Usability of Semantic Web for
Enhancing Digital
Living Experience

'Nirmalya Roy, °Kevin Brooks and *Christine Julien

The Center for Excellence in Distributed Global Environments,
The University of Texas at Austin

2Experience Designing & Prototyping Lab, HCI,
Motorola Labs, Lowell, Massachusetts

TR-UTEDGE-2010-012

© Copyright 2010
The University of Texas at Austin

Usability of Semantic Web for Enhancing Digital
Living Experience

!Nirmalya Roy, ?Kevin Brooks and !Christine Julien
!The Center For Excellence in Distributed Global Environments, The University of Texas at Austin
Email: {nirmalya.roy, c.julien}@mail.utexas.edu
2Experience Designing & Prototyping Lab, HCI, Motorola Labs, Lowell, Massachusetts, USA-01851
Email: kevin.brooks@motorola.com

Abstract—The number of different types of devices on the
home network is expanding rapidly. While this explosion of
innovation provides compelling new devices to consumers, there
are challenges ensuring compatibility among these devices and
providing a comprehensive user interface that supports con-
sumers managing their digital content across several devices.
The Digital Living Network Alliance (DLNA) has specified an
architecture that enables interoperability between the various
devices and allows a user to enjoy the desired content across
several devices. To complement DLLNA, we investigate ontological
representation from semantic web technology to model the
interaction between multiple home devices and to provide an
enriched and more comprehensive metadata based multimedia
search. This removes the user burden of searching each device
individually. Development of a prototype incorporating these
ideas has begun, using a well known semantic web toolkit Jena.

Keywords-Semantic web, DLNA, multiple device interaction
design, ontology, RDF, OWL, user interface visualization

I. INTRODUCTION

The home network is rapidly increasing in complexity:
every year brings an expanding array of connected consumer
electronics devices, intended for deployment on the home
network [6]. While this rapid churn delivers innovative devices
to the consumer, it also brings a number of problems, partic-
ularly: (i) how to achieve a consistent, powerful and engaging
user experience among the expanding array of connected or
related devices, and (ii) how to achieve a unified point of
control for this expanding array of devices. Towards this end,
the Digital Living Network Alliance (DLNA) [1] is defining
a framework that provides basic network, service and digital
media interoperability for forthcoming CE’s applications. The
home, however, is a deeply heterogeneous environment, com-
bining devices from multiple vendors, from different hardware
generations, added to the home over time. In such a setting,
problems arise of how to achieve compatibility while allowing
evolution, and how to achieve a consistent and unified user ex-
perience. To alleviate this problem we have taken the initiative
to model the interaction between multiple home devices using
Semantic Web [7] and web ontology languages (OWL/RDF).

The rest of the document is organized as follows: Section 2
gives a brief overview of multiple device task representation

This work was done while the author N. Roy was an intern in Experience
Designing & Prototyping group at Motorola Labs.

using semantic web and the web ontology language OWL. In
Section 3 we discuss the rationale behind our Semantic Web
approach to build a new architecture to enhance digital living
experience and its use case scenario. Section 4 describes our
preliminary work on prototyping. A dynamic user interface is
outlined in Section 5. Section 6 summarizes and concludes the

paper.

II. MULTIPLE DEVICE TASK AND ITS REPRESENTATION

In our initial consideration we include the following devices
Cable set-top boxes (STB), IP STB, Mobile Phone, PDA,
Laptop, Desktop PC, Stereo Receiver, TV Monitor, Camera,
Refrigerator, Washer/dryer, Door bell, Air conditioner, Light-
ing, Door lock and Car. With each we identified their different
tasks as shown in Fig. 1 and modeled their interaction using
ontological technique from semantic web. We use Resource
Description Framework (RDF), a low level building block
from semantic web to represent simple concept taxonomies
and ontologies for associated data. The RDF metadata model
is based upon the idea of making statements about resources
in the form of subject-predicate-object expressions, called
triples. The subject denotes the resource, and the predicate
denotes properties or aspects of the resource and expresses a
relationship between the subject and the object. For example,
here we have considered a mobile phone and represented its
different tasks in terms of RDF as shown in Table I.

TABLE I
REPRESENTATION OF DIFFERENT TASK OF A MOBILE PHONE USING OWL/RDF

Subject Predicate Object
(Resource) (Property) (Property Value)
Device:mobile phone | hasMake PhoneCall
Device:mobile phone | hasReceive PhoneCall
Device:mobile phone | hasMessaging | SMS/MMS
Device:mobile phone | hasTake Pictures/Video
Device:mobile phone | hasStore Pictures/Video
Device:mobile phone | hasDisplay Pictures/Video
Device:mobile phone | hasEdit Pictures
Device:mobile phone | hasStore Audio/Video
Device:mobile phone | hasTransfer Audio/Video
Device:mobile phone | hasRecord Audio/Video
Device:mobile phone | hasPlay Games/Music
Device:mobile phone | hasDisplay Time
Device:mobile phone | hasSet Alarm

Cable STB IPSTB Mobile Phone PDA Laptop Desktop PC Stereo Receiver TV Monit:
create and createand create and
tunetoa tune to store data store data store data display vid
channel channel makeacal files files files play audio files signal
volume volume run volume
control control receive a call programs run programs run programs volume control control
change
messaging download download download retrieve/display channel /
record (DVR) record (DVR) (SMS/MMS) |programs programs programs CD info input
take play play play amplify other
playback playback pictures/video video/audio video/audi ideo/audio audio sources
trensfer/store transfer/store store/display record record record

video/audio

pictures

pictures pictures/video video/audio video/audio

handwriting handwriting handwriting

monitor gps

play games location qwerty K3 qwerty KB

play music

purchase purchasa

record audio wifi wifi wifi

media media

access

multiple audio video
channels telephony edit pictures [office apps office apps office apps
access closed online

captioning shopping (pedometer) |display time display time display time:

Fig. 1.

[[urt: device:ConsumerElectronics

Multiple device and Task

url: device:MobilePhone -}

Fig. 2. A snapshot of RDF Schema Diagram of MobilePhone

A. Ontological Representation of Multiple Device Interaction

We create a new ontology for multiple device interaction
using an ontology compliance level (OWL Lite) and generate
the model and RDF/XML schema in the Semantic Works
interface from Altova Inc [3]. We have defined three classes
1) ConsumerElectronics 2) MobilePhone 3) Multimedia.

We define MobilePhone as a subclass of ConsumerElec-
tronics, which essentially states that any instance of the
MobilePhone class must also be an instance of the Consumer-
Electronics class.

We use the Multimedia class to (i) define it as the range
of a property called device:hasPlay or device:hasStore and (ii)
create instances of Multimedia.

We define the class MobilePhone to be the domain of
the properties hasStore/hasPlay, and the class Multimedia to
be the range of the properties hasStore/hasPlay. This would
mean that the properties hasStore/hasPlay applies to the class
MobilePhone and takes values that are instances of the class
Multimedia.

Properties are created at a global level and then related to
different classes. In our ontology, we deal with two properties:
a) hasStore, to carry information about the type of the multi-
media files. The multimedia can be Audio, Video or Picture.
We will create this property as an object property. Doing this
enables us to relate one resource to another. In this case we
wish to relate instances of the MobilePhone class to instances
of the Multimedia class via the hasStore property. The class
(or classes) that the property applies to is called the property’s
domain, while the set of values the property can take is called
the property’s range.

b) model#, is a literal value indicating the model number of
the MobilePhone. We will create this property as a datatype
property. It relates instances of the MobilePhone class to a
positive integer (which is the name or number of the model).

In Fig. 2 we see that the class MobilePhone is a subclass
of the class ConsumerElectronics, and has two properties: the
object property hasStore and the datatype property model#.
So far we have created three classes, ConsumerElectronics,
MobilePhone, Multimedia, and two properties, the object
property hasStore and the datatype property model#. We have
defined both properties to apply to the MobilePhone class (by
making this class the domain of the properties). Further, we
have defined (i) the range of the hasStore property (that is the
values this property can take) to be instances of the Multimedia
class, and (ii) the range of the model# property to be a literal
value of the XML Schema datatype positivelnteger.

Now we will first create three instances of the Multimedia
class, which will be simple instances like video, picture and
audio as shown in Fig. 3.

[deviceideo | rditype B, device:Multimedia
[devieicture | riype B, deviceultimeda
rdf:type E—, o device:Multimedia

Fig. 3. Multimedia Instances

Next we define three more instances of the MobilePhone

class as shown in Fig. 4 and add a predicate. MobilePhoneAu-
dio instance with its predicate is shown in Fig. 5.

[device:F.ﬂobilthoneAudio)EI—

rdfype

=1

rdtype tevice:hobilePhone

[device:F.'IDbiIePhonePicture]3—

riftype device:MobiePhong &

[device:l‘.’lobi\ePhoneUideo)El—

Fig. 4. MobilePhone Instances

The instance MobilePhone Audio, MobilePhonePicture, Mo-

bilePhoneVideo has therefore been defined to:

¢ Be an instance of the class MobilePhone,

« Have an object property hasStore that takes the instance
Multimedia as its object and have an object property
hasPlay that takes the instance Multimedia as its object,

o Have a datatype property model# that takes the posi-
tivelnteger value SGH609 as its literal value.

In the next section we discuss besides the interaction of
multiple devices, how the underlying metadata access can be
enhanced by making use of semantic web technology.

III. APPLICATION OF SEMANTIC WEB IN DLNA TO
ENHANCE THE USER EXPERIENCE

With the multitude of home electronics devices available, it
is becoming difficult for consumers to manage their digital
content. The Digital Living Network Alliance (DLNA) has
specified an architecture that enables interoperability between
the various devices and allows a user to enjoy the desired
content. However, in a typical home, users now or in the future
might store thousands of multimedia items across several
devices, making it is tedious to search every single device indi-
vidually. Additionally, in the case of a metadata based content
search, not all metadata or the semantics associated with it
might be available, resulting in incomplete search results. In
this paper, we extend the DLNA architecture to address these
problems. We use a specialized device as a service enabling
platform and to hide the complexity of distributed content
storage. Furthermore, we use the Semantic Web to provide an
enriched and more comprehensive metadata-based multimedia
search experience to enhance the user experience.

A. Architecture

The standard DLNA architecture as shown in Fig. 6 consists
of several Digital Media Servers (DMSs) and a control point
that communicates with these DMSs to search for multimedia
content. Typically, a user uses a control point to invoke the
Content Directory Service (CDS) actions to search for the

Fig. 5. A snapshot of RDF schema diagram of MobilePhoneAudio

Digital
Media Server 1

Digital
Media Server 2

Digital
Media Server 3

Search

Architecture: Current DLNA
===
-

Search

®

Search

Control Point

Search

Digital
Media Server n

Page 12 ‘ MOTOROLA

Fig. 6.

An existing DLAN architecture

desired content hosted on that particular DMS, and he is
required to repeat this for all available DMSs until he finds
what he wants. Next we use a Virtual Media Server (VMS),
which acts as a single point of contact for the user, as shown
in Fig. 7, to relieve the user from the burden of contacting
multiple DMSs separately. We also introduce another new
component into the architecture: the Semantic Web Engine
(SWE) as shown in Fig. 8. The SWE uses knowledge imported
from external ontologies and data sources to extrapolate the

Architecture:
Single-Point of Contact

Digital
Media Server 1
Digital

— Media Server 2

Search

Search

Search
Request

Virtual
Media
Server

Digital
Media Server 3

Search

Control
Point

Digital
Media Server n

‘ MOTOROLA

Fig. 7. Enhancement of DLNA architecture

semantics of the available metadata, thus enabling a smarter
content search mechanism.

Architecture: Semantic Web Engine

Get RDF metadat;

, —
Getyp@adata

8

Search
Request

Semantic
Web
Engine

Virtual
Media
Server

Enriched

Resul
ISR esult

RDF Querying Results

Get RDF metadata

Page 14 . MOTOROLA

Fig. 8.

Role of Semantic Web Engine with DLNA

B. Use Cases

We could think of the following scenarios for getting the
benefit of semantic web engine and DLNA. In an ideal case,
we could have searched the IMDb (Internet Movie Database)
and AFI (American Film Institute) as an external ontological
data sources to get movie information (such as movie reviews,
ratings, background production information etc.) and then
search the user’s personal digital media server to see if that
particular film is available in his personal collections. Also
to extend this, the SWE can get the contact list (including
shared DMS information) of the user’s friends from an external
ontological data sources (such as Facebook) and in a similar
way each one of the user’s friends could share the movie
information they have.

Shared Digital
Media Server

Use Case 1: Digital Media Server Look-Up

Personal Digi'al\AumaMicwb
fron k.

Media Server i
end

=] J
= dina Semantic
Web Engine

Find me the movies with Harry in the title, along with

et their reviews and also

. MOTOROLA

Fig. 9.

Application of Semantic Web Engine in case of DLNA

Another interesting example could involve the user search-
ing for songs sung by a specific singer. In addition to the
simple CDS:Search() results matching the artist’s name, the
VMS could provide additional results with the help of the
SWE. Let’s say that the SWE can access an internet RDF
audiography database. It can look up this information to find
the bands that the given artist has been part of and then
list music available in the digital home by those bands as
additional search results. The SWE derives a URI representing

TABLE II
SEARCH RESULTS FOR SONGS
Songs Sung by
Results after simple Dance Tonight Paul McCartney
Search through VMS Gratitude Paul McCartney

Live and Let Die Wings

Additional Results with | Band on The Run Wings
Semantic Web Engine Hey Jude Beatles
Let It Be Beatles

an RDF resource from the search keyword by prepending it
with the base URI of the ontology data being used. In our
example search for songs sung by Paul McCartney, the SWE
uses the URI “http://www.somewhere.edu/audiographyband#
PaulMcCartney” as the starting node for the RDF query,
assuming the base URI “http://www.somewhere.edu/
audiographyband#”. It then uses the audiography band data
imported from external data sources along with the content
metadata requested from each of the DMSs to perform the
RDF query and extract additional matches for the user’s
search request. The songs matching the search query are listed
in Table II. We can observe that in addition to the songs
marked by Paul McCartney, other songs from other bands
“Beatles”, “Wings” where Paul McCartney was in, have also
been included in the results. Thus the search results were
enriched and enhanced with the use of external ontological
data.

t,HIllllllHHIII!llI'IlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

fm Fle Edt View RDF/OWL Tooks Window Help

OERE i a[F] omrd - | B = [5]E

Classes | Propeies | jngtances | allDifferent | Ontologies

g,

[#awardAbout
#awardCategory
#awardlame

#awardQrganization
#awardResult

#awardYear

#awards_won
#backgrounds_renderings
g #huyes
ﬁrdf:Property #buyes_productionsequipment
|#|rdf:Property #cable_person

Fig. 10. A snapshot of the RDF vocabulary for Movie and Music

package jena.examples.rdf ;

import com.hp.hpl.jena.rdf.model.*;

/**Vocabulary definitions from moviedatabase.rdf Qauthor
Auto-generated by schemagen on 10 Jul 2007/

public class Moviedatabase {

/** <p>The RDF model that holds the vocabulary terms</p> */
private static Model m_model ModelFactory.createDefaultModel () ;
/** <p>The namespace of the vocabulary as a string</p> */
public static final String NS "http://movie";

/** <p>The namespace of the vocabulary as a string</p>x*/
public static String getURI() return NS;

/** <p>The namespace of the vocabulary as a resource</p> */
public static final Resource NAMESPACE
m_model.createResource (NS) ;

public static final Property awards_won
m_model.createProperty("http://movie/#awards_won");

public static final Property provides_audio
m_model.createProperty("http://movie/#provides_audio");
public static final Property AlternativeTitle
m_model.createProperty("http://movie/#AlternativeTitle");

}

Fig. 11. A snapshot of Java class file generated by Jena schemagen

IV. PROTOTYPING

We have developed the Semantic Web Engine using Jena
2.5.3 [2] an open source semantic web toolkit. The demonstra-
tion software includes a RDF vocabulary of movie and music
which has been generated using SemanticWorks [3] as shown
in Fig. 10. This vocabulary has been converted to a java class
file using the schemagen utility from Jena API which helps to
get access to different properties of RDF graph based model. A
sample of this class file is shown in Fig. 11. We assume there
are two Digital Media Servers, one for the movie database
and another for the music database, both of which host data
in RDF metadata format as shown in Fig. 12 and Fig. 13.
We use SPARQL [4], a query language which can select RDF
triples from a triple set. Applications based on Jena API can
search the movie-database and music-database individually by
specifying a SPARQL query or can make a composite search
on both databases at the same instant as shown in Fig. 14. The
output of this query is also shown at the end of the Fig. 14.

<?xml version="1.0"?>

<rdf:RDF xmlns:Moviedatabase="http://movie/#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://somewhere/
HarryPorterl">

<Moviedatabase:awardAbout>FlimFestival
</Moviedatabase:awardAbout>
<Moviedatabase:AlternativeTitle>Harry Potter and the
Philosopher’s Stone </Moviedatabase:AlternativeTitle>
<Moviedatabase:awardCategory>Adventure
</Moviedatabase:awardCategory>
<Moviedatabase:awardName>Oscar</Moviedatabase:awardName>
<Moviedatabase:awardOrganization>France
</Moviedatabase:awardOrganization>
<Moviedatabase:awardResult>Pending
</Moviedatabase:awardResult>

</rdf:Description>

</rdf :RDF>

Fig. 12. Movie database for DMSI

?xml version="1.0"?>

<rdf:RDF xmlns:Musicdatabase="http://music/#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="http://somewhere/
HarryPorterl">
<Musicdatabase:assists_musiceditor>Elvis Presley
</Musicdatabase:assists_musiceditor>
<Musicdatabase:assists_propmaster>Michael Jackson
</Musicdatabase:assists_propmaster>
<Musicdatabase:composes>Alfred Newman
</Musicdatabase:composes>
<Musicdatabase:has_music>Bernard Herrmann
</Musicdatabase:has_music>
<Musicdatabase:musical_production>Hollywood
</Musicdatabase:musical_production>
<Musicdatabase:produces_music>Jimmy Hunter
</Musicdatabase:produces_music>
</rdf:Description>

</rdf :RDF>

Fig. 13. Music database for DMS2

V. DESIGN OF DYNAMIC USER INTERFACE

Tools for querying data have traditionally been text based,
although graphical interfaces have been pursued [5]. An anal-
ysis of the text based queries had revealed a construction
pattern that could be satisfied with a simple visual interface.
The pattern consisted of finding intersections of groups of
items, where the items could be popular music and movie
information, and where the items of the intersection would
be composers, singers and musicians. These groups of items
were often constrained by several other parameters. But the
user doesn’t want to go through all these hassles to perform
every request. This approach could not scale to a professional
user who has to make hundreds of queries in a database.
Therefore, we set out to build a Query UI that did not require
the human user to become an expert of the system. The
ongoing challenge is to allow a novice user to navigate the
metadata and formulate the queries without much technical
intervention. RDF vocabulary metadata navigation would be
the first challenge for our users. This vocabulary consists of
properties about the data. For our prototype application, there
are three vocabularies, movie vocabulary, music vocabulary
and iTunes vocabulary. Each vocabulary has its own nuances,

// create an empty model

Model modell ModelFactory.createDefaultModel () ;

Model model2 ModelFactory.createDefaultModel () ;

// use the class loader to find the input file
InputStream inl FileManager.get () .open(Movie-metadata);
InputStream in2 FileManager.get () .open(Music-metadata);
// read the RDF/XML files

modell.read(inl, "");

model2.read (in2,
// merge the graphs

Model model modell.union (model2);
//Create a new query
String queryString
"PREFIX Moviedatabase:
"PREFIX Musicdatabase:
"SELECT ?x ?Title " +
"WHERE {" +

" ?x Moviedatabase:awardName "Oscar" +
" ?x Moviedatabase:Title
?Title.FILTER regex(?Title,
" ?x Musicdatabase:composes
" }u;

Output:

x: <http://somewhere/HarryPotterl>

Title: "Harry Potter and the Philosopher’s Stone"

L
7

<http://movie/#> " +
<http://music/#> " +

"harry", "i")"+
"Alfred Newman" +

Fig. 14. An Example of a SPARQL Query and its Output

which must be respected while doing queries, such as movie
vocabularies with categories that can be used themselves for
querying.

For example, if a user enjoyed and owned music by the
violinist Joshua Bell and was curious to find other music
by him, today they could type “Joshua Bell” as a query in
amazon.com and receive a long list of search results. Buried
in the midsts of mostly CD titles is a DVD, The Red Violin,
a movie in which Bell did not appear, but performed the
haunting violin solos. Perhaps the user would find the buried
movie item, perhaps not. The user could also do a search on
Joshua Bell in IMDB.com and find The Red Violin among the
search result items, but will not find any CD titles by Bell. In
neither of these search examples will the user find:

o Music the user already owns by Bell

e Music the user’s friends own by Bell

« Joshua Bell music currently on sale by a a local commer-
cial entity

The approach described in this paper, with extensions just
slightly beyond the range of our initial work, could provide
such user discoveries. From the user’s perspective, the search
would be conducted on the VMS, which would coordinate the
necessary component searches among a number of DMS’s.
The user would be spared dealing with the complexities of
the DMS searches.

Our goals are to make the interface, simple, fun, and
informative, but informative only to the level necessary for the
user. Simplicity in the interface is important for the reasons
previously mentioned in this paper. A simple interface would
make it possible for the user to manage a larger and wider
range of digital media across devices.

A sense of fun in the interface would encourage inquisi-
tiveness, which in turn would drive down the level of user
burden on performing searches. Our theory is that a sense of

fun could even, in effect, increase the apparent performance
of the system; not based only on the accuracy and usefulness
of the search results, but on the number of searches the user
comfortably or even enthusiastically performs. The more fun
the user has, the more searches they will do, resulting in more
desired search results.

Putting aside issues of trust and security which are beyond
the scope of this paper, we can consider under what circum-
stances the user needs to be made aware of the details of the
search. Often the underlying details of the system would make
no difference to the user. Users simply want their services to
work and work well. If one considers the act of making a
phone call, the path of that phone call, through which cities
or up and down to which satellites, is of no interest to the
typical user beyond the quality of service for that call. When
entering a web site url in a browser, the number of network
hops necessary to reach that server and return the web page
contents is of no consequence, beyond the speed and accuracy
of the data retrieval. Similarly, when a user performs a search
with the system proposed in this paper, they should be able
to specify which general sources to search (i.e. which VMS).
However, VMS access to specific DMS’s may be added or
removed without the user’s knowledge. It is the job of the
VMS to return the best results possible given the resources
available at the time. The user should not be burdened with
these specifics, unless of course they ask for them or if their
quality of service is effected. Unless the search represents a
cost of time (for what ever reason the information requested
is not immediately available) or a cost of money (information
requested is available from a commercial source for a fee), the
user need not be burdened.

As the interface design work moves forward, these are
the guiding principles we employ to help us envision and
implement this work. Given the early stage of the project,
specifics on the design will be left for a later publication.

VI. CONCLUSION

We present an architecture for a digital home, which in-
cludes a Virtual Media Server (VMS) and a Semantic Web
Engine (SWE). We describe the basic communication between
the different components in the described architecture and also
present some examples where the presence of the SWE can
enrich the quality of metadata-based multimedia search in the
digital home.

REFERENCES

[1] Digital Living Network Alliance; http://www.dIna.org.

[2] Jena Semantic Web Toolkit: http://www.hpl.hp.com/semweb/jena2.htm

[3] SemanticWorks2007:http://www.altova.com/products/semanticworks/ se-
mantic_web_rdf_owl_editor.html

[4] SPARQL tutorial: http://www.w3.org/TR/rdf-sparql-query/

[5] S. N. Murphy, V. Gainer, H. C. Chueh, “A Visual Interface Designed for
Novice Users to find Research Patient Cohorts in a Large Biomedical
Database”, AMIA Annu Symp Proc. 2003; 2003: 489-493.

[6] Sadhna Ahuja, Tao Wu & Ora Lassila, “Using the Semantic Web to
Enhance the Digital Living Experience”, IEEE CCNC 2006, Las Vegas
(NV), January 2006

[7] Duane Degler, Scott Henninger and Lisa Battle, “Semantic Web HCI:
Discussing Research Implications”, SIGCHI 2007

	TR-UTEDGE-2010-012 Julien.pdf
	Usability of Semantic Web for Enhancing Digital�Living Experience

