
A Spatiotemporal Model for Ephemeral
Data in Pervasive Computing Networks

TR-ARiSE-2011-012

1Jonas Michel, 1Christine Julien, 2Jamie Payton, and 3Gruia-Catalin Roman

1University of Texas at Austin, 2University of North Carolina at Charlotte, 3University of New Mexico
Email: {jonasrmichel c.julien}@mail.utexas.edu, payton@uncc.edu, gcroman@unm.edu

© Copyright 2011
The University of Texas at Austin

A Spatiotemporal Model for Ephemeral Data
in Pervasive Computing Networks

1Jonas Michel, 1Christine Julien, 2Jamie Payton, and 3Gruia-Catalin Roman
1University of Texas at Austin, 2University of North Carolina at Charlotte, 3University of New Mexico

Email: {jonasrmichel c.julien}@mail.utexas.edu, payton@uncc.edu, gcroman@unm.edu

Abstract—Pervasive computing evokes a vision of digitally-
accessible environments with which applications and users in-
teract in localized ways. In this vision, information is ephemeral:
it is created, moved, stored, and deleted on-demand at rapid
rates. Without a formal data model that enables the data itself
to speak about its spatial and temporal bearings, it is difficult to
build support for accessing an information-rich digital world in
a general-purpose way. In this paper, we demonstrate the need
for an expressive data model of the inherently ephemeral data
in pervasive computing and propose the beginnings of such a
model that explicitly tags information with spatial and temporal
semantics. Our model is founded on spatiotemporal trajectories,
which capture the spatial and temporal semantics of data and
the phenomenon it represents. We further demonstrate both the
need for and potential impact of a general-purpose expressive
spatiotemporal data model using several use cases.

I. INTRODUCTION

Pervasive computing entails a future of digitally-accessible
environments, populated with digital resources and services,
with which applications and users interact directly. Such envi-
ronments are as dynamic as the real-world entities that occupy
them; time passes, devices and their users are constantly in
motion, social patterns evolve, data is moved, information
is shared and expires. Technologies like sensor networks,
RFID tags, smart objects [1], and smart phones capture real-
world phenomena and generate enormous amounts of real-time
sensory, contextual, and user data. This data is ephemeral: it
is created, stored, and deleted on-demand at a rapid rate.

A key challenge in pervasive computing is capturing and
managing information subject to the high levels of dynamics
present in reality. Much work has simplified how applica-
tions access data (e.g., through query abstractions and pub-
lish/subscribe mechanisms). However, all of these implicitly
assume the existence and availability of an information-rich
digital environment, supported by some coalescence of mobile
opportunistic and peer-to-peer networks. Even after years of
research on middleware, several questions remain, limiting
pervasive computing capabilities: Where does data come from?
How is it stored? How does it move? And how does it die?
Without a formal data model that enables the data itself to
speak about its spatial and temporal bearings, it is difficult

This material is based upon work supported by the National Science
Foundation under Grant No. 844850. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation (NSF).

to build support for populating, accessing, and interpreting an
information-rich digital world in a general purpose way.

Fully realizing the vision of pervasive computing requires a
general-purpose data model that (i) acts as the common glue
between resources and services; (ii) enables data to exploit
contextual dependencies; and (iii) reduces the responsibilities
of developers that create applications that produce or consume
data. Space and time and their inherent dynamics must be first-
class citizens of such a model. In this paper, we demonstrate
the need for a general-purpose data model capable of capturing
the ephemeral data in pervasive computing networks and put
forth a proposal for the foundation of such a model that ex-
plicitly tags information with spatial and temporal semantics.

Our data model is founded on spatiotemporal trajectories,
which enable applications to reason about relationships be-
tween spatiotemporal phenomena and the digital data that
represents those phenomena. Consider an example in which
a boat collects observations of oil in coastal waters. These
observations are represented as digital data carried by a device
on the boat. Each of these datums moves in physical space as
it is carried by the boat and is therefore subject to the boat’s
movement patterns; any one of these datums could also move
by being passed from one device to another. The physical
phenomenon of interest also often exhibits spatiotemporal
dynamics after its observation; in this example, the obser-
vations are of a physical phenomenon subject to dynamics
in both space and time as coastal currents cause the oil
to move and dissipate. A datum’s spatiotemporal trajectory
records these dynamics of the observation and the physi-
cal phenomenon of interest, allowing applications within the
pervasive computing network to create rules governing how
datums capturing the phenomenon should move, change, live,
and die. Spatiotemporal trajectories also provide a foundation
for applications to reason about the impact of spatiotemporal
dynamics on the use of a datum. In this paper, after expositing
necessary components of a spatiotemporal-aware data model
for pervasive computing, we further demonstrate both the need
for and potential impact of a such a general-purpose expressive
spatiotemporal data model through a set of use cases.

II. THE NEED

Much attention has been paid to capturing context, en-
abling resource discovery, delivering relevant information, and
handling dynamics in pervasive computing environments; far
less has been devoted to composing and organizing such

systems [2]. Ultimately, resources and services will need to
interoperate in real-world deployments. Applications may need
to seamlessly move tasks among environments [3], users may
wish to aggregate information across resources [4], a service
might need to collaborate with others [5], [6]. A common
glue, or language, is needed to facilitate interoperability,
enable composition, and maximize resource use in pervasive
computing networks. This underlying uniformity will be best
satisfied by embedding meta-data within the data already com-
municated among applications. A shared data model would
greatly simplify application development and support capture
of richer contexts, enabling new classes of applications.

Context-awareness is a major theme in pervasive computing.
From defining it to leveraging it, context determines the
modi operandi of most pervasive computing applications.
A common approach is to explicitly define an application-
specific notion of context; determining what data is “relevant”
rests solely with the application. This is sufficient when
data exists only instantaneously and is not shared among
applications. This is not the case in many pervasive computing
environments, which significantly increases the amount of data
available. A far better approach is to enable the data itself
to articulate the context in which it was acquired to provide
clues as to contexts in which it might be relevant. A data
model designed in this way would enable the data to exploit
its contextual dependencies, providing a separation of concerns
and greatly easing development burdens.

Traditional software models offer little support for the
challenges that arise due to the inherent dynamics of pervasive
computing environments [7], and developers are often forced
to address these facets at the application level. A general-
purpose model capable of independently exploiting contextual
dependencies that could be shared across services would enor-
mously simplify and facilitate pervasive computing application
development. Rather than impose a totalitarian framework or
middleware, we believe that these facilities are best addressed
by and within the data already used by applications.

User and application needs in pervasive computing are
driven by real-world phenomena; they are inevitably a product
of the environment of the users’ interactions [8]. This is
evident in the popularity of location-based services. A general-
purpose data model should promote the separation of concerns
called for in pervasive computing and emphasize attributes
present in all real-world phenomena, namely, space and time.

Every action and event that captures one’s existence has
both spatial and temporal attributes, not merely one or the
other [9], [10]. Users, devices, and data “move” through time.
As time passes, they may move through space. Space and time
may be treated independently, but are inseparable as correlated
attributes of real-world phenomena. This is intuitive; the
passage of time is naturally understood in terms of perceived
changes to objects in space [11]. We argue that space and time
are necessary (but not sufficient) to express context. Thus,
a general-purpose data model for pervasive computing must
account for the inherent spatiotemporal characteristics of real-
world phenomena. More to the point, space and time must be

first-class citizens of such a model.

III. BACKGROUND

Modeling spatiotemporal data, both in theory and in prac-
tice, is not new; spatiotemporal models have received prolific
attention in the database and Geographic Information System
(GIS) communities. Within pervasive computing, specifica-
tions pertaining to the creation, storage, and death of data are
either embedded in the application or neglected altogether; an
information-rich environment is typically presupposed.

The advent of Database Management Systems (DBMS)
and positioning and tracking technology (e.g., GPS) led to
a boon of conceptual and practical spatiotemporal modeling
and a plethora of spatiotemporal data models, databases, query
languages, and ranking and indexing techniques. A detailed
survey of this work is in [11]. Recent work has focused on con-
tinued development of spatiotemporal query languages [12],
on-line analytical processing [13], and extensions for mobile
devices [14]. While these approaches have produced new
standards in GIS and DBMS [15], they rely on central-
ized resources to catalog and intelligently index information.
Valuable lessons can be learned from these mechanisms, but
unprecedented challenges arise when an equivalent degree of
spatiotemporal analysis must be performed in a distributed
fashion on highly dynamic data with limited resources.

Pervasive computing is characterized by a desire to ex-
plicitly associate physical space with virtually accessible data
and resources. DataSpace [16] envisions a spatially-addressed
network in which physical space is modeled as a collection
of datacubes. Querying and monitoring objects is spatially
driven and constrained. In EnviroTrack [17], events in the envi-
ronment are addressable entities. Context-specific computation
and actuation (e.g., recording, signaling other devices, etc.) can
be “attached” to these event signatures regardless of where
they are in physical space. Similarly, CASAMAS [18] makes
cohesive cooperative groups called communities first-class
entities. Software agents within a community may remotely
interact when they are “sensitive” to the fields emitted by
other agents. Field intensity is modulated by space according
to a diffusion function, and each agent type is characterized
by a sensitivity function. In addition to spatial locality, other
approaches leverage logical [5], [19], temporal [20], [21], and
even social [22] locality to facilitate resource access. These
approaches are indeed driven by a common need for resource
access parameterized by a notion of locality, be it space, time,
or some combination. However, they each address that need by
embedding a model into the application itself. This is largely
the case in existing pervasive computing applications.

Discovery of embedded resources is paramount in pervasive
computing, and countless mechanisms facilitate efficient re-
source discovery in dynamic networks requiring decentralized
control (e.g., peer-to-peer (P2P) networks, mobile ad hoc net-
works (MANETs), etc.). Distributed hash tables [23] provide
distributed storage for structured spatiotemporal data in P2P
networks. Similarly, query-access mechanisms for spatiotem-
poral data in dynamic networks [4], [24], [25] maintain virtual

overlays to handle dynamics. Rule-based approaches [26]–
[28] enable autonomous opportunistic data propagation fol-
lowing a provided set of application-specific policies. The
publish/subscribe paradigm has enjoyed copious attention in
pervasive computing (e.g., [7], [29]). Publish/subscribe pro-
vides a high degree of decoupling, flexibility, and scalability,
while enabling efficient event distribution. This wide variety
of techniques heavily reflects a fundamental need to discover
and share pertinent information in dynamic networks. These
and many similar approaches focus almost exclusively on the
retrieval, or querying, of information, presupposing a data-
rich environment and neglecting (or simply ignoring) questions
related to how data is created, replicated, stored, and destroyed.
These concerns necessitate a flexible general-purpose data
model that can be shared across applications and at the same
time tailored to meet individual application requirements.

IV. A TRAJECTORY-DRIVEN DATA MODEL

Existing work in pervasive computing focuses almost exclu-
sively on how to query data, presupposing an existing data-rich
environment and neglecting questions related to how data is
created, replicated, moved around, stored, and destroyed.

Space and time must be first class citizens of our data model
since pervasive computing intrinsically entails interaction with
the physical world, and phenomena in this real world are
inherently spatiotemporal. To bridge from the physical world
into the digital one, we distinguish reality from our perception
of it. Reality is defined by physical phenomena that can be
sensed by the digital world (e.g., environmental conditions,
availability of resources, presence of humans). An observation
is made when a phenomenon is sensed. The observation is
a digital representation of the phenomenon as it is instanta-
neously captured through the sensing process and is associated
with an immutable spatiotemporal stamp. A datum is a dig-
ital representation of some quantum of knowledge about an
observation. We want to expose the relation between a datum
and an associated phenomenon (especially as data moves and
time passes, i.e., as the datum experiences spatiotemporal
dynamics). To facilitate this, we augment each datum with
spatiotemporal meta-data that represents the dynamics of the
datum and the associated phenomenon in space and time.
This spatiotemporal trajectory can capture both the (expected)
dynamics of the phenomenon and the (actual) dynamics of
the datum. Applications that create and use the data can
define rules that use the trajectories to determine how data
moves, changes, lives, and dies. These rules are not part of
our data model, but the next section gives examples of rules
that are obviously useful for spatiotemporal data in pervasive
computing. In a simple sense, one can relate a trajectory to
spatiotemporal decay, or the notion that the further a datum
gets in space and time from its “genesis” the “weaker” it is.

A. From Phenomenon to Datum
The first challenge is the jump from the physical to the

digital. A datum represents an observation of a phenomenon
digitally. We store datums as semi-structured data [30], [31]

that is self-descriptive in the sense that it consists of a set of
name-value pairs. We assume an underlying vocabulary for
data that is shared among all participants in the digital world.

Every phenomenon is associated with a “place” and “time.”
The place is a description of the spatial influence of the
phenomenon; depending on a phenomenon’s type, the shape
and scope of its place may differ dramatically. Space can be
physical or logical; for simplicity in this paper, we assume
traditional two-dimensional physical spaces. A phenomenon’s
time is a (potentially open) range with a discrete beginning.

An observation logs a phenomenon and generates a da-
tum. In the simplest sense, a datum exists at exactly the
phenomenon’s place for exactly the phenomenon’s lifetime.
This may not be possible or desirable for several reasons:
(i) the observation may not happen at the exact location of
the phenomenon; (ii) there may not be a digital device at
the phenomenon’s place; (iii) the phenomenon’s place may be
larger than a single device; (iv) devices that store data may be
dynamic or unreliable; or (v) we may want to disseminate the
datum more widely than the phenomenon’s associated place.

In our model, each datum has a spatiotemporal trajectory
that captures the initial relationship between the datum and the
phenomenon. Over time, the trajectory should also capture the
evolution of this relationship by capturing the evolution of the
datum and the phenomenon in both space and time.

B. Spatiotemporal Trajectories

A datum’s spatiotemporal trajectory may evolve for many
reasons: the phenomenon may be expected to be dynamic,
the device carrying the datum may move, or the datum may
be passed through the network. A datum’s spatiotemporal
trajectory should react to these dynamics and update itself.
We separate how data items are communicated, stored, or
moved from the fact that, by existing and moving in pervasive
computing networks, they generate “fields of influence” given
by their spatiotemporal availability. We begin with a simple
yet expressive model of spatiotemporal trajectories and give
insights into how these trajectories can be used to support a
variety of expressive pervasive computing applications.

A datum is associated with a space-time stamp that marks
where and when the observation was made. Each datum’s
trajectory is a sequence of vectors indicating the movement of
the datum in space and time relative to its phenomenon. If the
datum is carried by a mobile device, the vectors are defined by
the path the device takes. If the datum is communicated from
one device to another, then the trajectory contains a vector
that traverses the distance between the devices at a velocity
defined by the time the exchange requires.

Consider a data item about an exhibit in a museum collected
and carried by the mobile device of a visitor:

Phenomenon. the Mona Lisa is in room 6
Observation. (at location [x, y] and time t) the Mona Lisa is

observed
Datum. 〈painting = ML, (loc = [x, y], time = t)〉
Trajectory. vectors of the visitor’s path in the museum

An application relying on this information to share information
with visitors about objects nearby them in the museum may
use this trajectory to implement a form of data decay in space.
This datum may decay with space as the distance from the
painting grows. This notion of decay is similar to that captured
by some existing middleware for pervasive computing [26].
The information may not decay in time since the painting is
not expected to move or change. One could do something
similar with a datum that decays only in time but not in space
(i.e., anything that is true in all places but not at all times).

As another example, consider observations of the air quality
(AQI) at a particular place and time collected by users’
smartphones and shared via peer-to-peer interactions:

Phenomenon. the particulate concentration is 40.5µg/m3

Observation. (at location [x, y] and time t) the AQI is 101
Datum. 〈AQI = 101, (loc = [x, y], time = t)〉
Trajectory. vectors of the movement of device(s) carrying the

datum and passing of the datum among devices

An application that uses these observations to provide the
user a dynamic and localized view of the air quality may
degrade datums that are further in both space and time from
their observations. Note that these first two simple examples
only employ the the observation’s space-time stamp and a
representation of the “here and now.” Our model is not limited
to these situations, and our later examples will show how the
trajectory itself may be essential to the application.

A phenomenon itself may have some space-time behavior
that must also be associated with the datum. Consider the
following, in which the presence of oil in water is detected
by a mobile collection point:

Phenomenon. oil in water moving at 32cm/s to the northwest
Observation. (at location [x, y] and time t) there is oil in water

whose current is 32cm/s to the northwest
Datum. 〈oil = true, speed = .32m/s, direction = 135◦,

(loc = [x, y], time = t)〉
Trajectory. vectors of the movement of the mobile collection

device and the (expected) movement of the phenomenon

An application can use this information to, for example, make
predictions about the current location of the oil. The complete
trajectory can also give information about where the oil has
been, enabling direction of cleanup efforts.

In this final example, the spatiotemporal dynamics of the
phenomenon (the oil in the water) are captured (as the current’s
speed and direction) in a very application-specific way. We
have limited ourselves for now to a simple model of two
dimensional space; we also simplify our representation of a
phenomenon’s spatiotemporal dynamics as a single vector,
whose starting point is given by loc and time, and whose
(expected) speed and direction are represented as part of the
datum. In general, we can associate each phenomenon with its
own trajectory that starts from the observation (as measured by
loc and time). This trajectory could be simply a single vector
as in the example, a series of vectors, or even some function
of time and context whose value is a series of vectors.

C. Computing with Trajectories
Associating a spatiotemporal trajectory with an inherently

spatiotemporal object is intuitive, but it is also extremely
powerful. In the next section, we describe ways that this
information can be used to enable applications to reason
about and interact with the ephemeral spatiotemporal data
that characterizes their environments. First, we give a taste
of the computations that can be done on our spatiotemporal
trajectories to enable additional application semantics.

Smoothing Trajectories. Spatiotemporal trajectories asso-
ciated with datums that live and move for long periods of time
or with high degrees of dynamics may grow very long. Using
vector addition, we can “smooth” trajectories, reducing the
resolution of the information about the datum’s spatiotemporal
dynamics, at the benefit of decreased size of the datum.

Computations on Trajectories. Applications can also do
relatively simple calculations using a datum’s spatiotemporal
trajectory. For example, an application could compute a decay
value that numerically represents how “far” a datum is in
space and time from its phenomenon. Applications can also
perform computations over multiple trajectories. For example,
if a datum encounters another datum that represents either the
same or a different phenomenon, their trajectories can both
positively and negatively reinforce each other.

!"#$%&$&'$
!"#$%&$&($

)'$
)($

)'*+$!,"-".%#$
&,%/01&!,2$

)(*+$!,"-".%#$
&,%/01&!,2$

3!&0.4%#$1!,,01&0)$
&,%/01&!,2$5!,$)'$
%60,$7004.-$)($

Fig. 1. Sample trajectory computation

Consider our exam-
ple of oil movement
and the trajectory that
captures the spatiotem-
poral dynamics of the
phenomenon (i.e., the
speed and direction of
the current). If a da-
tum d1 capturing an
observation at location
[x1, y1] and time t1 en-
counters a second da-
tum d2 of the same type (i.e., oil in the water) whose location
[x2, y2] and time t2 lie on the trajectory defined by d1’s
phenomenon’s trajectory, then the trajectory in d1 can be
updated to reflect new observations of the current. Such a
situation is shown in Fig. 1, in which the trajectories (arrows)
have been simplified to depict only the movement of the
phenomenon (omitting the potential movement of the datums).

Aggregations of Observations. We can also extend our
base model to allow a datum to be an aggregation of one
or more observations. Consider the following example, where
observations are made by vehicles moving in an urban area:

Phenomenon. there is an available parking space on the south
side of 3rd Street between Pine Street and Oak Street

Observation. (at location [x, y] and time t) there is an avail-
able parking space

Datum. 〈parking = 1, (loc = [x, y], time = t)〉
Trajectory. vectors of the vehicle’s movement

As the vehicle carrying the datum moves, it may observe ad-
ditional available parking. It may aggregate these observations

into the original datum, incrementing the counter parking and
expanding the location and time. An application can use the
associated trajectory to discover a path along which available
parking spaces lie. Alternatively, the datum carried by one
vehicle may encounter a datum from a different vehicle mea-
suring parking availability along a different trajectory. These
datums can be aggregated together in a more complex way to
give a sense of overall parking availability in a general area
(e.g., by computing the bounding box of the combination of
the trajectories) or by representing the aggregate trajectory as a
set of trajectories, giving a web of spatiotemporal information.

V. USE CASES

Our spatiotemporal model for ephemeral data enables per-
vasive computing applications to reason about the data they
rely on, providing various ways to judge the (spatiotemporal)
quality of data. In this section, we give a handful of examples
of uses of this spatiotemporal model. Our model is not limited
to these few uses; instead we intend to give a flavor of the
variety of possibilities that exist. Effectively, each example is
a way in which a pervasive computing application deployment
provides a set of rules that dictate how the spatiotemporal
trajectories associated with datums can be used to determine
how data in is used, moved, stored, changed, and destroyed.

A. Data Death
The most obvious (and likely common) thing to do is to

define a very thin layer on the data model to control when
datums are deleted. Such a layer should be parameterized by
both space and time; i.e., when a datum gets a certain distance
in space and time from its observation, it should be deleted.
Consider the following simple rule that a data death layer
could use to periodically delete any data item d that originated
more than threshold units of distance away:

delete(d) if dist(myLoc, d.loc) > threshold

Similar rules could account for time or for location and time
jointly. Rules can also be defined over the entire trajectory; for
example, if the sum of the trajectory’s vectors indicates that
the datum has traveled a certain distance, it could be deleted:

delete(d) if
(∑

v∈d.traj

v.length
)
> threshold

These definitions are not themselves part of the data model but
instead are enabled by the availability of the spatiotemporal
information the data model provides. In fact, the definitions
are highly application-dependent. Both thresholds on data
death and the definitions’ use of locations and trajectories will
depend highly on the application and its operating conditions.

B. Data Persistence
Many applications generate data that is relevant in a par-

ticular physical space with the desire that the data stays in
that space, even if the digital devices that inhabit that space
move. A carrier of a datum may desire to transfer custody of
the datum to another device if that device is closer to a target

location or has a higher degree of location stability (e.g., as
computed based on local context). For example, the rule:

transfer(d, h) if dist(h.loc, d.loc) < dist(myLoc, d.loc)

would transfer the custody of datum d to the device h if h is
closer to d’s initial location than the current custodian. More
complicated rules could also use the trajectory to attempt to
make a datum’s trajectory approximate the expected trajectory
of a phenomenon (e.g., in the oil example described above).

C. Supporting Fidelity Estimation

In addition to using the spatiotemporal trajectories to move,
replicate, and delete data, we can also use them to post-process
data and potentially reason about the quality of queries or
applications it supports. We can define quality metrics that
associate values with a datum, where the quality is determined
based on space and time. For example, data that moves quickly
may be determined to have a high fidelity (and a high positive
potential impact on query resolution). The following rule uses
the trajectory to compute an average velocity of a datum based
on the velocities of the component vectors:

velocity(d) =

∑|d.traj |
i=1

d.traj [i].loc−d.traj [i−1].loc
d.traj [i].time−d.traj [i−1].time

|d.traj |− 1

Measures of fidelity could be based on how fast (or slow) data
moves, how much it moves, or even how widely it moves; the
appropriate fidelity metric is clearly application-dependent.

D. Directing Data and Queries

Using datums that have associated notions of spatiotemporal
decay, we can think of the digital world as having gradients
defined by the movement of data through space and time. We
can use these gradients to direct data, queries searching for
relevant data, and physical entities that traverse the space. For
example, given the (aggregate) datum that represents parking
availability in an urban area, an application on an automobile
could send a reservation for the parking space in the reverse
direction of the datum’s trajectory.

!"
!"

!"

!"

#$%&'(#)$*")+""
,%#-."$'('/0',""

1*".)2/#)$"
$'3-4526"

7-'$*"8%#9"

Fig. 2. Query path defined by gradient

Considering a datum
that indicates the potential
propagation of a plume
of oil in a large body of
water, subsequent queries
about water temperature
or the concentration of
important ocean flora
can follow the gradients
to the potentially highly
impacted areas. Fig. 2
shows a simple such
situation in which a single
datum generates a reverse query path; clearly multiple datums
representing observations of the same or similar phenomena
may generate more complex resulting query paths.

E. Trust and Security

Space and time also have significant potential impacts
on trust, privacy, and security. For example, given that we
can often control access to physical spaces, even if only
for brief periods of time, we can compute a spatiotemporal
bounding box to determine whether a particular datum has
been compromised by exiting some controlled space and time.
The following rule defines a data time d as “safe” if its entire
trajectory is contained within locThresh distance of targetL
and occurred within timeThresh time of targetT:

safe(d) if ∀τ ∈ d.traj : dist(τ.loc, targetL) < locThresh

∧|τ.time − targetT | < timeThresh

VI. LOOKING FORWARD

Space and time must be first-class entities in a data model
for pervasive computing as any formulation of context must
be expressed in terms of one, the other, or a product of the
two. The crux of our model is the spatiotemporal trajectory,
which captures the initial relationship of a datum, in both space
and time, to an underlying real-world phenomenon and the
evolution of that relationship over space and time. Trajectories
enable data to articulate information about the context in
which it was observed and its spatial and temporal history.
We envision the expressive notion of trajectory to be defined
by individual applications to meet particular specifications.

Our strawman model is by no means perfect; many interest-
ing conceptual and practical questions remain. For example,
an entirely new model could be envisioned if we assume
that observing phenomena is a continuous process instead
of a discrete one. Other entirely new views open up if one
considers a richer notion of space than just physical space.
For example, consider the application of the last use case to
logical spaces that represent administrative domains. Further,
our strawman spatiotemporal data model and sample uses
cases motivate the desire for an easy to use set of operators that
allow computations over trajectories and datums. In addition
to allowing applications direct access to the datums and their
trajectories, these operators could enable common operations
such as finding the shortest trajectory among a specified set,
choosing the most recent observation from a set of datums
and trajectories, or merging trajectories in ways sensitive to
the semantics of the underlying observations.

As digital devices and embedded virtual resources continue
to pervade our surroundings, there is an ever-growing need
to effectively and efficiently capture, store, discover, and
retrieve highly volatile information in environments subject
to real-world dynamics. We argue that the data generated and
disseminated in pervasive computing networks must be able
to speak to its spatial and temporal influences to most aptly
meet these needs on a large scale. To that end, this paper
proposes the creation of a general-purpose spatiotemporal data
model for pervasive computing environments. A foundational
data model will facilitate interoperability, composition, and
ultimately new classes of systems and applications.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Net., vol. 54, no. 15, pp. 2787–2805, 2010.

[2] W. Griswold, R. Boyer, S. Brown, and T. Truong, “A component
architecture for an extensible, highly integrated context-aware computing
infrastructure,” in ICSE, 2003, pp. 363–372.

[3] J. Sousa and D. Garlan, “Aura: an architectural framework for user
mobility in ubiquitous computing environments,” in WICSA, 2002.

[4] V. Rajamani, S. Kabadayi, and C. Julien, “An interrelational grouping
abstraction for heterogeneous sensors,” ACM Trans. Sen. Netw., vol. 5,
pp. 27:1–27:31, 2009.

[5] L. Mottola and G. Picco, “Logical neighborhoods: A programming
abstraction for wireless sensor networks,” in Distributed Computing in
Sensor Systems, 2006, pp. 150–168.

[6] Q. Cao and T. Abdelzaher, “Scalable logical coordinates framework for
routing in wireless sensor networks,” ACM Trans. Sen. Netw., vol. 2, pp.
557–593, 2006.

[7] D. Frey and G. Roman, “Context-aware publish subscribe in mobile ad
hoc networks,” in Coordination, 2007, pp. 37–55.

[8] D. Mountain and A. MacFarlane, “Geographic information retrieval
in a mobile environment: evaluating the needs of mobile individuals,”
Journal of Info. Science, vol. 33, pp. 515–530, 2007.

[9] A. Pred, “The choreography of existence: comments on hagerstrand’s
time-geography and its usefulness,” Planning-Related Swedish Geo-
graphic Research, vol. 53, no. 2, pp. 207–221, 1977.

[10] T. Hägerstrand, “Innovation diffusion as a spatial process,” 1967.
[11] D. Peuquet, “Making space for time: Issues in space-time data repre-

sentation,” GeoInform., vol. 5, pp. 11–32, 2001.
[12] M. Lyell, D. Voyadgis, M. Song, P. Ketha, and P. Dibner, “An ontology-

based spatio-temporal data model and query language for use in gis-type
applications,” in GEO. ACM, 2011, pp. 15:1–15:9.

[13] L. Gomez, B. Kuijpers, and A. Vaisman, “A data model and query
language for spatio-temporal decision support,” GeoInform., vol. 15, pp.
455–496, 2011.

[14] T. Reichenbacher, “Geographic relevance in mobile services,” in
LocWeb, 2009.

[15] Open Geospatial Consortium, “OGC,” http://www.opengeospatial.org/.
[16] T. Imieliński and S. Goel, “Dataspace–querying and monitoring deeply

networked collections in physical space,” in MobiDE, 1999, pp. 44–51.
[17] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George,

S. George, L. Gu, T. He, S. Krishnamurthy, L. L. Luo, S. Son,
J. Stankovic, R. Stoleru, and A. Wood, “Envirotrack: towards an en-
vironmental computing paradigm for distributed sensor networks,” in
ICDCS, 2004, pp. 582–589.

[18] F. Cabitza, M. Locatelli, and C. Simone, “Cooperation and ubiquitous
computing: an architecture towards their integration,” in COOP, 2006.

[19] R. Newton, G. Morrisett, and M. Welsh, “The regiment macroprogram-
ming system,” in IPSN, 2007, pp. 489–498.

[20] R. Menezes and A. Wood, “The fading concept in tuple-space systems,”
in SAC, 2006, pp. 440–444.

[21] K. Schelfthout and T. Holvoet, “A pheromone-based coordination mech-
anism applied in peer-to-peer,” in Agents and Peer-to-Peer Computing,
2005, pp. 109–132.

[22] P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware
routing for publish-subscribe in delay-tolerant mobile ad hoc networks,”
IEEE J. on Selected Areas in Comm., vol. 26, no. 5, 2008.

[23] E. Kuhn, R. Mordinyi, H. Goiss, T. Moser, S. Bessler, and S. Tomic,
“Integration of shareable containers with distributed hash tables for
storage of structured and dynamic data,” in CISIS, 2009, pp. 866–871.

[24] A. Ziotopoulos and G. de Veciana, “P2P network for storage and query
of a spatio-temporal flow of events,” in Percom Workshops, 2011.

[25] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “PeopleNet: engineering
a wireless virtual social network,” in MobiCom, 2005, pp. 243–257.

[26] M. Mamei, F. Zambonelli, and L. Leonardi, “Tuples on the air: a
middleware for context-aware computing in dynamic networks,” in
ICDCS Workshops, 2003, pp. 342–347.

[27] G. Russello, E. Scalavino, N. Dulay, and E. Lupu, “Coordinating data
usage control in loosely-connected networks,” in POLICY, 2010.

[28] C. Scholliers, E. Boix, and W. D. Meuter, “Totam: Scoped tuples for
the ambient,” Electronic Communications of the EASST, vol. 19, 2009.

[29] G. Cugola, A. A. Margara, and M. Migliavacca, “Context-aware publish-
subscribe: Model, implementation, and evaluation,” in ISCC, 2009.

[30] S. Abiteboul, “Querying semi-structured data,” in ICDT, 1997.

[31] D. Gelernter, “Generative communication in Linda,” ACM Trans. Pro-
gram. Lang. Syst., vol. 7, no. 1, 1985.

