Context-Sensitive Data Structures Supporting Software Development
in Ad Hoc Mobile Settings

Jamie Payton, Gruia-Catalin Roman, and Christine Julien
Department of Computer Science and Engineering
Washington University in St. Louis
Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{payton, roman, julien}@wustl.edu

Abstract

Context-aware computing, an emerging paradigm in
which applications sense and adapt their behavior to
changes in their operational environment, is key to de-
veloping dependable software for use in the often un-
predictable settings of ad hoc networks. However, de-
signing an application which gathers, maintains, and
adapts to context can be a difficult undertaking, even
for a seasoned programmer. Our goal is to simplify the
programming task by hiding such issues from the pro-
grammer, allowing one to quickly and reliably produce
a context-aware application for use in ad hoc networks.
With this goal in mind, we introduce a novel abstraction
called context-sensitive data structures (CSDS). The
programmer interacts with the CSDS through a famil-
iar programming interface, without direct knowledge of
the context gathering and maintenance tasks that occur
behind the scenes. In this paper, we define a model of
context-sensitive data structures and present protocols
which enable the programmer to construct and main-
tain a CSDS as a distributed structure over a mobile
ad hoc network in a state of fluz.

1. Introduction

In recent years, communication technology has be-
gun to reflect the dynamic nature of our society, with
computing devices becoming increasingly portable and
untethered. The widespread use of mobile computing
devices brings about an increased demand for software
designed with mobility in mind. In fact, we can expect
the number of applications designed for use in ad hoc
networks to experience rapid growth. In such networks,
connections are formed opportunistically between de-

vices within wireless communication range. Applica-
tions for this environment are likely to come into rou-
tine usage in situations such as disaster recovery in
which rescue workers require the ability to find and
treat victims, construction site supervision in which
a foreman gathers information around a site to gauge
the progress of the project, and so on. These and other
applications over ad hoc networks operate in open and
highly dynamic environments, making it difficult for
the programmer to produce reliable and dependable
software.

Context-aware computing has been advocated as a
solution to dealing with the programming complexity
associated with such development efforts. Context-
awareness refers to the ability of an application
to adapt its behavior in response to environmental
changes. Typically, in context-aware systems, sen-
sors gather information about the environment, and
the collected information is delivered to the applica-
tion. Context-aware office applications such as Active
Badge [4] and PARCTab [9], as well as tour guide ap-
plications such as Cyberguide [1] and GUIDE [2], for
example, rely on events generated by a location sensor
to trigger the update of a person’s display to reflect
the current physical location. Similarly, FieldNote [7]
uses sensors to collect information about the physical
environment such as time and weather, and the infor-
mation delivered to the application is attached to notes
taken by researchers in the field. Constructing such ap-
plications is a daunting task, requiring the developer to
consider the interaction between the application and a
number of possibly heterogeneous sensors in order to
gather and deliver context information.

Several frameworks and infrastructures have been
devised to promote efficient and reliable development of
context-aware applications by masking the complexity



of interacting with heterogeneous sensors. The Con-
text Toolkit [8], for example, relies on context wid-
gets to gather context and to deliver it to the appli-
cation, effectively separating context sensing and de-
livery from the rest of the application. In the Con-
text Fabric [5], a service infrastructure approach is
employed, in which context sensors are made avail-
able across the network to provide access to context
information. While these context-aware support sys-
tems offer mechanisms to simplify the interaction with
sensors, the programmer is still required to know the
source of data to access and to operate on that data. In
a mobile ad hoc network, the open and dynamic nature
of the environment makes it somewhat unreasonable
to assume that the programmer knows in advance the
identities of various data sources; applications for use
in such scenarios require a highly decoupled method of
data access.

With this in mind, we propose the concept of
context-sensitive data structures as the basis for a new
programming methodology. A context-sensitive data
structure is determined by and provides access to data
available in the context; it is encapsulated as an ab-
stract data type (ADT), which is represented by a class
in a programming language such as Java or C++. Like
all classes, it provides the programmer with an applica-
tion programmer interface (API) to access and manip-
ulate data. The collection of data items operated on by
an instantiation of such a class changes as the context,
i.e., the content of the ad hoc network, changes. The
distributed data items are accessed using the API of
the local class instantiation.

A simple example of the context-sensitive data
structures concept can be found in the LIME [6] model,
which utilizes a transiently shared tuple space data
structure to support coordination among applications
in a mobile ad hoc environment. However, the middle-
ware implementation of the model is strongly tied to
the tuple space abstraction. We seek to provide pro-
grammers with the ability to use context-sensitive ver-
sions of stacks, queues, trees, and other data structures
to suit the particular needs of the application.

The resulting design methodology provides the de-
signer with the flexibility to use familiar and proven
programming tools for context-aware application de-
velopment. It also allows one to reuse them across ap-
plications, as building context-sensitive data structures
from scratch is an expensive undertaking. Our goal is
to provide a general model and infrastructure to sup-
port the development of context-sensitive data struc-
tures. Developing a flexible, general infrastructure will
require a great deal of study; to begin, we investigate
the feasibility of providing such a model. As a first

step, we examine a particular data structure, the pri-
ority queue, and devise protocols needed to support its
context-sensitive operation in a mobile ad hoc network,
with the intent of extracting lessons about the kinds of
protocols needed in an infrastructure that supports the
development of context-sensitive data structures.

The remainder of this paper is organized as follows.
Section 2 summarizes the computational model and the
notion of context assumed throughout this paper, and
further explains our notion of an infrastructure to sup-
port development of context-sensitive data structures.
A motivating example of a context-sensitive data struc-
ture and its use in developing a context-aware applica-
tion is introduced in Section 3. Section 4 addresses
the key elements required in an infrastructure for sup-
porting the development of context-sensitive versions
of traditional data structures. Discussions concerning
the continuing development of the CSDS model and
conclusions appear in Section 5.

2. Context-Sensitive Data Structures
Explained

In this section, we discuss the use of context in ad
hoc networks. We begin by defining the computational
model. We then define context and discuss how we can
limit the context over which an application operates.
Finally, we discuss a design methodology for captur-
ing evolving contextual information within a specified
scope and delivering it to the application level in the
guise of a locally accessible and appropriately encapsu-
lated data structure.

In our work, we consider systems in which logically
mobile agents (units of modularity and execution) ex-
ecute on physically mobile hosts (simple containers for
agents). Throughout this paper, we use the terms
“agent” and “application” interchangeably, as agents
are the components making up the application. Agent
communication and migration can occur whenever the
participating hosts are within communication range. A
closed set of bidirectionally connected hosts form an ad
hoc network.

An agent’s context is defined to be any property that
a connected host in the ad hoc network can sense or any
data an agent in this network offers within the same ap-
plication or across applications. With this definition it
is evident that as the number of participants in the ad
hoc network grows large, an agent’s context becomes
overwhelming. Consider, for instance, a driver on the
highway. She may wish to act upon traffic on the high-
way by asking vehicles ahead for information. Though
the driver only needs information for the city in which
she is driving, on a very busy highway, the context may



Application

Priority . Context-Sensitive
Queue Tree List Data Structures

Context-Sensitive Data Structure Support

Network Support l
Ad Hoc Physical Network l

Figure 1. Proposed infrastructure architec-
ture for providing CSDS support

span hundreds of miles. Bandwidth would be wasted
by spreading the query to reachable cars outside of the
city limits. Not only would the driver receive informa-
tion that is not pertinent to her application, the volume
of responses could render the application unusable. For
reasons such as these, we will always place bounds on
the application context.

Restricting the context solves only part of the prob-
lem; we must also provide decoupled access to the data
available within the context in a manner that is natural
to the programmer. We believe that context-sensitive
data structures are an appropriate abstraction for ac-
cessing and operating on the data made available in the
selected context. A context-sensitive data structure’s
content is determined by the state of the environment
and the specification of context supplied by the appli-
cation. The content of the data structure is defined as
all data items on agents running on hosts in the subnet
of the ad hoc network forming the application context,
as well as properties sensed by the same set of hosts.
The task of managing access to the data spread across
the ad hoc network is hidden from the application pro-
grammer, and access to the data elements is gained
only through operations defined on the ADT. Oper-
ations performed on the context-sensitive data struc-
ture can effect a change in the context of others, as
can the movement of an agent that may cause it to
join or leave someone else’s context. As these changes
in the state of the environment occur, the content of
the context-sensitive data structure is changed appro-

priately in response. An application developer using
a context-sensitive data structure can operate on the
dynamically changing set of data elements that are dis-
tributed throughout the context as if the data were
stored in a local, persistent data structure.

We envision the gradual development of a library
of context-sensitive data structures for use by context-
aware application programmers. In most cases, the
application programmer should not have to implement
the context-sensitive data structure; he should simply
choose among the already available context-sensitive
data structure implementations. The application pro-
grammer uses the API of the selected context-sensitive
data structure to interact with context data as if it were
local. This style of interaction is outlined in Figure 1.
The figure shows an application being developed on top
of one or more context-sensitive data structures.

Since many data structures share common opera-
tions, we envision providing a specialized infrastruc-
ture that supports the development of context-sensitive
data structures, as shown in Figure 1. The protocols
included in the infrastructure would be used to restrict
the scope of the context to a subnet defined by a con-
text specification tailored to the application. Oper-
ations of a context-sensitive data structure access and
manipulate only those data elements residing on agents
executing on hosts within the subnet. In addition to
scoping the context, the protocols provided by the in-
frastructure must assist in accessing and manipulating
data in the restricted context to support the implemen-
tation of context-sensitive versions of traditional data
structure operations, e.g., search, modify, and iterate.

In the remainder of this paper, we investigate
the software engineering potential for context-sensitive
data structures. First, we offer a concrete example
of a context-aware application that can benefit from
the use of a particular context-sensitive data structure,
the priority queue. We then explore the protocols we
must provide in the infrastructure to support the de-
velopment of context-sensitive data structures for use
in such applications. In doing so, we seek to demon-
strate the feasibility of applying the context-sensitive
data structures concept and associated design method-
ology. Along the way, we illustrate the kind of capabil-
ities we need to include in a more complete infrastruc-
ture as it is being developed.

3. Programming with Context-Sensitive
Data Structures

The impetus behind the introduction of the context-
sensitive data structure design methodology is to re-
duce development costs in terms of effort and er-



rors, and to make context-aware application develop-
ment accessible to even novice programmers. Context-
sensitive data structures provide a decoupled method of
accessing and operating on data in the ad hoc network,
one that is simple and natural to the programmer, us-
ing the same interface as in static settings. Moreover,
their dynamically changing content is managed trans-
parently, eliminating the potential for programming er-
rors incurred by interacting with a complex and dy-
namic ad hoc network

To illustrate the utility of context-sensitive data
structures and the associated design methodology, con-
sider a disaster recovery scenario in which triage is em-
ployed to effectively treat the wounded. Victims are
quickly examined to evaluate the seriousness of their
injuries and are tagged with devices that emit (via
wireless radio or infrared) information about their as-
signed injury classification, ranging from injuries that
need immediate attention to those for which treatment
can be postponed. Rescue teams are assigned areas in
which they must arrange transport for those with the
most severe injuries first, and provide as much on-site
treatment as possible for these victims until transport
is available. A volunteer is selected by the rescue team
member to treat the most seriously wounded victim
until transport arrives. A volunteer’s assignment may
change as the status of injured victims within the con-
text changes. After a rescue crew member arranges
on-site treatment for victim, he must arrange for the
victim’s transport to a hospital. As a victim is trans-
ported, they are removed from the context of the appli-
cation. As new victims are discovered and their injuries
evaluated, they are added to the application’s context.
Figure 2 illustrates this application.

A simple application for rescue team support could
be constructed around the notion of a context-sensitive
priority queue. Within the context-sensitive priority
queue, the content of the data structure is defined by
a context specification that restricts the context to a
manageable area of the disaster site. The data associ-
ated with the priority queue reflects an ordering over
the injured within that restricted area such that the
most seriously injured victim is at the head of the
queue. The context, and hence the content of the
context-sensitive priority queue, is updated indepen-
dently of the application’s operation on the queue.

We envision our priority queue as having two opera-
tions: getNext() and removeNext (). The getNext ()
operation in our application is used to obtain access to
an injury description for the victim in the context that
has the highest priority injury. The injury description
includes a unique injury identifier, the injury priority,
and the geographical location of the injured person.

The removeNext () operation in the disaster recovery
application is used to obtain access to the injury de-
scription of the victim with the highest injury priority
and to remove the injury description from the priority
queue.

In the disaster recovery application, the context-
sensitive priority queue data structure is populated
with all of the victims in the context ordered accord-
ing to injury priority. The rescue crew member uses the
application to get the head of the priority queue, dis-
patching a volunteer to tend to the victim until trans-
port can be arranged. Because we consider that crew
members may have been assigned overlapping contexts
and that the transport vehicles available to one crew
member may not be available to another, the injury
description obtained to dispatch treatment should still
should be made available. For this reason, the dis-
patch function of the application is implemented using
the getNext () operation previously described. Once
treatment has been dispatched to the most severely
wounded victim, the crew member uses the application
on his PDA to determine if any of his transportation re-
sources are available. If so, the application assigns the
available transportation resources to the most severely
injured victim in the context. Because the victim has
been assigned on-site treatment and scheduled for evac-
uation, the victim should be removed from considera-
tion by the rescue crew teams. Therefore, the transport
scheduling function of the application should be imple-
mented using the removeNext () operation previously
discussed.

Building the application described from scratch can
be a significant undertaking. The application devel-
oper must include functions to sense the set of neigh-
boring hosts, to send messages to agents on reachable
hosts, and to formulate and issue queries to obtain
data. Query responses must be processed and placed
into a traditional, static priority queue. Each time an
operation is requested, the application must query the
hosts in the network to ensure operation over a set
of data most closely reflecting the current state of the
context.

The amount of data processed is reduced, explicit
maintenance by the application programmer is re-
moved, and application development is simplified when
using the context-sensitive data structures program-
ming methodology. Figure 3 shows sample code for
an implementation of the disaster recovery application
using the context-sensitive priority queue. This ver-
sion of the application simply defines a context, in-
stantiates the context-sensitive priority queue, and per-
forms processing on the priority queue using the oper-
ations made available by the API, e.g., getNext () and



Figure 2. Disaster Recovery Scenario. The disaster site lies within the labeled oval. Rescue members
are assigned to areas of the site. A particular rescue crew member (noted by the encircled cross)
and his assigned area (the dashed box) are shown. The crew member uses a PDA that runs the
treatment and transport application to assign available ambulances to transport the most seriously
wounded victims in his area to a hospital nearby. Victims are represented by the shaded circles, with

seriousness of injury reflected by darker shading.

removeNext (). The data structure does not have to
be explicitly reconfigured by the application each time
a victim is transported. Instead, an untreated victim
in the context with the highest injury priority can be
identified simply by using the getNext () operations.

This example is suggestive of the programming pro-
ductivity gains one could achieve with context-sensitive
data structures. In the next section, we explore what
is needed to support the implementation of context-
sensitive data structures like the priority queue used in
the disaster recovery application.

4. Infrastructure Support for Context-
Sensitive Data Structures

To support development of context-sensitive lists,
trees, stacks, queues, and other data structures, we
must consider what is necessary to support the imple-
mentation of their operations. First, since an applica-
tion’s context includes properties sensed by any con-
nected host in the ad hoc network, the amount of data
available within the context can be prohibitively large.
To provide context-sensitive versions of data structures
that can be used in development of reasonably efficient

context-aware applications, it is necessary to consider
how to limit the volume of data available to the ap-
plication. One way is to limit the reach of the context
itself. Second, some operations require complex queries
over the data available in the context to find an element
with a particular property. Asking programmers to de-
velop protocols for querying the ad hoc network belies
our philosophy of simplifying development of context-
aware software. In this section, we begin to address the
issues of placing a bound on the context and provid-
ing protocol support for implementing the operations
of a context-sensitive data structure. Several variants
of such a protocol is presented, and an example im-
plementation of the context-sensitive priority queue’s
getNext () operation is given.

Supporting Data Queries over a Restricted
Context. To restrict the amount of data included
in a context-sensitive data structure, we can limit an
agent’s context to a subnet of the ad hoc network us-
ing the network abstractions protocol [3]. This proto-
col uses an agent’s specification of context to build a
minimum spanning tree that covers the context. The
spanning tree is used to route data queries issued by
the agent to all hosts within the context. It is this kind
of flexible support for limiting the context that we wish



public class DisasterRecovery {
PriorityQueue pq;
Context context;
Metric distance = predefined distance metric...;
Cost bound = one block bound...;
public DisasterRecovery() {
context = new Context(distance, bound);
PriorityQueue pq =
new PriorityQueue(context);
}
public void main(String args[]) {
while(victimsUntreated()) {
if (volunteersAvailable()) {
new TreatmentThread treat =
new TreatmentThread(pq);
treat.start();
}
if (transportAvailable()) {
new TransportThread transport
new TransportThread(pq);
schedule.start();

}
}
}

class TreatmentThread extends Thread {
the start method calls the run method...
public void run() {
dispatch(getVolunteer(),
(pq.getNext () .id);

}

class TransportThread extends Thread {
the start method calls the run method...
public void run() {
assign(getTransport(),
(pq.removeNext () .id);
}

}
}

Figure 3. A Context-Sensitive Data Structure
Approach to the Disaster Recovery Applica-
tion

to include in our infrastructure as a foundation for de-
veloping context-sensitive data structures. We envision
the network abstractions protocol as the basis for pro-
viding support to developers for issuing operations on
context-sensitive data structures to search for a single
value.

The network abstractions protocol calculates the
cost of network paths using a cost function and a
bound. The cost function evaluates the cost of a path
from the reference host using logical weights defined
on the links of the path. Each logical link weight com-
bines quantifiable properties of the physical link and of
the hosts connected by the link. The application can
specify how these properties contribute to the weight.
A simple weight can be defined to assist in counting
hops along a path. All links are assigned a weight of
one; no host properties are used in the definition of this
weight. If, when applied to these weights, the cost of
a path to a host falls within the specified bound, the
host is part of the context.

The construction of a minimum spanning tree is
performed on-demand and in a distributed fashion.
Throughout the discussion of the network abstractions
protocol in this section, we refer to the agent defining
the context as the reference agent and its host as the
reference host. When the reference agent issues a data
query, it uses the cost function to evaluate whether
each of its neighbors qualifies as a member of the con-
text by applying its cost function to the weight of the
link between itself and the neighbor. If the result is
within the context’s bound, the reference agent sends
the context definition and data query to the qualifying
neighbor.

An agent receiving a context query stores the con-
text definition. If the cost of the path is shorter than
any previously stored for this context definition, then
the agent names the sender of the query as its parent.
The process of evaluating non-parent neighbors is re-
peated to determine how the query should be further
distributed. This iterative distribution of the query
continues along a path of connected hosts until the
cost function evaluation of neighboring hosts exceeds
the bound.

At any point after receiving the context query, an
agent can respond to it through its parent. Any agent
in the context receiving a response to a data query
checks to see if the reply is intended for itself. If so,
the agent processes the response. If not, the reply is
forwarded to the issuer via the agent’s shortest cost
path.

We can use the data queries and response mech-
anism of the protocol as described to provide sup-
port for one possible implementation of an operation



that searches the context for a single value. Consider,
for example, the getNext () operation on the context-
sensitive priority queue. An implementation of this op-
eration can be achieved using the network abstractions
protocol to send a data query requesting a particular
data element from each host in the context. The result
is a collection of data, such that there is a data ele-
ment originating from each host in the context. In the
implementation of the getNext() operation, all data
elements returned by the network abstractions proto-
col are sorted and ordered according to their priority
fields. The data element with the highest priority field
will be returned by the getNext() operation. Such
an implementation can prove expensive, however, if
the getNext () operation is repeatedly used, since the
protocol must be executed and data elements must be
sorted each time that the operation is issued.

Using the network abstractions protocol as de-

scribed above, we can support transient operations.
In these types of operations, a data query is issued
once and is routed using a minimum spanning tree con-
structed on-demand for routing the query, the replies
are routed to the issuing agent using the spanning tree,
and the spanning tree for the query is cleaned up. In
addition to transient queries, network abstractions sup-
ports the use of persistent operations. With a persis-
tent query, the data query is registered on a host in
the context and is evaluated each time that the context
changes. To support the routing of replies to persistent
queries, the spanning tree is maintained. The ability to
use persistent queries would be useful in developing op-
erations that are frequently used in dynamic networks
that require a higher level of consistency. The network
abstractions protocol supporting persistent queries is
summarized below.
Supporting Persistent Queries. To support persis-
tent queries, the spanning tree must be maintained in
the presence of changes in the network that effect the
link weights. Network abstractions assumes that hosts
can detect weight changes on the links connecting them
to other hosts.

The first scenario to consider is when a node detects
a link weight change on a link that leads to a parent.
The weight change causes the path cost to the initiator
to increase or decrease. If the weight change caused
the path cost to increase, then the host searches stored
information about the same context to see if a shorter
path to the initiating host now exists through another
host. In either case, the neighbors of the node receiving
the weight change notification will have to be notified
of the change in path cost.

If the link on which the weight changed leads to
a non-parent host. If the weight change results in a

shorter path using the changed link through a non-
parent node, the shortest path and parent must change.

In addition, the set of hosts belonging to the context
may change. Hosts moving into the context receive
the data query, and hosts moving out of the context
remove it. In either case, the link weight changes effect
their addition or removal from the maintained spanning
tree. Persistent data queries use the tree maintained by
network abstractions to deliver replies to the reference
host.

One possible implementation of the getNext () pri-
ority queue operation, which requires the return of
the largest data value present in the context, can be
achieved using persistent data queries in the network
abstractions protocol. The priority queue developer
uses network abstractions to register persistent data
queries on all hosts in the context. The result returned
to the developer is a collection of data response in
which each host in the context contributes a data ele-
ment. As changes occur in the environment (e.g., hosts
move out of the context, hosts are added to the con-
text, or data values change), the initiator of the query
is sent an updated response so that it will have a more
consistent view of the state of the context. Such an im-
plementation would often be useful in a situation where
the getNext () operation is frequently used, since it
eliminates additional overhead incurred by repeatedly
issuing a transient data query, building the spanning
tree, and sorting the resulting collection of data. This
eliminates some of the overhead incurred with a tran-
sient query, since the spanning tree for routing does not
have to be built each time that an application calls the
getNext () operation. However, the implementation is
still somewhat expensive, since all of the returned data
elements must be sorted each time the getNext () op-
eration is issued by the application.

When the network abstractions protocol is used for
transient or persistent queries in the manner described
above, the issuing agent receives responses from all
nodes in the context. In an implementation of a search
operation on a context-sensitive data structure, all of
the results returned from the network abstractions pro-
tocol must be processed to identify the element that
must be returned. Aggregating the responses from
the hosts in the network before they reach the issu-
ing agent would eliminate the additional processing re-
quired in the implementation of a search operation on
a context-sensitive data structure. With this in mind,
we introduce a modification of the network abstrac-
tions algorithm below which aggregates responses to
data queries.

Aggregating Responses. A simple modification to
the network abstractions protocol can provide aggrega-



tion of responses to data queries. The basic idea is to
modify the protocol such that a node in the spanning
tree must wait on the responses of all of its children.
Each parent must invoke the execution of a piece of
code implementing an aggregation function on the re-
sults returned by all of its children. The result of this
execution is issued as the parent’s response to the data
query. The modification to the original network ab-
stractions protocol required to support this behavior is
described in more detail below.

As before, the construction of the minimum span-
ning tree is performed on-demand when an agent issues
a data query. The reference agent uses a cost function
to determine which neighbors receive queries. In this
new version of the network abstractions protocol, any
neighbor whose path cost is within the bound is added
to a list of the reference agent’s children. The con-
text query is then constructed; the components of the
context query include a path cost function, the bound
on the cost, the initiator of the query, the sender of
the query, the cost of the path to the receiving agent,
and a unique context identifier. In addition, a piece
of code implementing a function for aggregating data
is included. The aggregation function merges several
data items into a single piece of data. An example
is an aggregation function that operates over several
data items, and returns the data element having the
maximum value.

As in the original network abstractions protocol, the
constructed context query is bundled with the data
query and sent to the appropriate neighbors. The agent
must wait until it receives a response from its children
before performing any other action. A neighbor receiv-
ing this new version of the context query stores the all
of the components of the query, including the aggrega-
tion function. As before, the path cost sent in the query
is used to determine if a path to the reference host can
be obtained through the sender that is shorter than the
path currently stored. If so, then the recipient names
the sender of the query as its parent. In addition, this
modified version of the network abstractions protocol
requires the recipient to be removed from the sender’s
stored list of children. The recipient must return a mes-
sage to the sender indicating that the neighbor should
not be included in the sender’s list of children, to keep
the parent-child relationship consistent among partic-
ipating parties. This prevents an agent from waiting
forever on a data response from a node it considers
a child, when the “child” has named another as its
parent. As in the original protocol, the process of dis-
seminating the context-query to non-parent neighbors
continues until the cost of the path to a neighbor lies
outside of the bound.

Agents on hosts that are included at the edge of the
context know that they are the last to receive the con-
text query because they evaluate the cost to the next
neighbor and elect not to disseminate the query fur-
ther. These agents are the first to evaluate the data
query by using the piece of code implementing an ag-
gregation function received in the context query. The
result is passed to the parent as a data query response.
Upon receiving responses from all children, a parent
applies the aggregate function to merge the data into
a single element. This aggregate value is passed to
the host’s parent, which also will eventually aggregate
responses received from its children. This process con-
tinues until the reference agent receives responses from
all of its children.

The modified network abstractions protocol for ag-
gregating data results presented above would be ex-
tremely useful in limiting the amount of data processed
by a developer implementing the context-sensitive pri-
ority queue’s getNext () operation. The developer sim-
ply chooses a “maximum” aggregation function from
a library of aggregation functions, and issues a data
query using the modified network abstractions proto-
col. The returned result is the data element in the
context having the maximum value. However, this so-
lution is not the best choice for applications that fre-
quently issue the getNext () operation, since a signifi-
cant amount of overhead is incurred by repeatedly ex-
ecuting the protocol.

Supporting Persistent Queries with Aggrega-
tion. To support persistent queries in the modified
version of network abstractions, we must store aggre-
gate values at each host in the context. As before, the
spanning tree must be maintained. In addition, the
aggregate values now stored at each node in the tree
must also be maintained. This maintenance occurs in
a highly dynamic setting in which changes in the net-
work topology and changes in the data values present
on each host can occur at any moment. In our approach
to maintaining the spanning tree and the aggregate val-
ues, we make certain assumptions. First, we assume
that hosts can detect weight changes on the links con-
necting them to other hosts. Second, we assume that
the data queries registered on a host are reactive and
actions are triggered when a change in the data value
stored at that host occurs. Third, we assume that only
one change in context occurs at a time.

We first consider how to manage aggregates in a situ-
ation where a node’s value changes. In such a case, the
persistent data query registered on the node on which
the value changed should trigger a response. The ap-
propriate response is to evaluate the aggregation code.
A simple aggregation function may perform reaggrega-



tion for its entire subtree each time the node’s value
is changed, always resulting in a notification to the
node’s parent. However, the aggregation code can be
more cleverly written to eliminate unnecessary reaggre-
gation and notification by comparing the newly gener-
ated value against the stored aggregate value. A node
receiving a notification of a value change treats the
notification as a response to a data query, and must al-
ways act upon it by invoking its own aggregation func-
tion.

In addition to value changes, we must consider the
effects of a link weight change on the spanning tree
and on the stored aggregates. First, we must con-
sider the case in which a link upon which a link weight
change was detected leads to the parent. If the weight
change caused the path cost to increase, then the agent
searches information about agents stored from previ-
ously received queries on the same context to see if a
shorter path to the initiating agent now exists through
another host. If a shorter path is found, then the agent
selects a new parent. The new parent must be noti-
fied of the existence of a new child. Also, the former
parent will be notified that a child has been removed.
The neighbors of the node receiving the weight change
notification will have to be notified of the change in
path cost. Second, we must consider weight changes
on links that lead to non-parent nodes. If the weight
change results in a shorter path using the changed link
through a non-parent node, the shortest path must
change. Again, the agent changes its parent and noti-
fies its former and new parents of the change. Neigh-
bors will have to be notified of the change in path cost.

A node that experiences a link weight change essen-
tially sends its new parent a data query reply. The
new parent reacts to the reply by applying its aggre-
gate function to the newly received data value. A stan-
dard aggregation function would likely request aggre-
gates from its other children. Because the children
store up-to-date aggregate values, they can immedi-
ately return those values. As intimated previously, a
more intelligent aggregate function could eliminate the
need for unnecessary requests for reaggregation of a
subtree. This can be implemented by comparing the
child’s data value to the aggregate stored. If the re-
sult of the comparison reveals that the child’s value
should be the new aggregate, then it is stored as the
host’s aggregate value and a new response is sent to
the host’s parent. When a host has a child removed,
its aggregation function is invoked. Aggregation must
be performed again in its subtree because the removal
of the child may have a caused a disconnection between
the host and the owner of its stored aggregate.

The modified network abstractions protocol for

managing persistent queries presented above is the best
choice so far for implementing the context-sensitive pri-
ority queue’s getNext () operation. Using the modified
protocol in conjunction with a “maximum” aggrega-
tion function, the protocol returns the single maximum
value. Because the aggregates and the spanning tree
are maintained, the value returned to the application
that calls the getNext () operation is guaranteed to al-
ways be the available maximum value in the network.

The network abstractions protocol supporting ag-
gregation can be used to support context-sensitive op-
erations that require querying a restricted subnet of
the ad hoc network for a single value. This leads us to
the next step, which is developing protocols that sup-
port other classes of operations. For instance, protocols
are needed to support iteration over a data structure’s
data elements. Variants of the iteration protocol may
be required to perform breadth-first search, depth-first
search, etc. over the data items in the context. In ad-
dition, protocols are required that support safe modi-
fication and removal of data in the context.

5. Discussion

In order for the infrastructure to be usable and com-
plete, the development of additional protocols must be
considered. At the lowest level, a library of aggrega-
tion support functions should be provided to be used
with the modified network abstractions protocol pre-
sented in this paper. The combination of such support
functions and the modified protocol support the devel-
opment of context-sensitive data structure operations
that require the return of a single element having a
particular property.

While the network abstractions protocol provides
the ability to define a number of useful contexts, it is
not possible to define all contexts that an application
desires. Consider, for instance, a city employee who
wants to monitor water meters distributed through-
out the city. The context for his application could be
defined as “all meters until a meter outside the city
limits is reached”. Another application might require
a context based on temporal properties. For instance,
an application that uses temperature data in the sur-
rounding area to adapt its operation may only want to
act upon data readings that are relatively fresh. To
our knowledge, no protocols exist to define these kinds
of contexts. We would like to develop protocols that
allow specification of these and other contexts and to
include them in our infrastructure.

As mentioned previously, another important issue to
consider is access control. To date, this work assumes
that every agent in the ad hoc network makes its data



available to all other agents. In reality, this is not the
case. Agents should have the ability to protect all or
part of their data, with different levels of protection.
Access control mechanisms should be included in the
infrastructure to ensure that only authorized agents are
allowed to access, manipulate, or even delete another
agent’s data items.

Finally, we must implement and evaluate this infras-
tructure. The infrastructure should be flexible, allow-
ing the context-sensitive data structure developer to
use only needed components. The CSDS programmer
should find the infrastructure components helpful and
not burdensome to use; thus, the components of the in-
frastructure should have minimal programming inter-
faces. The operations of context-sensitive data struc-
tures that are developed using the infrastructure should
perform in a reasonably efficient manner. Moreover,
the concept of context-sensitive data structures as a de-
sign methodology for context-aware application devel-
opment should be put to the test through the develop-
ment of several applications that use context-sensitive
data structures.

6. Conclusions

In this paper, we present a novel abstraction called
the context-sensitive data structure designed to sim-
plify the development of context-aware applications.
A context-sensitive data structure encapsulates data
items distributed among agents within a restricted por-
tion of the ad hoc network, and provides the program-
mer with access to the collection of data elements as if
they were local through a well-defined API. The con-
tent of the context-sensitive data structure is fluid; as
the context changes, the context-sensitive data struc-
ture is reorganized to reflect the change in the state
of the environment. To support the use of context-
sensitive data structures as a design methodology, we
propose an infrastructure that encapsulates protocols
for restricting the context, for accessing data elements
in the context, and for modifying data elements in the
context. We envision this infrastructure as providing
the context-sensitive data structure developer with a
set of essential tools that can be used to develop a
range of context-sensitive data structures.

Acknowledgements

This research was supported in part by the Office of
Naval Research under ONR MURI research contract
N00014-02-1-0715. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References

[1] G. Abowd, C. Atkeson, J. Hong, S. Long,
R. Kooper, and M. Pinkerton. Cyberguide: A mo-
bile context-aware tour guide. ACM Wireless Net-
works, 3:421-433, 1997.

[2] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and de-
ploying a context-aware tourist guide: The GUIDE
project. In Proceedings of MobiCom, pages 20-31.
ACM Press, 2000.

[3] Q. Huang G.-C. Roman, C. Julien. Network ab-
stractions for context-aware mobile computing. In

Proceedings of 24th International Conference on
Software Engineering, pages 363-373, 2002.

[4] A. Harter and A. Hopper. A distributed loca-
tion system for the active office. ITEFE Networks,
8(1):62-70, 1994.

[5] J. Hong and J. Landay. An infrastructure approach
to context-aware computing. Human Computer In-
teraction, 16, 2001.

[6] A.L. Murphy, G.P. Picco, and G.-C. Roman. LIME:
A middleware for physical and logical mobility. In
Proceedings of the 21st International Conference on
Distributed Systems, pages 524-533. IEEE Com-
puter Society Press, April 2001.

[7] N. Ryan, J. Pascoe, and D. Morse. FieldNote: A
handheld information system for the field. In 15 In-
ternational Workshop on TeloGeoProcessing, pages
156-163, 1999.

[8] D. Salber, A. Dey, and G. Abowd. The Con-
text Toolkit: Aiding the development of context-
enabled applications. In Proc. of CHI'99, pages
434-441, 1999.

[9] R. Want et al. An overview of the PARCTab
ubiquitous computing environment. IEEE Personal
Communications, 2(6):28-33, 1995.



