
then discuss how an agent’s data is protected through the inclusion of context-
sensitive access control restrictions. Next, we illustrate the use of the Context
UNITY notation in capturing an agent’s context rules based on more com-
plex restrictions applied to properties of exposed variables. Finally, we address
specification of uniform context rules that apply to all programs within a Con-
text UNITY system. Throughout the section, we provide precise definitions
of Context UNITY’s context specification constructs.

3.4.1 Context-sensitive Selection of Exposed Variables

Requiring a reference agent to explicitly refer to another programs’ exposed
variables to define its context requires the agent to have advance knowledge
about any other components it might encounter over time. Programs rarely
have such a priori knowledge; in fact, typical context-aware applications rely
on opportunistic interactions that cannot be predetermined. To capture this
in Context UNITY, exposed variables that contribute to a context defini-
tion are selected in a context-sensitive manner using existential quantifica-
tion and non-deterministic assignment statements. Existential quantification

13

allows agents to refer to an agent without advance knowledge of its partic-
ipation or context values. Non-deterministic assignment allows the reference
agent to descriptively select which variables belonging to other agents affect
its behavior based on the attributes defined in the exposed variables of those
agents. The non-deterministic assignment statement x := x′.Q assigns to x
a value x′ non-deterministically selected from all values satisfying the condi-
tion Q [11]. As a simple example of non-deterministic assignment, consider a
statement x := x′.Q whose condition Q dictates the selection of an exposed
variable (owned by some agent in the system) within the numerical range 1
to 9. Several values may be available which fit the description, but only one
is chosen and assigned to x. In a more practical example used in a mobile
context-aware application, an agent uses the built-in Context UNITY location
variable to store its current physical location; an agent captures its movement
by updating this variable using an assignment statement in the local assign
section. Another agent can use an existentially quantified non-deterministic
assignment statement in which the relative distance between the reference
agent’s location and the exposed location variables of other agents is used as
a condition to identify which other agents are to contribute to the reference
agent’s context.

Context UNITY wraps the use of non-deterministic assignments in a special-
ized notation. To manage its interaction with context information, a program
uses statements of the following form in its context section:

c uses quantified variables
given restrictions on variables
where c becomes expr

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .
[reactive]

This expression, a context rule, governs the interactions associated with the
context variable c. A context rule first declares existentially quantified dummy
variables to be used in defining the interactions with exposed variables. The
scope of these dummy variables is limited to the context rule that declares
them. The expression can refer to any exposed variables in the system by ap-
plying a context-sensitive selection mechanism to the restrictions (constraints
on the attributes of the selected exposed variables, as specified using non-
deterministic assignment statements) provided in the rule’s definition. The
context rule can define an expression, expr, over the selected set of exposed
variables and any locally declared variables (internal, exposed, or context).
The result of evaluating this expression is assigned to the context variable.
The context rule can also define how this context variable impacts the op-
erational environment. These impacts statements are much like assignment
statements written in reverse, where a rule outside of a program can change
the value of a variable within that program. If no combination of variables in

14

the system satisfies the restrictions specified in the context rule, the dummy
variables in the expression are undefined, and the rule reduces to a skip.

The execution of each context rule can optionally be declared to be reactive,
which dictates that the context rule reflects the environment with a strong
degree of consistency. In fact, when a change occurs anywhere in the Context
UNITY system, execution in the system is logically halted, all reactive context
rules are evaluated, and normal execution of statements in the system resumes.

Reactive context rules are actually defined as reactive assignment statements
that are utilized in Context UNITY programs. If a context rule is declared
reactive, it becomes part of the system’s reactive program that is executed
to fixed-point after the execution of each normal statement. Using a reac-
tion guarantees that the context information expressed by the rule remains
consistently up to date because no normal statements can execute until the
reactive program reaches fixed-point. If not declared reactive, the context
rule is a normal, unguarded statement and part of Context UNITY’s normal
execution model. Representation of context rules in Context UNITY notation
along with formal definitions which precisely explain the semantics of context
rules, reactive and otherwise, are presented in the following sections.

3.4.2 Access Control Restrictions in Context-Sensitive Selection

Within a context rule, even if no explicit restrictions are placed on the ref-
erenced exposed variables, two restrictions are automatically assumed. The
first requires that any variable referenced be an exposed variable. The second
implicit restriction requires that the program whose context uses an exposed
variable must satisfy the variable’s access control policy.

Consider the following simple context rule that acquires the value of some
exposed variable, places the value in the context variable c, and deletes the
value from the exposed variable used. The context rule is a reactive statement
triggered when a is larger than the value of some local variable x:

c uses a
given a > x
where c becomes a

0 impacts a
reactive

This context rule corresponds to the following formal definition, which includes
the two implicit restrictions on the exposed variable a as discussed above:

〈||a : a = a′.(var[a′] > x ∧ {r, w} ⊆ var[a′].α(credentials))
:: (c := var[a].ν || var[a].ν := 0) reacts− to true

〉 1

15

In this definition, we introduce var, a logical table that allows us to refer
to all variables in the system, referenced by the unique variable id. When
the variable a is selected from var in the statement above, what is actually
selected is a’s variable id, which references a specific entry in the table. In this
statement, a single exposed variable is non-deterministically selected from all
exposed variables whose access control policies allow the reference agent to
read and write the exposed variable referred to by the dummy variable a.
This requires applying the exposed variable’s access control policy to this
agent’s credentials; the set of permissions returned by the evaluation of the
access control function α can contain any combination of r (indicating read
permission) and w (indicating write permission). After selecting the particular
exposed variable to which a refers, the rule contains two assignments. The
first assigns the value stored in a (i.e., var[a].ν) to the context variable c. The
second assignment captures the fact that the context rule can also impact the
environment, in this case by zeroing out the exposed variable used.

3.4.3 Utilizing Exposed Variable Attributes in Context-sensitive Selection

The power of the context-sensitive selection of exposed variables becomes ap-
parent when the restrictions within the context rules are utilized to describe
properties of desired context information. The context rule can specify re-
strictions to select exposed variables based on the exposed variables’ names,
types, values, owning agents, or even based on properties of other variables
belonging to the same or different agents. To simplify the specification of these
restrictions, we introduce several new pieces of notation.

Referring to the system-wide table var is cumbersome and confusing because
the table is both virtual and distributed. For this reason, context rules refer
instead to indices in the table. We allow the variable id a to denote the value
of the variable in var for entry a, i.e., var[a].ν. To access the other compo-
nents of the variable (e.g., name), we abuse the notation slightly and allow,
for instance, a.η to denote var[a].η. Context rules frequently utilize a variable’s
descriptive name to select exposed variables. As such, we use the shorthand
x ! y to indicate that the exposed variable referenced by the dummy vari-
able x must have the name y, i.e., var[x].η = y. Since a common operation
in context-sensitive selection is to select variables that exist within the same

1 The three-part notation 〈op quantified variable : range :: expression〉 is de-
fined as follows: The variables from quantified variables take on all possible values
permitted by range. If range is missing, the first colon is omitted and the domain
of the variables is restricted by context. Each such instantiation of the variables is
substituted in expression, producing a multiset of values to which op is applied,
yielding the value of the three-part expression. If no instantiation of the variables
satisfies range, the value of the three-part expression is the identity element for op,
e.g., true when op is ∀, zero if op is “+,” or skip if op is ||.

16

agent, we also introduce a shorthand for accessing a variable by the combina-
tion of name and program. When declaring dummy variables, a context rule
can restrict both the names and relative owners of the variables using the
notation: x ! name1, y ! name2 in p; z ! name3 in q. This notation refers to three
variables, one named name1 and a second named name2 that both belong to
the same agent whose agent id can be referenced as p. The third variable, z,
must be named name3 and located in program q. q may or may not be the
same agent as p, depending on further restrictions that might be specified.

As a simple example of a context rule, consider a program with a context
variable c that holds the value of an exposed variable with the name data
located on an agent at the same location as the reference. This context variable
does not change the data stored on the agent owning the exposed variable. To
achieve this behavior, the specification relies on the built-in exposed variable
λ. The context rule for c uses a single exposed variable that refers to the data
that will be stored in c. In this example, we leave the rule unguarded, and
it falls into the set of normal statements that are executed in a weakly-fair
manner.

c uses d ! data, l ! location in p
given l = λ
where c becomes d

Formally, using the above notation is equivalent to the following expression:

〈||d, l :(d, l) = (d′, l′).({r} ⊆ var[d′].α(credentials) ∧ {r} ⊆ var[l′].α(credentials)∧
var[d′].η = data ∧ var[l′].η = location ∧
var[d′].π = var[l′].π ∧ var[l′].ν = λ.ν)

:: c := var[d].ν
〉

Because the expression assigned to the context variable c is simply the value of
the selected exposed variable, the most interesting portion of this expression is
the non-deterministic assignment statement that selects the exposed variables.
The formal expression non-deterministically selects a variable (referred to by
the dummy variable d) that satisfies a set of conditions, which rely on the
selection of a second exposed variable (referred to by the dummy variable
l) that stores the program’s location. The first line of the non-deterministic
selection checks the access control function for each of the variables to ensure
that this agent is allowed read access given its credentials. The second line
restricts the names of the two variables. The variable d being selected must be
named data, according to the restrictions provided in the rule. The location
variable is selected based on its name being location. The final line in the
non-deterministic selection deals with the locations of the two variables. The
first clause (var[d′].π = var[l′].π) ensures that the two variables (d and l) are
located in the same program instance (agent). The second clause ensures that
the agent that owns these two variables is at the same location as the agent
defining the rule.

17

To show how these expressions can be used to model real-world interactions, we
revisit the acquaintance list example from earlier in the section. Previously,
we gave a high level description of the context rules required to define an
agent’s acquaintance list. To define the membership qualifications, the agent
uses a context rule that adds qualifying agents to the context variable Q.
In this case, assume that the program restricts acquaintance list members to
other agents within some predefined range. This range is stored in an internal
variable whose local handle is range. Q is defined using the following rule:

Q uses l ! location in a
given |l − λ| ≤ range
where Q becomes Q ∪ {a}
reactive

This expression uses the two handles range and λ to refer to local variables
that store the maximum allowable range and the agent’s current location,
respectively. This statement adds agents that satisfy the membership require-
ments to the acquaintance list Q one at a time. Because it is reactive, the rule
ensures that the acquaintance list remains consistent with the state of the
environment. As a portion of the reactive program that executes after each
normal statement, this context rule reaches fixed-point when the acquaintance
list contains all the agents that satisfy the requirements for membership. An
additional rule is required to eliminate agents that might still be in Q but are
no longer in range:

Q uses l ! location in a
given |l − λ| > range
where Q becomes Q− {a}
reactive

The result is a readable, explicit, and separable definition of a context-sensitive
acquaintance list. More extensive examples illustrating context-sensitive se-
lection using constraints on exposed variable attributes will be discussed in
Section 4.

3.4.4 Specifying a Uniform Context

The final portion of a Context UNITY system specification is a Governance
section, which contains rules that capture behaviors that have universal impact
across the system. These rules use the exposed variables available in programs
throughout the system to affect other exposed variables in the system. The
rules have a format similar to the definition of a program’s local context rules
except that they do not affect individual context variables:

use quantified variables
where restrictions on quantified variables

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .

18

As a simple example of governance, imagine a central controller that non-
deterministically chooses an agent in the system and moves it. This example
assumes a one-dimensional space in which agents are located; essentially the
agents can move along a line. Each agent’s built-in location variable stores the
agent’s position on the line, and another variable named direction indicates
which direction along the line the agent is moving. If the value of the direction
variable is +1, the agent is moving in the positive direction; if the value of
the direction variable is −1, the agent is moving in the negative direction. We
arbitrarily assume the physical space for movement is bounded by 0 on the
low end and 25 on the upper end. The governance rule has the following form:

use d ! direction, l ! location in p
where l + d impacts l

(if l + d = 25 ∨ l + d = 0 then − d else d) impacts d

The non-deterministic selection clause chooses a d and l from the same pro-
gram with the appropriate variable names. The first of the impact statements
moves the agent in its current direction. The second impact statement switches
the agent’s direction if it has reached either boundary. The rules placed in
the Governance section can be declared reactive, just as a local program’s
context rules are. The formal semantic definition of context rules in the Gov-
ernance section differs slightly from the definition outlined above in that the
governance rules need not account for the access control policies of the refer-
enced exposed variables. This is due to the fact that the specified rules define
system-wide interactions that are assumed, since they are provided by a con-
troller, to be safe and allowed actions. As an example, the formal definition
for the rule described above would be:

〈d, l : (d, l) = (d′, l′).(var[l′].η = location ∧ var[d′].η = direction∧
var[l′].π = var[d′].π)

:: var[l].ν := var[l].ν + var[d].ν
||var[d].ν := −var[d].ν if l + d = 25 ∨ l + d = 0

〉

Using the unique combination of independent programs, their context rules,
and universal governance rules, Context UNITY can model a wide variety
of context-aware applications. In fact, we acknowledge that Context UNITY
may be used to express systems that currently have no practical solutions,
e.g., those that provide real-time or robustness guarantees in highly dynamic
and mobile settings. At the same time, however, the model provides the power
to capture application semantics at a level of detail that is needed to develop
a precise engineering approach in order to address such issues. The expres-
siveness of the model is demonstrated in Section 4 by providing snippets of
Context UNITY systems required to model applications taken from the liter-
ature on context-awareness.

19

4 Modeling Real-World Applications

In this section, we investigate several classes of context-aware applications
in light of the Context UNITY model introduced in the previous section
and show how these applications (or generalizations of them) can be sim-
ply modeled using the constructs from Section 3. Our examples follow the
evolution of context-aware programming from simple environmental interac-
tions between only two parties, through interactions requiring consideration
of security properties to more advanced systems that require context-aware
coordination among groups of computational entities.

4.1 Simple Context Interactions

Some of the earliest work in context-aware computing focused on applications
using relatively simple context definitions. Such applications often separated
concerns related to providing context from those related to using context by
introducing kiosks, or entities that provide context information to visitors, who
use the context information to adapt their behavior. For example, in work-
place applications like Active Badge [12] and PARCTab [13], users’ devices
collect location context from sensors fixed in the building to provide location-
sensitive services. Guide applications like Cyberguide [14] and GUIDE [15]
equip tourists with mobile computing devices and context-aware tour guide
software. The software presents location-relevant information to the user by
connecting to nearby kiosks and downloading local maps, exhibit information,
etc. Such a scenario is depicted in Fig. 6, where a visitor in a museum interacts
with kiosks that provide information about the museum’s artifacts.

NWKiosk

Agent

c

Museum Entrance

NEKiosk

e
e

SEKiosk

e

Agent

c

N

S
EW

lambda

lambda
lambda

Fig. 6. A simple guide system in Context UNITY

20

In a Context UNITY model of such an application, agents on the kiosks offer
context information to other agents through their exposed variables. Visitors’
context variables determine how relevant exposed variables impact the user’s
view of the world. For example, a kiosk in the southeast corner of the mu-
seum gives information about a painting through its exposed variable e named
painting with a textual description of the painting as the variable’s value.
The kiosks in the northeast and northwest corners of the museum provide
information about two different sculptures by naming their exposed variables
sculpture and assigning the variable a short textual description. As a visitor
moves around the museum with his handheld device, his context variable c,
defined to contain only co-located sculptural exhibits, changes in response to
the available context. In the figure, the initial position of the visitor agent is
depicted by the dashed box labeled “Agent.” In the visitor’s initial position,
there is no sculpture, so the agent’s context variable c is not updated. As the
visitor moves along the path shown with the dotted arrow, c is updated. When
the visitor reaches the northeast corner of the museum, c reflects information
about the sculpture at that location. For brevity, we show only the Context
UNITY definition of the c context variable. Given this definition, the appli-
cation can interact locally with the context variable to retrieve and display
information about specific artifacts. The visitor’s context rule is:

c uses e ! sculpture, l ! location in p
given l = λ
where c becomes e

Informally, this context rule selects two variables from the same agent, one
named sculpture and one named location. The further restriction requires that
the value of the location variable be equivalent to the visitor agent’s loca-
tion (i.e., λ). When the restrictions can be met, the visitor’s context variable
c reflects the exposed variable of a co-located statue; otherwise c is empty,
reflecting no available statue.

It is important to note that this particular context definition may result in the
use of stale context information. For instance, as the visitor moves away from
the sculpture and is no longer co-located, his handheld device may still display
information about the sculpture, even as he becomes co-located with a different
sculpture in the museum. If it is required that the user be provided information
about the co-located sculpture immediately upon arrival, a reactive context
rule would be more appropriate. However, even the use of reactive context rules
cannot eliminate the risk of stale context. For example, if the above context
rule were made reactive, as the user moves away from the sculpture and is
no longer co-located the context variable c will continue to contain“stale”
context information about the sculpture until a new, co-located sculpture is
encountered. In some application scenarios, this kind of interaction may be
acceptable. In cases where it is not, the context rule can easily be adjusted
to reactively reset the contents context variable c upon some condition, e.g.,
c should be reset when the user is no longer co-located with the sculpture.

21

In addition to the style of interactions described, context-aware applications
frequently employ more complex interactions. In some instances, kiosks pro-
vide context information to a stationary context manager, who communicates
directly to visitors to direct and adapt their behavior. For example, Gaia [16]
manages active spaces. An active space is a physical location (e.g., a conference
room) in which the available physical and logical resources can be adapted in
response to changes in the environment. A typical scenario may entail a user
entering the active space and registering with the context manager. The con-
text manager uses information about the user and the environment to perform
context-sensitive interactions, e.g., to turn on a projector and load the user’s
presentation. Such a system can be represented in Context UNITY much as
the above application. In this case, however, the visitor provides context infor-
mation to the manager (kiosk), which subsequently uses its context variables
to perform automatic actions.

4.2 Security-Constrained Context Interactions

More recent context-aware applications have directly incorporated security
provisions that handle authentication, authorization, encryption and other op-
erations on behalf of users. In several systems, multi-level security mechanisms
are provided through domains [16,17]. A domain provides layered security and
isolates the available resources according to the level of security offered. Agents
authorized to operate within a particular domain have the ability to act upon
all of the domain’s resources, and a domain may have an authorizing authority
that grants and revokes entering and exiting agents’ access rights.

Fig. 7. An example security-constrained application in Context UNITY.

Fig. 7 depicts a doctor’s office where two domains coexist: the waiting area
and the exam area. In this example, a patient in the office must provide
information about herself to receive treatment. Some of the information is

22

public knowledge to be viewed by the receptionist and perhaps even other
patients (e.g., name and contact information). Other information is sensitive
and personal and should be displayed only to the doctor (e.g., medical history
or symptoms). To facilitate interactions, the doctor’s office is divided into
the two domains shown that provide differing levels of privacy. The patient’s
information includes his name (n), contact information (c), and symptoms
(s), each stored in an exposed variable. The exposed variable D in each of
the domains represents the level of security offered in the domain, while the
exposed variable L in the patient’s record reflects the security quality of the
user’s current location. In the context definition and usage described below,
the value of the patient’s L value determines the access control function used
for the patient’s symptom information stored in s. (The shaded nature of the
s variable in the waiting room in the figure indicates that it is not accessible.)

In our Context UNITY expression of this application, we abstract away the
authentication of the security domains and assume that the patient can au-
thenticate a domain that claims to be “high-security” (i.e., a domain with a
string value of “high-security” for its exposed variable D). In an implemen-
tation, this string would be a password or secret key that would guarantee
the patient’s secrecy. When the patient’s L variable stores the value “high-
security,” the patient can be confident that he is in a secure area and can
therefore share his symptoms. The patient’s context variable L is defined as:

L uses x ! security, l ! location in p
given l = λ
where L becomes x
reactive

The reactive nature of the context definition ensures that the patient’s agent
is notified immediately following a security domain change. This is especially
important as the patient moves from a high-security area to a lower security
area to guarantee that the access privileges for the symptoms variable are
immediately revoked. The following two statements appear in the patient’s
assign section and use the value of the patient’s L context variable to adap-
tively change the access policy for the exposed variable s:

assign
. . .
s.α := F (L) reacts-to L = “high-security”
s.α := F (L) reacts-to L 6= “high-security”
. . .

where F (L) returns {r} if L has the value “high-security” and {} otherwise.

23

4.3 Uniform Context Definition

As context-aware applications have evolved, the applications’ interactions have
moved from the simple two-way sharing as described above to include more
complex group interactions that foster complex coordination. Coordination
models [6,18–20] have emerged that provide a high degree of decoupling, an
important design concerned touched upon in Section 2. A common character-
istic of these systems is that agents that enter a sharing relationship must all
have the same definition of context, i.e., the context rules are uniform and
universally applied. This is representative of, for example, applications that
support collaborative work environments where a team of distributed agents
collaborate to perform a task, e.g., write a research paper.

Of the coordination models cited above, Lime [6,21] is the most general as it in-
corporates both physical mobility of hosts and logical mobility of agents. Lime
uses tuple spaces permanently attached to mobile agents which logically merge
together to form a single shared tuple space among connected agents. Agents
may be associated with several local tuple spaces, distinguished by name.
An agent interacts with other agents by employing content-based retrieval
(rd(pattern) and in(pattern)), and by generating tuples (out(tuple)).
These traditional operations are augmented with reactions that extend their
effects to include arbitrary atomic state transitions. In Lime, an agent’s rel-
evant context is determined by the logically merged contents of identically
named tuple spaces held by mutually reachable agents.

To use Context UNITY to capture the essential features of context-aware
systems having the characteristics described above, we endow each agent with
an exposed variable named localTS that offers its local tuple space for sharing
and a second exposed variable named sharedTS that provides the agent access
to all the tuples in the current context. These variables are of type tupleSpace,
which is a simple set of tuples. The value of the sharedTS variable should be the
union of tuples contained in exposed local tuple space variables belonging to
connected agents. Because the shared tuple space definition is uniform across
all agents, we can capture it in the Governance section, which highlights
the fact that connected agents share a symmetric context. In addition, it is
more economical for a programmer to write a single context definition since
it applies to the entire system. The resulting context rule included in the
Governance section is as follows:

use tsc ! sharedTS in a; ts l ! localTS in b
given connected(a, b)
where tsc − (tsc ↑ b) ∪ ts l impacts tsc

reactive

The result of this context rule is a tuple space shared among connected agents.
The notation tsc ↑ b indicates a projection over the set tsc, i.e., the tuples in

24

tsc owned by the agent b. It is possible to obtain such a projection since we
assume that each generated tuple has a field which identifies the owner of the
tuple using the generating agent’s unique id. The update expression therefore
has the effect of removing from tsc all of the tuples in it that belong to b
and adding to the set all of the tuples from b’s local tuple space (tsl). This is
required to ensure that, when changes occur to the data stored in the tuples,
the stale copies of the data are removed from a’s local copies and replaced
with the updated values. The context rule’s reactive nature ensures that this
update happens as soon as any changes occur.

4.4 Tailored Context Definitions

The applications addressed by the above coordination paradigm all view and
interact with the same context. Other applications, however, require more
individualized interactions, where they gather context information from a dis-
tributed network and then use this context information for their own person-
alized behavior [1,3]. However, as the scale of computing environments grows,
the amount of context information available to influence an agent’s behavior
becomes large and unmanageable. To avoid presenting an agent with an over-
whelming amount of context, many of these applications limit the amount of
context information that an agent “sees” based on properties of its environ-
ment and desired interactions. For example, EgoSpaces [3] is founded on the
view concept, which restricts an agent’s context according to a personalized
specification. A view consists of constraints on network properties, the other
agents from which context is obtained, and the hosts on which such agents
reside. These constraints filter out unwanted items in the operational context,
and the system ultimately presents the application with a context tailored to
its particular needs. As a specific example, an agent on an automobile may
monitor traffic information for a region in front of it that defines the driver’s
potential route home. This “context” information should be pulled to the
agent which can use it to adapt its behavior (e.g., reroute the driver).

Such applications consist of agents that serve as both providers and users of
context. The agents employ a context management strategy tailored to their
individual needs. When behaving as a context provider, a Context UNITY
agent generates pieces of context information and places them in an exposed
variable that serves as a data repository (e.g., a tuple space, as above) consist-
ing of data that the agent wishes to contribute as context. An agent provides
information about itself and properties about the host on which it resides
in exposed variables named “agent profile” and “host profile,” respectively.
These variables allow other agents to filter the context according to the host
and agent constraints in their view definitions. From the perspective of a con-
text user, Context UNITY models an agent’s view using a rule for a context
variable v named “view.” The value of v is defined to be the set of all tuples

25

present in exposed tuple space variables of other reachable agents for which
the exposed agent profile properties, exposed host profile properties, and ex-
posed network properties of hosts match the reference agent’s constraints. An
example context rule that establishes a view v for an agent with id i can be
defined as follows:

v uses lts ! tuple space, a ! agent profile, h ! host profile in i
given reachable(i) ∧ eligibleAgent(a) ∧ eligibleHost(h)
where v becomes v − (v ↑ i) ∪ lts
reactive

The function reachable encapsulates the network constraints that establish
whether an agent should or should not be considered based on network topol-
ogy data. The reactive nature of this definition rule ensures that the view
definition is updated simultaneously for all agents i that completely satisfy
the constraints in the context rule and that, as soon as any properties af-
fecting the definition of the view change, the view’s contents are updated. In
these applications, the reference agent may also make changes to data items in
the view; additional context resolution rules handle the propagation of these
changes back to the other context agents.

This discussion has demonstrated that increasingly complex context-aware ap-
plications can be simply and elegantly modeled using Context UNITY. The
power of the Context UNITY model is two-fold: not only can it be used to
represent existing context-aware systems but it can aid in the careful design
of future applications by enforcing the design principles embodied in the re-
quirements outlined in Section 2.

5 Formal Verification

Context UNITY has an associated proof logic largely inherited from Mobile
UNITY [4], which in turn builds on the original UNITY proof logic [10].
Program properties are expressed using a small set of predicate relations whose
validity can be derived directly from the program text, indirectly through
translation of program text fragments into Mobile UNITY constructs, or from
other properties through the application of inference rules. In this section we
provide a review of the Mobile UNITY proof logic and examine strategies for
the verification of Context UNITY programs.

26

5.1 Mobile UNITY Proof Logic

In Mobile UNITY (as in UNITY), program verification starts with the seman-
tic properties of the individual program statements. While UNITY contains
only standard conditional multiple assignment statements, Mobile UNITY
includes reactive statements and transactions; as discussed later, Context
UNITY also adds non-deterministic assignment statements. The basic execu-
tion model of Mobile UNITY is one in which normal statements are selected
non-deterministically and in a weakly fair manner, and, after the execution of
each normal statement, all reactive statements are executed as a single sep-
arate program until its fixed-point is reached. Transactions force sequential
selection of the normal statements that they contain, but otherwise the exe-
cution model remains unchanged. Since the semantics of Context UNITY have
been defined by reduction to Mobile UNITY statements (normal and reactive)
we provide next a brief review of the Mobile UNITY proof logic, which will
need to be employed in the verification of Context UNITY programs.

Regardless of the model under consideration, proving individual statements
correct in state transition systems starts with the use of the Hoare triple [22].
In UNITY, a property such as:

{p}s{q} where s in P

refers to a standard conditional multiple assignment statement s exactly as
it appears in the text of the program P . By contrast, in a Mobile UNITY
program, the presence of reactive statements requires us to use:

{p}s∗{q} where s ∈ N

where N denotes the normal statements of P , while s∗ denotes a normal state-
ment s modified to reflect the extended behavior resulting from the execution
of the reactive statements in the reactive program R consisting of all reactive
statements in P . The following inference rule captures the proof obligations as-
sociated with verifying a Hoare triple in Mobile UNITY under the assumption
that s is not a transaction:

{p}s{H}, H 7→ (FP(R) ∧ q) in R
{p}s∗{q}

The first component of the hypothesis states that, when executed in a state
satisfying p, the statement s establishes the intermediate postcondition H.
This postcondition serves as a precondition of the reactive program R, that,
when executed to fixed-point, establishes the final postcondition q. The “in R”
must be added because the proof of termination is to be carried out from
the text of the reactive statements, ignoring other statements in the system.
This can be accomplished with a variety of standard UNITY techniques. The

27

predicate H must lead to a fixed-point and establish q in the reactive program
R. This obligation (i.e., H 7→ (FP(R)∧ q) in R) can be proven with standard
techniques because R is treated as a standard UNITY program.

For transactions of the form 〈s1; s2; . . . ; sn〉 we first apply the following infer-
ence rule before application of the one above:

{a}〈s1; s2; . . . sn−1〉∗{c}, {c}s∗n{b}
{a}〈s1; s2; . . . sn〉∗{b}

where c may be guessed at or derived from b as appropriate. This represents se-
quential composition of a reactively-augmented prefix of the transaction with
its last sub-action. This rule can be used recursively until we have reduced
the transaction to a single sub-action. We then can apply the first, more com-
plex inference rule (presented earlier in this section) to each statement. This
rule may seem complicated, but it represents standard axiomatic reasoning
for ordinary sequential programs, where each sub-statement is a predicate
transformer that is functionally composed with others.

To prove more sophisticated properties, UNITY-based models use predicate
relations. Basic safety is expressed using the unless relation. For two state
predicates p and q, the expression p unless q means that, for any state sat-
isfying p and not q, the next state in the execution must satisfy either p or
q. There is no requirement for the program to reach a state that satisfies q,
i.e., p may hold forever. Progress is expressed using the ensures relation. The
relation p ensures q means that for any state satisfying p and not q, the next
state must satisfy p or q. In addition, there is some statement in the program
that guarantees the establishment of q if executed in a state satisfying p and
not q. Note that the ensures relation is not itself a pure liveness property
but a conjunction of a safety and a liveness property; the safety part of the
ensures relation can be expressed as an unless property. In UNITY, these
predicate relations are defined by:

p unless q ≡ 〈∀s : s in P :: {p ∧ ¬q}s{p ∨ q}〉

p ensures q ≡ (p unless q) ∧ 〈∃s : s in P :: {p ∧ ¬q}s{q}〉
where s is a statement in the program P . Mobile UNITY uses the same defini-
tions since all distinctions are captured in the verification of the Hoare triple.
Additional relations may be derived to express other safety (e.g., invariant
and stable) and liveness (e.g., leads-to) properties.

5.2 Context UNITY Proof Mechanics

The verification of Context UNITY programs relies by and large on the Mobile
UNITY proof logic. However, Context UNITY introduces non-deterministic

28

assignment which is not handled by the Mobile UNITY proof logic as defined
so far. Fortunately, the proof obligation for non-deterministic assignments dif-
fers only slightly from that of the standard assignment statements. Given the
property {p}s{r} in UNITY, if the statement s is a non-deterministic assign-
ment statement of the form x := x′.Q(x′), then the inference rule describing
the associated proof obligation for the statement s has the form:

{p ∧ ∃x′ :: Q(x′)}s{∀x′ : Q(x′) :: r}
{p}s{r}

At this point all the tools needed to verify Context UNITY programs have been
presented, even though we did not explicitly describe a Context UNITY proof
logic. Due to the manner in which we formalized Context UNITY’s semantics,
each Context UNITY statement is defined operationally by its translation into
Mobile UNITY (with the addition of the above rule for non-deterministic as-
signment statement). The resulting strategy is to translate Context UNITY
context rules from both the local program context sections and the Gover-
nance section to standard Mobile UNITY notation (i.e., to the appropriate
normal or reactive statements) before applying the proof logic outlined for
Mobile UNITY. Once translated as described in the previous section, verifica-
tion of the system can be accomplished directly by applying the rules outlined
above.

The approach makes sense because Context UNITY is a specialization of Mo-
bile UNITY. It is clear that mechanical verification techniques, if developed,
would not be affected negatively because our mapping to Mobile UNITY is
very mechanistic. As a matter of fact, the straightforward translation process
has only a minimal impact even on pencil and paper proofs. This is because
each context specification statement is mapped either to a multiple assignment
statement or to a reaction, but never to a complex set of program statements
or a program fragment consisting of both normal and reactive statements.

To illustrate the verification process we return to the earlier context specifi-
cation for the automatic maintenance of the acquaintance list Q. We might
want to prove, for instance, that an agent a is in the acquaintance list Q of b
if and only if a and b are within communication range. This can be captured
by the following invariant:

inv. a ∈ b.Q ⇔ (a 6= b ∧ |a.λ− b.λ| ≤ range)

If we assume that initially no two agents are in range and all acquaintance lists
are empty, we need to prove that the invariant is preserved throughout the
execution of the program. Assuming that none of the agents have the direct
ability to modify the context variable Q, the only way to violate the invariant
is by affecting the agent position which we assume is under the sole control of

29

the individual agents.

The proof obligation reduces to showing that the reactive statements that up-
date Q reach fixed-point and re-establish the invariant after the execution of
any statement in the program. Statements that do not affect location have no
impact on the invariant and can be ignored. Statements that do change an
agent’s location take the system into a state in which the invariant no longer
holds. This, in turn, leads to the obligation to show that, started in such a
state, the reactive program leads to re-establishing the invariant. We can show
this to be true by induction on the number of inconsistent acquaintance lists.
To show that this variant function decreases, we consider any acquaintance
list that is incorrect and show that it is corrected as soon as the right state-
ment executes. More precisely, we consider two cases, when the agent a needs
to be added and when it needs to be removed. In each case we can use an
ensures property to prove that the list is updated in one step by the ap-
propriate context rule. The two separate cases can be formally combined into
a leads-to property, which guarantees that the arbitrarily selected acquain-
tance list eventually is up to date. This in turn, establishes the base case for
the induction and completes the proof. It is only at the level of verifying the
two ensures obligations that the translation into the Mobile UNITY reactive
statement is invoked. Even in a simple example such as this one it is evident
that the proof of the Hoare triple is a small part of the overall verification
effort and the only part which is affected by the translation rules. For this
reason we view our reductionist approach as offering a viable and practical
strategy for the formal verification of context-aware programs.

6 Conclusions

The formulation of Context UNITY is designed to help us gain a better under-
standing of the essential features of the context-aware computing paradigm. A
key feature of the model is the delicate balance it achieves between placing no
intrinsic limits on what the context can be while empowering the individual
agent with the ability to precisely control the context definition. Linguistically
the distinction is captured by the notions of operational environment and con-
text, expansive with respect to potential and specific with respect to relevance.
In the model, the two concepts have direct representations in terms of exposed
and context variables. The other fundamental characteristic of the model is
rooted in the systematic application of software engineering methodological
principles to the specifics of context-aware computing. The functionality of
the application code is separated from the definition of context. This decou-
pling is fundamental in a setting where adaptability is important—a program
design cannot anticipate the details of the various operational environments
the agent will encounter throughout its lifetime. The model enables this de-

30

coupling through the introduction of context rules that exploit existential
quantification and non-determinism in order to accommodate the unknown
and unexpected. Context UNITY explicitly captures the essential character-
istics of context-awareness, as we experienced them in our work and observed
them in that of others. Moreover, the defining traits of many existing models
appear to have simple and straightforward representations in Context UNITY,
at least at an abstract level.

ACKNOWLEDGMENTS

This research was supported in part by the Office of Naval Research under
ONR MURI research contract N00014-02-1-0715. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the sponsoring agencies.

References

[1] D. Salber, A. Dey, G. Abowd, The Context Toolkit: Aiding the development of
context-enabled applications, in: Proceedings of CHI’99, 1999, pp. 434–441.

[2] J. Hong, J. Landay, An infrastructure approach to context-aware computing,
Human Computer Interaction 16 (2001) 287–303.

[3] C. Julien, G.-C. Roman, Egocentric context-aware programming in ad hoc
mobile environments, in: Proceedings of the 10th International Symposium on
the Foundations of Software Engineering, 2002, pp. 21–30.

[4] G.-C. Roman, P. J. McCann, A notation and logic for mobile computing, Formal
Methods in System Design 20 (1) (2002) 47–68.

[5] P. J. McCann, G.-C. Roman, Compositional programming abstractions for
mobile computing, IEEE Transactions on Software Engineering 24 (2) (1998)
97–110.

[6] A. L. Murphy, G. P. Picco, G.-C. Roman, Lime: A middleware for physical
and logical mobility, in: Proceedings of the 21st International Conference on
Distributed Computing Systems, 2001, pp. 524–533.

[7] C.-L. Fok, G.-C. Roman, G. Hackmann, A lightweight coordination middleware
for mobile computing, in: Proceedings of the 6th International Conference on
Coordination Models and Languages, 2004, pp. 135–151.

[8] B. Schilit, N. Adams, R. Want, Context-aware computing applications, in: IEEE
Workshop on Mobile Computing Systems and Applications, 1994.

31

[9] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Wiley and Sons,
2000.

[10] K. M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-
Wesley, NY, USA, 1988.

[11] R. J. R. Back, K. Sere, Stepwise refinement of parallel algorithms, Science of
Computer Programming 13 (2–3) (1990) 133–180.

[12] A. Harter, A. Hopper, A distributed location system for the active office, IEEE
Networks 8 (1) (1994) 62–70.

[13] R. Want, et al., An overview of the PARCTab ubiquitous computing
environment, IEEE Personal Communications 2 (6) (1995) 28–33.

[14] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, M. Pinkerton, Cyberguide:
A mobile context-aware tour guide, ACM Wireless Networks 3 (1997) 421–433.

[15] K. Cheverst, N. Davies, K. Mitchell, A. Friday, C. Efstratiou, Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project,
in: Proceedings of MobiCom, ACM Press, 2000, pp. 20–31.

[16] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, Gaia: A
middleware infrastructure to enable active spaces, IEEE Pervasive Computing
(2002) 74–83.

[17] J. Wickramasuriya, N. Venkatasubramanian, A middleware approach to access
control for mobile concurrent objects, in: Proceedings of the International
Symposium on Distributed Objects and Applications, 2002.

[18] G. Cabri, L. Leonardi, F. Zambonelli, MARS: A programmable coordination
architecture for mobile agents, Internet Computing 4 (4) (2000) 26–35.

[19] IBM, T Spaces, http://www.almaden.ibm.com/cs/TSpaces/ (2001).

[20] Sun, Javaspaces, http://www.sun.com/jini/specs/jini1.1html/js-title.html
(2001).

[21] A. Murphy, G.-P. Picco, Using coordination middleware for location-aware
computing: A lime case study, in: Proceedings of the 6th International
Conference on Coordination Models and Languages, 2004, pp. 263–278.

[22] C. A. R. Hoare, An axiomatic basis for computer programming,
Communications of the ACM 12 (10) (1969) 576–580, 583.

32

