
FOCLASA 2003 Preliminary Version

Reasoning About Context-Awareness in the
Presence of Mobility

Christine Julien, Jamie Payton, and Gruia-Catalin Roman 1

Mobile Computing Laboratory
Department of Computer Science and Engineering

Washington University
Saint Louis, MO, USA

Abstract

Context-awareness is emerging as an important computing paradigm designed to
address the special needs of applications that must accommodate or exploit the
highly dynamic environments that occur in the presence of physical or logical mo-
bility. A number of formal models are available for reasoning about concurrency.
Models designed to capture the specifics of mobility are fewer but still well repre-
sented (e.g., Mobile Ambients, π-Calculus, and Mobile UNITY). These models do
not, however, provide constructs necessary for explicit modeling of context-aware
interactions. This paper builds upon earlier efforts on state-based formal reasoning
about mobility and explores the process by which a model such as Mobile UNITY
can be transformed to explicitly capture context-awareness. Starting with an ex-
amination of the essential features of context-aware systems, this paper explores a
range of constructs designed to facilitate a highly decoupled style of programming
among context-aware components. The result of this exploration is a model called
Context UNITY.

1 Introduction

Formal models aid in understanding the essence of the programming task,
e.g., by allowing one to specify and verify a program’s behavior. The first for-
mal programming models focused on sequential programming. Floyd [10], for
example, characterized program invariants for use in verification. The Hoare
triple [12] allows reasoning about program correctness through the use of pre-
and post-conditions. As focus shifted towards concurrent programming, new
models for this unique environment emerged. For example, CSP [13] and
CCS [17] approach concurrent systems from an algebraic perspective. They
use processes and synchronous communication to model the interactions be-
tween a system and its environment. The UNITY model [5] emphasizes both

1 Email: {julien, payton, roman}@cse.wustl.edu
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

specification and verification of concurrent programs through reasoning about
transformations in the program’s state. Most recently, concurrent program-
ming models have been adapted to account for the added complexities of
environments entailing physical and/or logical mobility. The π-calculus [18]
builds on CCS as a process algebra for communicating systems that allows ex-
pression of reconfigurable mobile processes. Mobile Ambients [4] models the
movement of processes between administrative domains. Mobile UNITY [23]
extends UNITY with the ability to capture location and movement across log-
ical spaces and facilitates assertional-style reasoning about mobile programs.
(Because Mobile UNITY is the foundation of this work, we discuss it in more
detail in Section 3.)

As new programming paradigms emerge, it is not always necessary to in-
vent new notations and models. Prior work on models for similar environments
can be reused in one of two ways: by reducing the new paradigm to an al-
ready existing model or by specializing an existing model to the new paradigm.
For example, mobile computing shares many characteristics of concurrent pro-
gramming. In fact, the mobile computing paradigm itself is an extension of the
concurrent programming paradigm. For this reason, adaptation of concurrent
programming models to the mobile computing environment proved successful,
e.g., π-calculus extended CCS and Mobile UNITY specialized UNITY. Such
specializations were useful in providing needed constructs, while continuity
with established models allowed reuse of prior intellectual advances in the
analysis and evaluation of systems.

Context-aware computing, in which mobile programs adapt their behav-
ior to changes in their environment is an important emerging computing
paradigm. Directly reusing formal models for mobility prevents easy speci-
fication of context-based interactions because the primitives are tailored to
mobile interactions. However, because context-aware applications often oper-
ate in a mobile environment, adapting such a mobility model to account for
context-aware interactions allows us to reuse the mobility constructs and por-
tions of the proof logic. Our approach specializes Mobile UNITY to provide
constructs that allow reasoning about the manipulation of and interaction
with the context. The resulting model, Context UNITY, inherits many of the
features of Mobile UNITY, including its notation and proof logic.

Section 2 reviews a mobile program’s notion of context, common to many
current systems and applications. Section 3 briefly reviews the Mobile UNITY
model. Section 4 overviews the concepts fundamental to Context UNITY,
and presents its formalization via a simple context-aware system. Finally,
discussions appear in Section 5 and conclusions in Section 6.

2 Context-Aware Computing

Mobile computing applications require the ability for connected hosts to ex-
change data via wireless connections. The physically mobile hosts form a
networks whose topology constantly changes. This highly dynamic physical
structure supports an even more fluid logical structure composed of applica-
tion level components that possess the ability to move among mobile hosts.
Due to the constantly changing environment, applications often exhibit a be-

2

havior that is opportunistic, highly adaptive, and very much dependent on
the availability of resources which may also be transient in nature.

A number of researchers have advocated context-aware computing, or the
ability of applications to detect changes in their environment and to adapt
their behavior in response to these changes [26]. Initial work in this area
focused on location-awareness and allowed programs to adapt their behavior
in response to physical movement [11,27]. More recently, however, context-
aware applications and systems have begun including more varied facets of the
environment as part of the context. Most notably, the Context Toolkit [25]
allows the definition of context-widgets that can sense arbitrary factors in the
environment. In fact, as [20] proposes, what we initially viewed as data con-
tents may also be part of the user’s context, a notion evident in the EgoSpaces
system [14]. Many systems exist for collecting and disseminating context infor-
mation. Some applications have these facilities built in [1,3,6,9,22,24], while
other work focuses on building middleware support systems that distribute
context information through publish-subscribe constructs [7] or by focusing
on coordination through state-based interactions [14,19].

Our view of context focuses on providing applications with flexible mech-
anisms for defining individualized contexts that are transparently maintained
as the environment changes. This view of the context encompasses the def-
initions used by current applications and systems. To review, the context is
defined by any information available on connected devices (both traditional
context information and arbitrary data). One of the most important aspects
of our context definition stems from the observation that individual applica-
tions demand different things from their environment. For this reason, we
define context from the perspective of a single component, taking an egocen-
tric view of the world. The key ramification of this decision is that not every
component “sees” the same context. Because the target environment contains
many connected mobile hosts, we extend the boundaries of this context to
contain not only information sensed by the local host but also information on
any connected host.

While the availability of systems and applications for context-aware com-
puting has rapidly increased, no formal model for their behavior has emerged.
The time has come to explore context-awareness from a formal perspective.
The notation and proof logic of the resulting model should facilitate reason-
ing about context-aware programs formally, yet the model should be similar
enough to actual programming languages to transition easily to an implemen-
tation. In the next section we review the Mobile UNITY model on which we
base Context UNITY.

3 A Review of Mobile UNITY

This section provides a gentle introduction to Mobile UNITY through the
examination of a concrete example. A significant body of published work
is available to the reader interested in a more detailed explanation of the
model [23] and its applications to the specification and verification of Mobile
IP [16], and to the modeling and verification of mobile code [21].

Mobile UNITY is based on the UNITY model of Chandy and Misra [5],

3

System BaggageTransfer
program Cart(k) at λ

declare
x : integer

initially
x = 0

assign
go right :: λ := λ + 1

[] go left :: λ := λ− 1
[] inhibit go right when x = 0
[] inhibit go left when x 6= 0
[] λ := 0 reacts-to λ < 0
[] λ := N reacts-to λ > N

end

program Loader(i) at λ
declare

y : integer
initially

y = 0
assign

load :: y := y ′.(y′ > 0) 1 if y = 0
end

program Unloader(j) at λ
declare

z : integer
initially

z = 0
assign

unload :: z := 0 if z 6= 0
end

Components
Cart(1) [] Cart(2)

[] Loader(1) at 0 [] Unloader(1) at N

Interactions 2

Cart(k).x ,Loader(i).y := Loader(i).y , 0
when Cart(k).x = 0

∧ Loader(i).y 6= 0
∧Cart(k).λ = 0

[] Cart(k).x ,Unloader(j).z := 0,Cart(k).x
when Cart(k).x 6= 0

∧ Unloader(j).z = 0
∧Cart(k).λ = N

end BaggageTransfer

Fig. 1. An example Mobile UNITY system

Loader
Cart

Unloader

Fig. 2. A System composed of a cart, a loader, and an unloader

with extensions to both the notation and proof logic. Figure 1 shows a Mobile
UNITY system called BaggageTransfer. A schematic of a system of this type
is shown in Figure 2. In this system, three programs are defined that combine
and interact to form a system in which carts carry loads between a loader and
an unloader on a one-dimensional track, where the loader is at the left of the
track, and the unloader is at the right.

Cart(k) defines a program in which baggage carts move along a track. As
in UNITY, the key elements of program specification are variables and assign-
ments. Programs are sets of conditional assignment statements, separated by

1 The non-deterministic assignment statement [2] x := x′.Q assigns to x a value x′ nonde-
terministically selected from among the values satisfying the predicate Q.
2 Though its semantics are identical to those of the if keyword, the when keyword is used
for emphasis in the Interactions section of Mobile UNITY systems.

4

the symbol []. Each statement is executed atomically and is selected for exe-
cution in a weakly fair manner—in an infinite computation, each statement is
scheduled for execution infinitely often. The guards of any normal statements
(as opposed to reactive and inhibits statements) can be strengthened without
modifying the statement through the use of inhibit statements. A construct
unique to Mobile UNITY is the reactive statement which can be triggered
by a precondition. Operationally, one can think of each assignment as being
extended with the execution of all defined reactions up to such a point that no
further state changes are possible by executing reactions alone. More formally,
the set of all reactive statements forms a program < that is executed to fixed
point after each atomic state change. Clearly, < must be a terminating pro-
gram. Both inhibit and reactive statements will be explained in more detail
via the example system.

Cart(k) defines the variable x type integer in the declare section; x rep-
resents the size of the cart’s load. Every Mobile UNITY program also has a
location, represented by the distinguished variable λ; this variable is outside
the Mobile UNITY model. The initially section states that the cart is empty
at the start of execution. Note that λ is not explicitly initialized; it can take
on any integer value at the beginning of program execution. Further, although
this example uses a simple, one-dimensional notion of space, the model does
not restrict a system’s definition of space. The assign section of Cart(k) illus-
trates the use of several Mobile UNITY constructs. The statements go right
and go left simply update the cart’s location on the track. The first inihibit
statment prevents the execution of the go right statement when the cart is
empty. Similarly, the other inhibit statement prevents the cart from moving
left when it is not empty. The remaining two statements are reactive state-
ments. The first is enabled when the cart is at a position less than 0. If after
the execution of a normal statement in the program, this statement becomes
enabled, the cart’s position is updated to a legal position (position 0) on the
track. Similarly, the second reactive statement, when enabled, will force the
cart to a legal position on the track, position N .

The remaining two programs in the system, Loader(i) and Unloader(j) are
simple programs that each contain one assignment statement. In Loader(i), a
value is prepared to be loaded onto a cart; in Unloader(j), a value is removed
from the system. The operation of these two programs is more interesting
when we consider how these three programs interact. The Components
section of a Mobile UNITY system defines the programs that make up the
system and their initial locations. In this example, the system contains two
carts (indexed as Cart(1) and Cart(2)), one loader, and one unloader. The
loader and unloader have specified initial locations, while the carts initial
positions are unrestricted.

The Interactions section allows the carts, loader, and unloader program
instantiations to work together to transport baggage. The first statement is
an asynchronous value transfer conditional on the location of the cart and the
status of the loader. Since all free variables are assumed to be universally
quantified, the statement describes the relationship between a typical loader
and a typical cart, so the statement applies to both carts. The load stored
in Loader(i).y is transferred to the cart and stored in Cart(k).x. This enables
the cart to start its movement toward the unloader. Similarly, the arrival of

5

a cart at the right side of the track enables the load to be transferred from
Cart(k).x to Unloader(j).z, later to be discarded as apparent in the code of
the unloader. The transfers between the cart and the loader or unloader are
guaranteed to happen due to the inhibit statements that prevent movement
of the cart.

As shown in [15], many different coordination constructs can be built out of
the basic constructs presented so far. Among them, one of particular interest
is transient and transitive variable sharing, denoted by ≈. For instance, the
code below describes an interaction between a cart and an inspector where
the cart and the inspector share variables y and w as if they denoted the same
variable, when co-located.

Cart(k).y ≈ Inspector(q).w when Cart(k).λ = Inspector(q).λ
engage Cart(k).y
disengage Cart(k).y, 0

At the point when the cart and inspector become co-located, the shared vari-
able is given the value of the cart’s y variable as specified by the engage
clause. When the cart and inspector are no longer co-located, the cart’s y
variable retains the value of the shared variable and the inspector’s w variable
is set to 0, as stated in the disengage clause.

In addition to the constructs described above, Mobile UNITY also provides
a transaction (not present in UNITY) for use in the assign section. Transac-
tions capture a form of sequential execution whose net effect is a large-grained
atomic state change (in the absence of reactive statements). A transaction
consists of a sequence of assignment statements which must be scheduled in
the specified order with no other statements interleaved. The notation for
transactions is:

label :: 〈s1; s2; . . . ; sn〉

The reactive statements described above can interleave with the statements in
a transaction. The inhibit construct can also be used to guard the execution
of transactions.

Mobile UNITY’s proof logic differs from UNITY’s only in the proof of
Hoare triples. This difference results from the introduction of inhibit and
reactive statements. For instance, in UNITY a property such as:

{p}s{q}where s in P

refers to a standard conditional multiple assignment statement s exactly as
it appears in the text of the program P . By contrast, in a Mobile UNITY
program one needs to use:

{p}s∗{q}where s ∈ ℵ,

where ℵ denotes the normal statements of P while s∗ denotes a normal state-
ment s modified to reflect the guard strengthening caused by inhibit state-
ments and the extended behavior resulting from the execution of the reactive
statements in the reactive program < consisting of all reactive statements in
P . The following inference rule captures the proof obligations associated with

6

verifying a Hoare triple in Mobile UNITY under the assumption that s is not
a transaction:

p ∧ ι(s) ⇒ q, {p ∧ ¬ι(s)}s{H},H 7→ (FP (<) ∧ q) in <
{p}s∗{q}

For each non-reactive statement s, ι(s) is defined to be the disjunction of all
when predicates of inhibit clauses that name statement s. Thus, the first
part of the hypothesis states that if s is inhibited in a state satisfying p, then
q must be true of that state also. {p ∧ ¬ι(s)}s{H} (from the hypothesis) is
taken to be a standard Hoare triple for the non-augmented statement s. H is
a predicate that holds after execution of s in a state where s is not inhibited.
It is required that H leads to fixed-point and q in the reactive program <.
Verifying the Hoare triple for a transaction requires another inference rule [23]
which is omitted here for brevity.

4 Formalization

As indicated previously, the goal of this work is to adapt a formal model of
mobility to the context-aware environment to allow reasoning about programs
that adapt their behavior to their changing context. Given that we are adapt-
ing Mobile UNITY to the context-aware environment, the tools at our disposal
include Mobile UNITY programs (units of modularity), variable and variable
assignment, and the ability to specify interactions between programs. In this
section, we introduce the details of the notation for expressing context-aware
systems in Context UNITY through the use of a detailed example. After the
discussion of the basic program and notation, we discuss the power of the non-
deterministic assignment statement in defining contexts through an extension
of the example program. We then present options for defining relationships
between a program and its context. Finally, we discuss how a Context UNITY
program can be reduced to Mobile UNITY.

4.1 A Simple Context UNITY Example

A sample Context UNITY system is given in Figure 3. The Cart program text
specifies a modification of the original cart program such that the cart adapts
its movement according to its context. The cart senses whether it should
be loaded or unloaded, and, in response, travels in the direction of a loader
or unloader. Unlike the previous example, the cart does not need to know in
advance the locations of loaders and unloaders, or even the directions in which
they are located. To keep the example simple and focused on the incorporation
of context, this program allows only a single cart, loader, and unloader. We
discuss a more complex program later that allows multiple instantiations of
each program. The most novel portion of the system is the Cart program’s
definition of its context. In this discussion, we talk mostly from the cart’s
perspective, i.e., the cart is our reference program. The other two programs in
our system, the Loader and Unloader, are passive entities and use only local
information.

7

System BaggageTransfer
program Cart at λ

declare
x, d, l, u : integer,
[l̄, ū : integer]

always changed(l) = [(l 6= l̄)] [] changed(u) = [(u 6= ū)]
initially x = 0 [] [x̄ = 0]
assign

inc :: λ := λ + 1
[] dec :: λ := λ− 1
[] inhibit inc when d ≤ λ
[] inhibit dec when d ≥ λ
[] load :: x , l , := l , 0 if l 6=⊥

‖[l̄ := l if l 6=⊥]
[] unload :: x , u, := 0, x , if u 6=⊥

‖[ū := u if u 6=⊥]
context

define
d := Loader .λ when x = 0 ∧Loader.y 6= 0

∼ Unloader .λ when x 6= 0 ∧Unloader.z = 0
[] l := Loader.y when Loader .λ = d ∧Loader.y 6= 0 ∧d = λ ∧ x = 0
[] u := Unloader.z when Unloader .λ = d ∧Unloader.z = 0 ∧d = λ ∧ x 6= 0

resolve
Loader.y := l reacts-to changed(l) ∧ l = 0
‖[̄l := l reacts-to changed(l) ∧l = 0]

[] Unloader.z := u reacts-to changed(u) ∧ u 6= 0
‖[ū := u reacts-to changed(u) ∧ u 6= 0]

end

program Loader at λ

declare y : integer

initially y = 0
assign load :: y := y ′.(y′ > 0) if y = 0

end

program Unloader at λ

declare z : integer

initially z = 0
assign unload :: z := 0 if z 6= 0

end

Components
Cart []Loader [] Unloader

end BaggageTransfer

Fig. 3. An example Context UNITY system

8

The Cart program defines variables x, d, l, and u in the declare section.
As in the Mobile UNITY system presented in Section 3, x is a variable rep-
resenting the cart’s current load. We refer to x as a local variable because
there is no usage of the variable outside of the cart program. The remaining
variables d, l, and u are called context variables in Context UNITY because
they directly model, access, and modify context in a program. In the cart
program, d is used to represent the cart’s destination. l is a context variable
representing the load available at the Loader, and u represents the availability
of space for the cart’s cargo at the Unloader.

The Cart program defines two additional variables, l̄ and ū, which we
refer to as shadow variables. In the system shown in Figure 3, the program
explicitly ensures that l̄ always contains the last known value of l in order
to trigger statements that wish to respond to a change in l. The same is
true of the shadow variable ū. These shadow variables are included in this
example program for clarity, but Context UNITY assumes these variables to
be standard, and the programmer need not deal with them unless an explicit
change is desired (as seen in the resolve section). We highlight the use of
shadow variables in the program with square brackets, e.g., [(l 6= l̄)].

The initially section of the cart program can be used to give initial values
to variables at the start of execution. The cart’s initially section is used to
state that the cart is empty at the start of execution. The assign and context
sections highlight the use of context in Context UNITY.

Local and context variables are used in the assign section to achieve the
program’s objective. The statements inc and dec update the location of the
cart through simple assignment to the distinguished variable λ. Two inhibit
statements are used to prevent unwanted cart movement. As explained pre-
viously in Section 3, these inhibit statements strengthen the guards on the
go right and go left statements, preventing their execution under certain con-
ditions. The first inhibit statement prevents the cart from moving to the right
when the cart is already at its destination d, or when the destination is to the
left. The second prevents the cart from moving left when either the cart is at
its destination or should move right to reach its destination. The value of the
destination d is determined by the context. We will discuss its value in more
detail shortly. When the load statement is executed, the load l is taken from
the loader and placed into the cart through assignment to x. At the same
time, the cart requires a mechanism to indicate to the loader that it has taken
the load. The Cart program accomplishes this through a combination of a
local assignment to l, followed by an assignment of the value l to the loader’s
exposed variable Loader.y. The former is part of the program code while the
latter is expressed as part of the context manipulation. We refer to this update
of context in response to change in the program state as a projects relationship
capturing the notion that a local manipulation of the context results in the
new value being projected onto the system configuration. This projection is
defined by a rule in the context section, discussed below. Finally, in conjuc-
tion with the movement of the load, the Cart program explicitly updates the
shadow variable l̄, which will ultimately trigger the aforemention projection
back to the loader. The unload statement works in a similar fashion. Both the
load and unload statements utilize the program’s abstraction of context in two
ways. First, the statements use the reflection of context in the variables l and

9

u to determine if the cart should be loaded or unloaded, and to transfer the
load into the cart or onto the unloader. The reflection of context in the current
value of the context variables is captured by a reflects relationship, which is
specified here as an assignment to context variables in the context section
of the program. Second, the load and unload statements project changes onto
the global context through assignment to the context variables l and u. As
mentioned before, the projects relationship is also specified in the context
section of the program.

The context of a program is defined in the context section. In general, a
program’s context could contain any information available in the entire net-
work. In the Mobile UNITY terms of programs and variables, this global state
of the system includes all variables defined by all programs in the system. In
truth, however, programs want to keep some of their data private. Therefore,
we introduce the term exposed variables to refer to the variables in a program
that are used by others’ contexts. The maximal context of a program in the
system is the union of all of the exposed variables across all programs; we refer
to this as the system configuration. In the actual program definition, exposed
variables appear the same as any other variable; the term simply provides the
necessary language for discussing context definitions.

The manner in which the system configuration is reflected by the context
variables is specified in the define section of the context description. To put
it simply, the variables used in the program to capture its context are defined
based on the current system configuration. As the configuration changes, the
values of the context variables also change to reflect the current environment.
In the cart program, the reflection of context is defined by context variables
d, l, and u. The destination d of the cart is defined as the location of the
loader when the cart should be loaded, i.e., when the cart is empty (x = 0)
and the loader has a load available (Loader.y 6= 0). When the cart needs to
be unloaded and the unloader has space available, the destination d is defined
to be the location of the unloader.

The more complex reflection relationship for the context variable l is given
as follows:

l := Loader.y when Loader .λ = d ∧Loader.y 6= 0 ∧d = λ ∧ x = 0

The use of the when clause ensures that when this statement is selected for
execution, the load l will be assigned only if the four listed conditions hold.
The first condition states that the loader’s location, Loader.λ, is the same
as the destination d. The second states that the loader has a load to give
the cart, i.e., Loader.y 6= 0. The third condition says that the cart is empty
(x = 0). The last condition, d = λ, states that the cart is at the destination
specified by the context variable d. When all of these conditions hold, the
empty cart is located at the chosen non-empty loader, and the cart will be
given the load (l := Loader.y). The reflection relationship for the context
variable u is specified in a similar fashion: u indicates a space to place a load,
and it is defined only when the non-empty cart is present at the chosen empty
unloader.

A program’s impact on its environment through assignment to context
variables is specified by the resolve section of context. Each time the cart’s
load, x, is updated to contain a new value, a change is also made to a context

10

variable (either l or u). This condition is captured in the cart’s resolve
section through the use of a function, changed. The first statement in the
resolve section projects the effect of loading the cart on the context:

Loader.y := l when changed(l) ∧ l = 0
‖[̄l := l reacts-to changed(l) ∧l = 0]

This definition of the program’s impact on the context is a reactive state-
ment and is evaluated immediately after the execution of any statement. Such
a reactive definition for projecting context ensures that the loader knows that
its load has been picked up as soon as it happens. With this defintiion, every
time a statement in the cart program is executed, resulting in a state in which
the cart is not empty and the cart’s load l has changed, the value of the cart’s
context variable l is projected into the loader’s variable Loader.y (representing
the available load at the loader) through simple variable assignment. Since
the cart sets l to be zero in the assign section when it changes its local load x
to be a non-zero value, the value projected to Loader.y will be zero. A similar
feedback of context occurs for the unloader: when the cart drops off a load in
the assign section, the context variable u is set to be the value of the load x.

4.2 The Mechanics of Context Definition

The example program used above to present Context UNITY’s basic nota-
tion uses a relatively simple definition of context in a program where the
entire state of the system is always known. The power of Context UNITY
can only be fully realized when one examines the complex contexts that can
be expressed using the model. Next we discuss the use of non-deterministic
assignment statements for use in providing more specialized context reflection
and projection. We then add the notion of quantification to extend the power
of Context UNITY’s context definitions.

Non-Deterministic Assignment. In Context UNITY, the use of non-
deterministic assignment statements proves essential to providing flexible con-
text definitions. This was not apparent in the simple example presented pre-
viously because the system itself was deterministic. If the cart were placed in
an environment about which it had no information, however, it should be able
to make use of knowledge of its task to discover needed information about its
context. By using a non-deterministic assignment statement to define its con-
text, a program can select values for its context variables from a set of values
satisfying some provided conditions. For example, in our program, if the cart
is empty, it needs to find any loader who has a load y 6= 0. If such a program
is found, the cart should start moving toward the loader’s destination. This
allows the system to contain multiple loaders, indexed by integers as in the
original Mobile UNITY program (e.g., Loader(i) refers to the ith loader). The
context section for this modified cart program is shown in Figure 4. The
notation !Loader(i) is used to indicate that the ith program named Loader
exists. In the context definition, the cart now defines its destination d using
a non-deterministic assignment statement that chooses a loader or unloader
based on properties that the respective component must meet. For example,
in the first case, the cart is empty (x = 0), and it is looking for a loader with
a load to offer (Loader(i).y 6= 0). Any loader meeting such a specification will

11

context
define

d := d′.(∃j, y :!Loader(j) ∧ Loader(j).y 6= 0
:: d′ = Loader(j).λ) when x = 0

∼ d′.(∃j, z :!Unloader(j) ∧Unloader(j).z = 0
:: d′ = Unloader(j).λ) when x 6= 0

[] l , i := (l ′, i ′).(∃j, y :!Loader(j) ∧ Loader(j).λ = d ∧ Loader(j).y 6= 0
:: l ′, i ′ = Loader(j).y, j) when ∧d = λ ∧ x = 0

[] u, i := (u ′, i ′).(∃j, z :!Unloader(j) ∧Unloader(j).λ = d ∧Unloader(j).z 6= 0
:: u ′, i ′ = Unloader(j).z, j) when ∧d = λ ∧ x 6= 0

resolve
Loader(i).y := l reacts-to changed(l) ∧ l00
‖[̄l := l reacts-to changed(l) ∧l = 0]

[] Unloader(i).z := u reacts-to changed(u) ∧ u 6= 0
‖[ū := u reacts-to changed(u) ∧ u 6= 0]

Fig. 4. A Non-Deterministic Context Definition

suffice. If any loaders satisfy the list of conditions, one’s location is chosen
non-deterministically as the destination, which is stored in d. An unloader is
chosen in a similar fashion.

Once at the destination, the context variable l or u is also updated appro-
priately. In the case of the loading action, a key addition is the use of a new
context variable, i, which is used to remember exactly which loader the cart
took a load from. This information is used in a deterministic fashion by the
resolve section to update the appropriate loader. In choosing the load to load
into the cart, the context definition non-deterministically chooses a loader at
the destination location (it is possible that multiple loaders are at the same
location) that has a load. The load at the chosen loader and the identity
of the loader are stored in the context variables l and i. Again, the context
definition for u is similar to that for l. The only change in the resolve section
ensures that the loader the cart took a load from is the same one to which the
change projects back.

Non-deterministic assignment statements can also be used in the resolve
section of the context to project changes onto non-deterministically selected
variables. While not immediately useful in the context of our example pro-
gram, we can imagine the case when multiple unloaders are at the same loca-
tion. The context variable u might actually reflect a particular unloader, but
in the projection phase, the cart only has to be sure that it unloads onto an
unloader at the location d with no current load. An example resolution rule
for an unloader might be:

〈‖j : j = j′.(!Unloader(j) ∧Unloader(j).λ = d ∧Unloader(j).z = 0)
:: Unloader(j).z := u〉

This non-deterministically selects a single unloader that satisfies the condition
and sets its variable z to be the load unloaded.

Quantification. The key to the use of non-deterministic assignment state-
ments in the definition of a program’s context is their ability to widen the

12

definition capabilities. For example, not only can a cart program choose any
component from a set of loaders or unloaders, it can choose the closest com-
ponent or the loader with the largest load to offer. In both these cases, only
the definition of the context variable d changes, while the remainder of the
context section remains the same. This also demonstrates the modularity
of the context variable definitions. The redefinition of d for moving to the
closest loader or unloader is shown in Figure 5. We use the symbol D to refer
to a distance formula, i.e., D(λ1) = |λ1 − Cart.λ|. From these examples, we

d := d′.(∃j, y :!Loader(j) ∧ j = 〈min k : Loader(k).y 6= 0 :: D(Loader(k).λ)〉
:: d′ = Loader(j).λ) when x = 0

∼ d′.(∃j, z :!Unloader(j) ∧ j = 〈min k : Unloader(k).z = 0 :: D(Unloader(k).λ)〉
:: d′ = Unloader(j).λ) when x 6= 0

Fig. 5. Finding the Closest Loader and Unloader

can see that using non-deterministic assignment statements to define context
variables allows the program to define more flexible and expressive contexts
in which to operate.

4.3 Context Consistency

Context UNITY not only provides the ability to give flexible and expressive
specifications of context, but also provides the ability to specify the level of
consistency between the system configuration and the program’s abstraction of
context. A relationship between a program’s context variable and the available
global context can be defined as being eager or lazy. As the names suggest, an
eager relationship enforces a high level of consistency between programs and
the context while a lazy relationship has weaker semantics.

To fully explain the semantics of eager and lazy relationships, it is worth
noting how the type of relationship is specified and realized. Eager relation-
ships are specified using reactive statements. Reactive statements are evalu-
ated each time any statement in the program is selected and executed. When
reactive statements are used in a context definition or resolution statement,
the result is a strong level of consistency between the program context vari-
able and the system configuration. Conditional assignment statements with
a when clause are used to specify lazy relationships. These statements are
selected non-deterministically. If the statement is selected and the conditions
exerted by the when clause are met, then the statement is executed. This
results in a weak level of consistency, since the conditional assignment is se-
lected at arbitrary points in the execution but infinitely often. Thus, by using
a lazy statement in the context resolve section, it is possible that not every
change in the program state will be projected onto the system configuration.
Likewise, not every change to the system configuration will be reflected in the
context variable values with the use of a lazy assignment statement in the
context define section.

13

4.4 Context UNITY and Mobile UNITY

Notably missing from our Context UNITY program was Mobile UNITY’s
Interactions section. In Context UNITY, most of the interactions among
programs are defined via the newly introduced context section. This is due to
one of the key aspects of context-aware computing: the desire for the definition
of asymmetric contexts that present context based on the program’s unique
perspective of the environment. The Interactions section may still be present
in a Context UNITY program, but its use in such cases is outside the scope
of this paper.

All of the constructs in Context UNITY presented in this paper can be
reproduced in Mobile UNITY through the use of the Interactions section.
Essentially, the context definitions and resolution statements of all programs
in the system can be slightly modified and included in the Mobile UNITY
Interactions section, thereby accomplishing the same task as the Context
UNITY system. Because Context UNITY reduces directly to Mobile UNITY,
we can reuse Mobile UNITY’s proof logic entirely. Context UNITY, however,
brings a notation tailored to context-aware computing, and the representation
it offers lends itself more naturally to the representation of a system whose
purpose is to present context information to a single program operating in an
environment composed of many heterogeneous, dynamic programs.

5 Discussion

The model discussed in the previous section highlights the basic concepts nec-
essary to formalize context-aware computing. In the area of context-aware
systems, this model can be used to describe many components already real-
ized in applications and systems. For example, the context variables can be
structured in such a way that they represent a fluid data structure defined by
the data available in some portion of the system. Several mobile computing
systems [8,14,19] view the data available in the system using such data struc-
tures. The distinction between private and exposed variables can even allow
reasoning about context-aware programs that require secure communication.

Context UNITY as presented in this paper represents the introduction
of a new model for context-aware computing in a mobile environment. The
notation used to express context definitions and resolutions in our example
programs, while quite expressive, may at times appear complex and difficult
to read. Further refinements to the Context UNITY model will include con-
structs to simplify this notation; for example, the need to shadow variables to
be able to react to their changing state will be included in the model. The full
notation is shown in this paper to completely and clearly describe the steps
necessary to model context-awareness. Section 4 also defined a few consistency
semantics for reflecting context and projecting onto the context, specifically
eager and lazy transfer semantics. Exploring additional possible semantics for
these two relationships may provide programmers more flexibility and control
over the definition and use of their defined context.

As we incorporate these and other refinements into the model, we will
explore the inherited Mobile UNITY proof logic for correctness. We will con-
tinue to evaluate the reducibility of our additions to Mobile UNITY; some

14

changes may result in required modifications to the proof logic. An evaluation
of the proof logic, the expression of of further application scenarios in Context
UNITY programs, and the refinements discussed above will all feed back in
evaluating the completeness and expressiveness of our model.

6 Conclusion

This paper presents the basics of Context UNITY, a first step in building a for-
mal model for explicit reasoning about context-aware computing. To present
the model’s notation, we relied on a simple context-aware application exam-
ple that allowed exposition of the key notational differences between Context
UNITY and Mobile UNITY. The Context UNITY model introduces constructs
necessary to specifically formalize key aspects of context-awareness, including
the ability to interact with contexts defined by connected components and the
ability to define a personalized context, specialized to a particular program’s
unique perspective. An interesting observation is the fact that most of the
complexity is in the definition and manipulation of a program’s interaction
with the context. This is indeed in concert with our research goal, to sim-
plify the development of context-aware applications. This initial exploration
of the model highlights the need for context-aware specific constructs, and
the resulting expressive Context UNITY shows great promise in providing a
complete formal model for context-aware computing.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under
Grant No. CCR-9970939 and by the Office of Naval Research MURI Research
Contract No. N00014-02-1-0715. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the National Science Foundation or the Office
of Naval Research.

References

[1] Abowd, G., C. Atkeson, J. Hong, S. Long, R. Kooper and M. Pinkerton,
Cyberguide: A mobile context-aware tour guide, ACM Wireless Networks 3
(1997), pp. 421–433.

[2] Back, R. J. R. and K. Sere, Stepwise refinement of parallel algorithms, Science
of Computer Programming 13 (1990), pp. 133–180.

[3] Brown, P. J., The stick-e document: A framework for creating context-aware
applications, in: Proceedings of EP’96, 1996, pp. 259–272.

[4] Cardelli, L. and A. Gordon, Mobile ambients, Theoretical Computer Science,
Special Issue on Coordination 240 (2000), pp. 177–213.

[5] Chandy, K. M. and J. Misra, “Parallel Program Design: A Foundation,”
Addison-Wesley, NY, USA, 1988.

15

[6] Cheverst, K., N. Davies, K. Mitchell, A. Friday and C. Efstratiou, Experiences
of developing and deploying a context-aware tourist guide: The GUIDE project,
in: Proceedings of MobiCom (2000), pp. 20–31.

[7] Cugola, G., E. D. Nitto and A. Fuggetta, The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS, IEEE Transactions
on Software Engineering 27 (2001), pp. 827–850.

[8] Cugola, G. and G. P. Picco, PeerWare: Core middleware support for Peer to
Peer and mobile systems, Technical report, Politecnico di Milano (2001).

[9] Dey, A. K. and G. D. Abowd, Cybreminder: A context-aware system for
supporting reminders, in: Proceedings of the 2nd International Symposium on
Handheld and Ubiquitous Computing, 2000, pp. 172–186.

[10] Floyd, R. W., Assigning meaning to programs, in: Proceedings of the Symposium
on Applied Mathematics, 1967, pp. 19–37.

[11] Harter, A. and A. Hopper, A distributed location system for the active office,
IEEE Networks 8 (1994), pp. 62–70.

[12] Hoare, C. A. R., Axiomatic basis for computer programming, Communications
of the ACM 12 (1969), pp. 576–580.

[13] Hoare, C. A. R., “Communicating Sequential Processes,” Prentice-Hall
International, 1985.

[14] Julien, C. and G.-C. Roman, Egocentric context-aware programming in ad hoc
mobile environments, in: Proc. of the 10th Int’l. Symp. on the Foundations of
Software Engineering, 2002.

[15] McCann, P. J. and G.-C. Roman, Compositional programming abstractions
for mobile computing, IEEE Transactions on Software Engineering 24 (1998),
pp. 97–110.

[16] McCann, P. J. and G.-C. Roman, Modeling Mobile IP in Mobile UNITY, ACM
Transactions on Software Engineering and Methodology 8 (1999), pp. 115–146.

[17] Milner, R., “Calculus of Communicating Systems,” LNCS 92, Springer-Verlag,
1980 .

[18] Milner, R., “Communicating and Mobile Systems: The Pi Calculus,” Cambidge
University Press, 1999.

[19] Murphy, A. L., G. P. Picco and G.-C. Roman, Lime: A middleware for physical
and logical mobility, in: Proceedings of the 21st International Conference on
Distributed Computing Systems, 2001, pp. 524–533.

[20] Pascoe, J., N. Ryan and D. Morse, Issues in developing context-aware
computing, in: Proceedings of the First International Symposium on Handheld
and Ubiquitous Computing, LNCS 1707, 1999, pp. 208–221.

16

[21] Picco, G. P., G.-C. Roman and P. J. McCann, Reasoning about code mobility in
Mobile UNITY, ACM Transactions on Software Engineering and Methodology
(To appear).

[22] Rhodes, B., Margin notes: Building a contextually aware associative memory,
in: Proceedings of the International Conference on Intelligent User Interfaces,
2001.

[23] Roman, G.-C. and P. J. McCann, A notation and logic for mobile computing,
Formal Methods in System Design 20 (2002), pp. 47–68.

[24] Ryan, N., J. Pascoe and D. Morse, Fieldnote: A handhelod information
system for the field, in: Proceedings of the 1st International Workshop on
TeloGeoProcessing, 1999.

[25] Salber, D., A. Dey and G. Abowd, The Context Toolkit: Aiding the development
of context-enabled applications, in: Proceedings of CHI’99, 1999, pp. 434–441.

[26] Schilit, B., N. Adams and R. Want, Context-aware computing applications, in:
IEEE Workshop on Mobile Computing Systems and Applications, 1994.

[27] Want, R. et al., An overview of the PARCTab ubiquitous computing
environment, IEEE Personal Communications 2 (1995), pp. 28–33.

17

