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Abstract—Many pervasive computing applications continu-
ously monitor state changes in the environment by acquiring,
interpreting and responding to information from sensors embed-
ded in the environment. However, it is extremely difficult and
expensive to obtain a continuous, complete, and consistent picture
of a continuously evolving operating environment. One standard
technique to mitigate this problem is to employ mathematical
models that compute missing data from sampled observations
thereby approximating a continuous and complete stream of
information. However, existing models have traditionally not
incorporated a notion of femporal validity, or the quantification
of imprecision associated with inferring data values from past
or future observations. In this paper, we support continuous
monitoring of dynamic pervasive computing phenomena through
the use of a series of snapshot queries. We define a decay
Junction and a set of inference approaches to filling in missing
and uncertain data in this continuous query. We evaluate the
usefulness of this abstraction in its application to complex spatio-
temporal pattern queries in pervasive computing networks.
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I. INTRODUCTION

As applications place an increased focus on using dis-
tributed embedded networks to monitor both physical and
network phenomena, it becomes necessary to support efficient
and robust continuous monitoring that can communicate the
uncertainty associated with data collected from a dynamic net-
work. The emergence of pervasive computing is characterized
by increased instrumentation of the physical world, including
small sensing devices that allow applications to query a local
area using a dynamic and distributed network for support. On
the roadways, all vehicles may be equipped with devices that
sense and share location, and that information can be queried
by other nearby vehicles to understand traffic flow patterns.
On an intelligent construction site, workers, equipment, assets,
and even parts of buildings may be equipped with sensors
to measure location, temperature, humidity, stress, etc., with
the goal of generating meaningful pictures of the project’s
progress and maintaining safe working conditions.

Central to these and other applications is the ability to
monitor some condition and its evolution over a period of
time. On a construction site, the amount of an available
material at a particular time may be useful, but it may be
just as useful to monitor how that material is consumed
(and resupplied) over time. Such trends are usually measured
through continuous queries that are often registered at the
remote information sources and periodically push sensed data

back to the consumers [2], [9]. Such a “push” approach to
continuous query processing requires maintaining a distributed
data structure, which can be costly in dynamic settings. In
addition, this often requires that a query issuer interact with
a collector that is known in advance and reachable at any
instant, which is often unreasonable. We have demonstrated
that, in dynamic networks, it often makes sense to generate a
continuous queries using a sequence of snapshot queries [18].
A snapshot query is distributed through the network at a
particular point in time, takes measurements of the target
phenomenon, and sends the results back to the the query issuer.
In our model (Section II), a continuous query is the integration
over time across a sequence of snapshot queries.

In generating a continuous and accurate reflection of an
evolving environment, uncertainty is introduced in several
ways [15], [16]. First, there is a significant tradeoff between
the cost of generating the continuous query result and the
quality of the result. For instance, the more frequently the
snapshot queries execute, the more closely the continuous
query reflects the ground truth, but the more expensive it is
to execute in terms of communication bandwidth and battery
power. In addition, the snapshot queries can be executed
using different protocols that consider the same tradeoff (e.g.,
consider the differences in quality and cost of a query flooded
to all hosts in the network and one probabilistically gossiped
to some subset). On a more fundamental level, the quality of
any interaction with a dynamic network is inherently affected
by the unreliability of the network—packets may be dropped
or corrupted, and communication links may break. The fact
that a continuous query fails to sense a value at a particular
instant may simply be a reflection of this inherent uncertainty.

Even when these uncertainties weaken a continuous query,
applications can still benefit if the query processing can
provide some knowledge about the degree of the uncertainty.
For example, in a continuous query on a construction site for
the amount of available material, it would be useful to know
that, with some degree of certainty (i.e., a confidence) there
is a given amount of available material. This may be based
on information collected directly from the environment (in
which case the confidence is quite high), historical trends, or
knowledge about the nature of the phenomenon. Model-driven
approaches that estimate missing data using mathematical
models can alleviate these uncertainties [6], [7]. In these
approaches, the goal is to build a model of the phenomenon
being observed and to only query the network to rebuild the



model when the confidence in the model has degraded to
make relying on it unacceptable. Section VII examines these
approaches and the relationship to our work in more detail.

Because we build a continuous query from a sequence of
snapshot queries, handling uncertainty is twofold. First, we
must be able to provide estimates of the continuous query
result between adjacent snapshot queries. Second, even if we
fail to sample a data point in a given snapshot, we may
have some information about that data point at a previous
time (and potentially a future time) that we may use to infer
something about the missing data. In both cases, we are not
actually changing the amount of information available to the
application; instead we are blurring the snapshot queries and
associating a level of confidence with inferred results.

Our approach relies on a simple abstraction called a decay
function (Section III) that quantifies the temporal validity
associated with sensing a particular phenomenon. We use this
decay function as the basis for performing model-assisted
inference (Section IV) to use sampled data values from the
snapshot queries to infer values into the past and future. This
inference can allow us to fill in gaps in the sequence of snap-
shot queries to enable trend analysis on the components of the
continuous query. The inference and its associated confidence
can also provide the application a concrete sense of what the
degree of the uncertainty is. Finally, by smoothing across the
available data, this inference makes the information that is
available more viewable and understandable by the application
and its user. We examine these benefits in Sections V and VL.

Our novel contributions are threefold. First, we introduce
decay functions that allow applications to define temporal
validity in a principled way. Second, we build a set of simple
statistical models that allow us to effectively blur snapshot
queries into continuous queries and use them to study the use
of model-assisted inference for a variety of different types
of dynamic phenomena. Finally, we demonstrate through an
implementation and evaluation and a set of usage scenarios
the efficacy and usefulness of using inference to fill in missing
data in real world situations. If the network supporting data
collection is highly dynamic, our approaches help mitigate the
impact of the dynamics on the inherent uncertainty; however,
even in less dynamic situations, our approach helps applica-
tions reasonably trade off the cost of executing continuous
queries for the quality of the result.

II. BACKGROUND

This paper builds on our previous approaches defining snap-
shot and continuous query fidelity and an associated middle-
ware [15], [18]. These approaches approximate a continuous
query using a sequence of snapshot queries evaluated over
the network at discrete times. We model a dynamic pervasive
computing network as a closed system of hosts, where each
host has a location and data value (though a single data value
may represent a collection of values). A host is represented as a
triple (¢, C,v), where ¢ is the host’s identifier,  is its context,
and v is its data value. The context can be simply a host’s
location, but it can be extended to include a list of neighbors,
routing tables, and other system or network information.

The global state of a network, a configuration (C'), is a set
of host tuples. Given a host h in a configuration, an effective
configuration (F) is the projection of the configuration with
respect to the hosts reachable from h. Practically, h is a host
initiating a query, and E contains the hosts expected to receive
and respond to the query. To capture connectivity, we define a
binary logical connectivity relation, K, to express the ability
of a host to communicate with a neighboring host. Using the
values of the host triple, we can derive physical and logical
connectivity relations. As one example, if the host’s context,
¢, includes the host’s location, we can define a physical
connectivity relation based on communication range. K is not
necessarily symmetric; in the cases that it is symmetric, IC
specifies bi-directional communication.

The environment evolves as the network changes, values
change, and hosts exchange messages. We model network evo-
lution as a state transition system where the state space is the
set of possible configurations, and transitions are configuration
changes. A single configuration change consists of one of
the following: 1) a neighbor change: changes in hosts’ states
impact the connectivity relation, /C; 2) a value change: a single
host changes its stored data value; or 3) a message exchange:
a host sends a message that is received by one or more
neighboring nodes. To refer to the connectivity relation for
a particular configuration, we assign configurations subscripts
(e.g., Cy, C4, etc.) and use KC; to refer to the connectivity
of configuration C;. We have also extended K to define
query reachability. Informally, this determines whether it was
possible to deliver a one-time query to and receive a response
from some host h within the sequence of configurations [17].

A snapshot query’s result (p) is a subset of a configuration:
it is a collection of host tuples that constitute responses to the
query. No host in the network is represented more than once
in p, though it is possible that a host is not represented at all
(e.g., because it was never reachable from the query issuer).
Depending on both the protocol used to execute the snapshot
query (e.g., whether the query was flooded to all hosts in the
network or whether it was gossiped) and inherent network
failures, only a subset of the reachable hosts may respond.
This results in missing and uncertain data in the results of
snapshot queries, which may result in a degradation in the
quality of and confidence in the continuous query’s result.

III. MODELING UNCERTAINTY

Our approach to query processing allows users to pose
continuous queries to an evolving network and receive a result
that resembles a data stream even though it is obtained using
discrete snapshot queries. This stream can then be analyzed
to evaluate trends in the sensed data. However, missing and
uncertain sensed items can be a bane to this process, especially
in monitoring the evolution of the data. For example, on a
construction site, a site supervisor may use a continuous query
to monitor the total number of available bricks on the site.
This query may be accomplished by associating a sensor with
each pallet of bricks; the snapshot queries collect the identity
of the pallets and the number of bricks the pallet holds. If
consecutive snapshot queries do not sample the same subset



of pallets, the sums they report are not comparable, resulting
in inconsistent information supplied to the site supervisor.

Consider the continuous query in Fig. 1. The three networks
on the left of the dark line show the results of the continuous
query’s first three snapshot queries. Each circle represents a
host; a circle’s color represents the host’s data value; and
lines represent connectivity. Throughout the continuous query,
some hosts depart, some arrive, and others change their data
value. In this case, the trend the application is analyzing is the
data items that remain available and unchanged throughout the
continuous query. When our snapshot queries are not impacted
by any missing or uncertain data, the stable set the trend
analysis generates is the actual stable set.
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Fig. 1: A Continuous Query

Stable Set

Consider, however, what happens when data is missing or
uncertain, as depicted in Fig. 2. In this situation, the ground
truth (i.e., what the snapshot queries should have returned)
is equivalent to that shown in Fig. 1, but due to network
dynamics or other sources of uncertainty, the sample from host
A was not collected in the second snapshot query (p1), and the
sample from host B was not collected in the third snapshot
query (p2). Consequently the result of the trend analysis in
Fig. 2 is quite different from that in Fig. 1. On a construction
site, if the data items represent pallets of bricks, this trend
analysis may cause the site supervisor to have additional
supplies delivered when it is unnecessary or even impractical.
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Fig. 2: A Continuous Query with Missing Data

Stable Set

One way to handle this uncertainty is to blur the snapshot
queries. In Fig. 2, given the fact that we know the network
to be dynamic, we can say with some confidence that host A
should have been represented in p1; the level of this confidence
depends on the temporal validity of the phenomenon sensed
(i.e., how long do we expect a data value to remain valid), the

frequency with which the snapshot queries are issued, and the
degree of network dynamics. The fact that A “reappeared” in
po further increases our confidence that it may have, in fact,
been present in p; as well. Fig. 3 shows a simple example
of how this inference can be used to project data values into
future snapshots (e.g., from p; to p2) and into past snapshots
(e.g., from p; to pg). In this figure, the black circles repre-
sent hosts the snapshot query directly sampled; gray circles
represent hosts for which data values have been inferred. The
question that remains, however, is how to determine both the
values that should be associated with the inferred results and
the confidence we have in their correctness. We deal with
the former concern in the next section; here we introduce
decay functions to ascribe temporal validity to observations
and calculate confidence in unsampled (inferred) values.
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Fig. 3: Projection Forward and Backwards in Time

Inferred Hosts

To address temporal validity, we rely on the intuitive ob-
servation that the closer in time an inferred value is to a
sensed sample, the more likely it is to be a correct inference.
For example, in Fig. 3, the value projected from py to p; is
more likely to be correct than the value projected from pg
to po. If the sample missing in p; is also missing in po, it
becomes increasingly likely that the host generating the sample
has, in fact, departed. We exploit this observation by allowing
applications to specify the temporal validity of different sensed
phenomena using a decay function that defines the validity of
a measured observation as a function of time.

Formally, a decay function is a function d(t) = f(|t — ¢;|)
where t is the current time and ¢; is a time from either the
future or the past of the nearest (in time) actual sample of the
data value. The period |t —¢| is the period of uncertainty; the
larger the period of uncertainty, the less likely it is that the
sampled value retains any correlation with the actual value.
The decay function’s value falls between O and 1; it is a
measure of percentage likelihood. These decay functions are
an intuitive representation of confidence and are easy for
application developers to grasp. It is also straightforward to
define decay functions to describe a variety of phenomena.
For instance, on a construction site, a moving truck’s GPS
location might be associated with a decay function of the
form: d(t) = e~ (=%, which is a rapid exponential drop in
confidence over time. On the other hand a GPS mounted on
a stationary sensor on the site might have a decay function of
the form: d(t) = 1 because the location value, once measured,
is not expected to change. Possibilities for formulating decay
functions are numerous and depend on the nature of the
phenomenon being sensed and the sensing environment.



Given a user-defined decay function, it is straightforward
to determine a confidence measure of an inferred value. We
measure this confidence probabilistically. At any time instant
t, the inferred data value’s degree of confidence p, is updated
using the following rule.

o if time ¢ is the time at which an actual data reading was
acquired, then the value of p at time ¢ is set to 1;
« otherwise, p is updated using the formula: p; = d(¢).

Thus, at every point in time an data value of interest has an
imprecision that ranges from one to zero depending on when
it was last sampled. The further in time the inferred value is
from an actual sensed value, the less confidence it has. With
this understanding, we look next at how to estimate how a
sampled value may have changed during periods where it is
not sampled, allowing us to infer its value.

IV. TEMPORAL INFERENCE FOR CONTINUOUS QUERIES

Decay functions allow applications to define the validity of
projecting information across time. We now address the ques-
tion what the value of that projected data should be. Specif-
ically, we present a suite of simple techniques that estimate
inferred values. We also demonstrate how this inference can be
combined with decay functions to associate confidence with
inferred values. In later sections, we evaluate the applicability
of these inference approaches to real phenomena.

A. Nearest Neighbor Inference

For some applications, data value changes may be difficult
to predict, for instance when the underlying process observed
is unknown or arbitrary. These changes are usually discrete;
at some instant in time, the value changes to some potentially
unpredictable value. Consider a construction site where pallets
of bricks are distributed to different locations around the site
for storage and use. A distributed query may execute across the
site, measuring how many bricks are present at each location
at query time. The bricks are laid and restocked during the
day as trucks and construction workers perform their tasks.
Without any knowledge of the project’s goals and the rate of
brick laying at different sites, it is difficult to create a model
that effectively estimates the number of bricks at any given
location for instants that have no recorded observations.

In such cases, one technique to estimate missing data is to
assume the sampled value closest in time is still correct. As the
temporal validity decays, the sensed value is increasingly un-
reliable. Consider again the pallets of bricks on a construction
site and an application that samples the number of available
bricks periodically (e.g., every 10 minutes). The application
then sums across all of the data readings to generate a total
number of bricks on the site. Fig. 4 shows an example where
the value for the number of pallets at node A changes between
the two samples. Up until ¢ = 5, the total number of pallets is
estimated using the original sample; after that, it is assumed
that the value is the sample taken at ¢ = 10.

The example in Fig. 4 focuses on uncertain data; i.e.,
inferring data values that the application did not attempt to
sample. The same approach can be used to infer missing data,
e.g., if the application failed to sample a value for node A
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Fig. 4: Nearest Neighbor Inference for Uncertain Data

at time ¢ = 10 but did resample it at time ¢ = 20. This
example also demonstrates the importance of inferring missing
data. Because this data is used to monitor the total number of
pallets of bricks on the site, if data values are missing from a
particular snapshot, the site supervisor might observe radical
fluctuations in the number of bricks that actually did not occur.

B. Interpolation and Regression

The evolution of many pervasive computing phenomena
can be fairly accurately represented by continuous functions.
If a truck is driving at a steady speed across the site, and
we sample its location at ¢ = 0 and ¢ = 10 it may be
reasonable to infer that at ¢ = 5, the truck was at the midpoint
of a line drawn between the two sample points. In such
cases, standard statistical techniques like interpolation and
regression can be employed to infer data across snapshots.
In interpolation, the observed values are fit on a function,
where the domain is typically the time of observation and
the range is the attribute’s value. For any point in time where
there is no recorded observation, the value is estimated using
the function. Interpolation approaches range from simple (e.g.,
linear interpolation) to complex (e.g., spline interpolation).

Linear interpolation connects consecutive observations of
a data item with a line segment. Polynomial interpolation
generalizes the function to a degree higher than one; in general,
one can fit a curve through n data points using a function of
degree n— 1. Spline interpolation breaks set of data points into
subsets, and applied polynomial interpolation to each subset.
Fig. 5 shows an example of interpolation. The data values
sensed are the locations of the devices on a 3x4 grid; the
moving truck’s data is missing from snapshots p; and p3. The
bottom figures show how linear interpolation and an example
of polynomial interpolation estimate the missing data.

Regression identifies relationships between a dependent
sensed variable (e.g., location or temperature at a particular
device) and an independent variable (e.g., time). However,
regression does not try to fit a curve or a function through
every observed data point. Instead, the end result of regression
encodes an approximation of the relationship between the
independent and dependent variables. As with interpolation,
regression comes in several flavors ranging from simple
techniques like linear regression to more complex non-linear
variants. Effectively, regression provides a “looser fit” function
for the data; this can be effective when the underlying data is
noisy (e.g., when the samples may contain errors), and it may
not be useful to fit a curve through every observed data point,
since those data points may not be an accurate reflection of
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Fig. 5: Interpolation of Missing Location Data

the ground truth. Fig. 6 demonstrates the differences in nearest
neighbor inferencing, interpolation, and regression pictorially.
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Fig. 7: Interpolation Error

a combination of decay functions and the error measures de-
fined above. This confidence can impact applications and users
who use sensed data to support decision making processes.
It is simple to combine nearest neighbor inference with
decay functions to provide a measure of confidence in inferred
values. A benefit of doing so is understanding how frequently
to sample a phenomenon. If the application is inferring values
between samples with low confidence, it should likely increase
the frequency of sampling. If the decay function is uniform
in decaying values into the past and into the future, the
continuous query result the application receives is what is
shown on the right of Fig. 4 coupled with a temporal validity
representation of the confidence. For instance, if the associated
decay function is linear in both directions, the result for the
application in Fig. 4 would look something like shown in
Fig. 8, where the shaded area indicates the level of confidence.
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Fig. 6: Comparison of Types of Inference

C. Determining Inferencing Error

When employing statistical techniques like interpolation
and regression, the observed data acts as the only source
of ground truth and serves as input to generate a function
that estimates missing or uncertain data. To measure how
well the model fits the ground truth, we define metrics that
estimate the distance between the model and reality. For
regression models, a common metric is the root mean squared
error, which is the difference between the actual observation
and the value predicted by the regression . Similar measures
of error for interpolation are difficult to define because the
interpolation function is defined such that there is no error in
fitting the sampled points to the function. However, as Fig. 7
demonstrates, wildly different interpolation functions (e.g.,
polynomials of different orders) can fit the same set of sampled
points. The standard technique for determining the error of
interpolation is to favor minimizing the derivative. That is,
from among the interpolation functions that “fit” the data, we
favor those that minimize the function’s rate of change.

D. Computing Confidence from Decay and Error

Our goal is to associate with our inference of missing and
uncertain data a confidence in the quality of that estimate using
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If the decay function is not uniform in its application to
past and future values, the combination of that confidence
with nearest neighbor inference effectively generates a new
definition of “nearest.” For example, if a sample is more
reliable in predicting future values than it is in predicting past
values, then we will rely on the past measurements for more
than just half of the time difference between samples, i.e., the
“step” in Figs. 4 and 8 would move further to the right.

Things are slightly more complicated for interpolation and
regression. In addition to applying the decay function to the
area between successful samples, we can also use information
about the estimated inferencing error to strengthen or weaken
our confidence in inferred values. Minimizing error like the
root mean squared error of a regression or the derivative of
an interpolation can increase the confidence in an inferred
value. Fig. 9 demonstrates how this works for interpolation.
The diamonds are sampled values; since observations can be
lost or unsampled, the series may not be sampled with a fixed
periodicity. The confidence plots at the bottom of the figure
communicate the confidence an application has in the values
inferred at times 7, 24, and 36. The gray areas show the
application of the decay function from the sampled values. The



lines measuring the slope of the interpolation provide a crude
measure of the error associated with interpolation; the further
the slope is from 0, the more rapidly the function is changing,
and therefore the less likely it is to be predictable!. At time
24, we can generate an inferred value with high confidence,
while the same is not true at time 36 or time 7.
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V. USAGE SCENARIOS

This approach to inferring missing and uncertain data ap-
plies to a wide variety of pervasive computing applications that
are increasingly supported by sensor networks. In this section,
we provide some example queries that benefit from the use of
our temporal validity metric; we use these queries in the next
section to evaluate our approach.

In the introduction, we overviewed an intelligent construc-
tion site, where people, vehicles, pieces of equipment, parts
of the building, and assets are all equipped with sensors that
can monitor conditions on the site and share information with
applications. Within the intelligent construction site, there are
many opportunities for the use of a continuous query. For ex-
ample, every user on the site may carry a personal computing
device that can communicate with locally embedded sensors
monitoring hazardous chemical emissions. The site supervisor
may continuously monitor the movement of all the cranes
on the site for potentially dangerous conditions or collisions.
Sensors associated with pallets of bricks can be continuously
monitored to map the the positions of the assets and understand
their consumption and delivery to plan the project.

Broadly speaking, given a series of snapshot queries formed
into a continuous query, an application can issue two types
of requests for information from the continuous query: point
requests, for a value of the continuous query at a single
point in time, and range requests, that monitor the continuous
query over a specified period of time. Both are issued over a
continuous query that monitors the dynamic environment.

A point request is most useful when an application is
interested in what the value of the monitored phenomenon
is or was at a particular instant. These include requests for
the current value (whether it was actually sampled or not),

I'The use of slope as a representation of error here is for demonstration
purposes only; the use of this type of error metric may not be entirely
applicable for non-differentiable points in linear interpolation.

requests for historical information, and requests that project
the continuous query into the future. An example for our
intelligent construction site is:

Q1: How many trucks will be available at time t?

This request asks to look into the future of the continuous
query. The response to this query can be used to plan the
movement of assets in the future, especially if the answer
comes with a high degree of confidence.

A range request over a continuous query specifies the
time duration interest, and we use the inference approaches
described previously to generate a function that represents the
continuous query over that time period. This is also associated
with two measures of confidence: decay functions and error
metrics. An example range request is:

Q2: How many pallets of bricks were available
between t, and t5?

This requests information about discrete measurements; the
number of available pallets of bricks is likely to change by
large jumps as deliveries arrive and bricks are used. It may
prove difficult to use a continuous function to infer missing
values for this type of phenomenon; we also define a third
query that more intuitively fits a continuous function:

Q3: What was the maximum value of the concentra-
tion of a hazardous gas between time t and now?

Requests of both types can also be used to adapt the strategy
underlying the continuous query, for example to change the
frequency with which the snapshot queries are issued or to
change the manner in which they execute. Adaptation can
change the confidence our approaches have in the quality of
the inferred missing or uncertain results.

VI. EVALUATION

We have prototyped our framework using OMNeT++ and
the MiXiM framework [12], [13]. We implemented the queries
given in the previous section and evaluate our framework’s
performance. In this prototype, requests are flooded through
the network, and each node has a reply probability of 0.5,
i.e., every sensor node responds to half of the requests it
receives. We have implemented many inference approaches in
our framework, but we use three of these approaches to drive
our discussion: nearest neighbor inference, linear interpolation,
and polynomial regression. We focused on a simple uniform
linear decay function for all of these results; specifically,
d(t) = 1 — =2t where t,, is the current time and ¢; is the
time for the nearest observation. Each experiment was run for
at least 50 runs.

In general, 45 nodes roamed in a 1000m x 900m space.
A 100m “buffer” around the edge of the simulation area
was considered “off-site;” the construction site itself was a
rectangle of size 800m x 700m. The nodes were divided
into mobility classes: 6 “truck” nodes moved at 15m/s; 10
“people” nodes moved at Sm/s, and the remaining 29 nodes
were stationary. To construct a continuous view of the dynamic
phenomena, we issued snapshot queries every 30 seconds for
1000 seconds; we performed inference at 5 second intervals.
We generated a gas leak at a random location on the site;
the leak lasted for 200 seconds, and a node’s value for



gas concentration was a function of its distance from the
location of the leak. Bricks were located either on trucks or
at designated storage locations around the site (i.e., one of
the stationary sensors). Trucks moved randomly; when they
left the construction site, bricks were randomly added to or
removed from the truck. When trucks encountered a fixed
storage location, they transferred bricks to the storage location.

A. Measuring Confidence

We first evaluate the correctness and usefulness of apply-
ing our decay functions to determine confidence in inferred
responses. We executed all three queries described previously
and attempted to infer missing and uncertain data for each of
them using each of the three aforementioned inference strate-
gies. Fig. 10 plots the inferencing error versus the confidence
reported by our decay function; specifically the figure shows
the results for applying linear interpolation to the results of Q3.
The other combinations of queries and inference approaches
had similar trends and features.
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Fig. 10: Reported Confidence vs. Actual Error

When our framework reports a higher confidence in an
inferred value, the error of that value from the ground truth
should be lower. As shown in the figure, the framework
behaves as expected; regardless of the inference type and the
query, the general trend is that our framework does in fact
report higher confidence in values whose error (on inference)
is lower. These initial experiments served simply to validate
our query inferencing and decay function framework.

B. Cost Savings

Employing inference models allows applications to trade
expense for error. Given that our models allow us to blur
across these dynamics, we are able to query the network far
less frequently. In addition, instead of querying every node in
the network, we can intentionally skip some nodes in each
snapshot query, also reducing the communication overhead.
We omit charts plotting the communication overhead of our
approach for brevity; however, we achieve approximately a
6x reduction in communication overhead in comparison to a
flooding approach that queries the network frequently enough
to catch every significant change in the dynamic data (which
we estimate to be every 5 seconds in our case). This reduction
in communication translates directly to a reduction in energy
expenditures, a significant concern in resource constrained
pervasive computing networks.

C. Application Performance

We next evaluate the usefulness of blurring the snapshot
queries in forming a continuous query. Consider the delivery
and consumption of bricks on the construction site and Q2
that requests the total number of bricks available over a time
window. Fig. 11 plots the number of bricks sampled and
inferred for a single node over time.
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Fig. 11: Number of Bricks Sampled and Inferred for One Host

This figure shows the behavior of our inferencing ap-
proaches on a single sample. Notice that regression performs
quite poorly while nearest neighbor and linear interpolation
mimic the real data well. This is due to the fact that the
phenomenon under observation here is subject to very local
and discrete data changes. Regression assumes trends that are
observable over an entire time frame. Therefore more local
approaches to inference perform better for this data.

Fig. 12 plots the total number of bricks, an aggregate
measure that sums samples from multiple nodes. The line
through the middle of the figure shows the ground truth, i.e.,
the total number of bricks actually on the site over time. The
dots show the raw data values collected from the network
every 30 seconds; these values are below the ground truth
because our approach intentionally does not sample every node
each time instant. The other show our three inference methods
(nearest neighbor, linear interpolation, and regression, respec-
tively). In all cases, these inference methods overestimate the
total number of bricks because they are incorporating “stale”
readings that were measured in previous or future samples but
may not be valid at the reported time instant.

12000
L
S 10000 -
=
E 8000 - —=—Ground Truth
(=]
o e aat
g 6000 - ——Linear
[3 Interpolation
S
2 4000 - Raw Readings
]
2 2000 -+—Nearest
Neighbors
0 .
= Regression

M OoOWOoOWMOoOMmM9oO|wOoOnmQoOumOonmo

S AN BOAINDBOMNROD N D

= " AN NN AN®mM NS S ST

Time

Fig. 12: Inferring an Aggregate over Time

We also evaluated the use of the decay function in combi-
nation with inferencing. For Q2 with inferencing alone, the
site supervisor does not know what degree of confidence of
each request response. Our framework combines this inference
with a confidence measure, generating a picture such as shown
in Fig. 9 for the time window of interest. To understand



how well these approaches combine, we took the application
aggregation query (in this case for the sum of bricks on
the site) and evaluated the error achieved in generating this
aggregate. Fig. 13 shows the results. The x-axis plots the
minimum confidence required of a reading to be included in
the aggregate, e.g., at p = 0.8, the sum was only calculated
from readings with confidence greater than 0.8.

200% 4

150% - B Linear Interpolation

100% | O Nearest Neighbor

Error (%)

B Regression
50% -

B Raw Readings

0%

T T
0 0.2 0.4 0.6 0.8

Confidence (p)

Fig. 13: Inferencing Error vs. Confidence

It is clear that blurring the snapshots offers a significant
benefit over relying on the available samples. No single
inferencing technique performs consistently better, but they all
perform better than relying on the sampled data itself. Overall,
regression performs slightly worse than nearest neighbor and
linear interpolation.> We expected nearest neighbor inference
to be preferred in this situation due to the discrete data; it
would likely be the application’s choice due to its consistent
performance and simplicity in comparison to interpolation.
Another interesting trend in this figure is that the error of
aggregate inferencing is not linear with confidence. In Fig. 13,
a lower confidence appears to generate a lower error, which
increases up to a point (p = 0.6) before decreasing again.
This is due to the fact that, although the individual samples
contributing to the aggregate response individually have a low
confidence, the fact that there are many of them smooths out
their error. In the midrange, there is a smaller number of values
contributing to the aggregate, so the increasing confidence
in individual data items is overshadowed by the decreasing
sample size. Our framework overcomes this challenge when
it reaches a high confidence; at p = 0.8; even though the
sample size is small, the individual estimates are robust enough
to lower the overall aggregate error. These observations open
an important piece of future work. While our decay function
provides a strong measure of confidence for individual data
estimates, it is possible to develop a more sophisticated metric
for confidence in aggregate estimates that combine data values
to produce a combinatorial measure (e.g., a sum, average,
maximum, etc.). Refining our confidence metric to account
for aggregate measures is left as future work.

VII. RELATED WORK

Our work relates to a variety of approaches from querying
sensor networks to understanding uncertainty in databases.
Deshpande et al. use model-driven querying in sensor net-
works [6] to construct a stochastic model of the phenomenon

2We tried different basis functions in support of regression; we report the
best results here.

being observed at a base station and to acquire live data from
the network only when the model proves inadequate. In ad-
dition to associating a probability density function with every
entity, their model also specifies correlations between sensed
attributes through conditional distributions. These models can
be used to retrieve estimates of the data under observation
(associated with an uncertainty measure). This differs from
our approach in applicability; our use of continuous queries
to monitor the underlying sensor network presupposes that the
observed phenomena are significantly dynamic; in the face of
such extreme dynamics, rebuilding of the local model would
occur too frequently for the approach to be effective.

Kanagal er al. extend model-driven data acquisition us-
ing more complex dynamic probabilistic models (e.g., hid-
den markov models and Kalman filters) instead of simple
probability density functions [10]. Similarly, particle filtering
approaches enable event queries [11], [19], [23] of the form
of a notification upon a condition, e.g., “Alert the user when
entity X enters room A.” At any instant, the location of entity
X is stored as a probability distribution using particle filtering.
The query is then evaluated probabilistically to provide a
bound on the likelihood that X is, in fact in room A at the
given time. Variants of this approach have also been used to
process and manipulate streams of RFID data [5], [21]. Cheng
et al.’s work on uncertainty associates with every mobile entity
a probability density function of the entity’s location [3], [4].
Then results to queries for locations of mobile entities can be
associated with an estimate of the result’s validity.

The above approaches construct a single, centralized model
of an observed phenomenon, usually relying on an a priori
understanding of the phenomenon observed. They execute
in a centralized manner because the techniques required to
generate the probability models (e.g., particle filters) are
computationally intensive. In contrast, our decay models are
similar but can be exercised on resource-constrained sensor
nodes or personal computing devices. In addition, these pieces
of existing work focus exclusively on answering instantaneous
queries and associating with them an uncertainty metric; our
focus is instead on continuous queries. These approaches have
not been applied to queries that collect information over a
period of time; it would be difficult to do efficiently using only
probability density functions for single instants, and computing
probability density functions for temporal queries is expensive
in practice. Our approach can execute temporal queries capable
of understanding trends in data, even in the presence of miss-
ing and uncertain information. Finally, these existing models
also typically require an intensive learning or training phase
used to establish the model’s parameters; retraining the model
in the face of dynamics and unpredictability is very expensive.

Our work also overlaps with systems that use statistical
models for different purposes. In PAQ [22], sensors use time
series forecasting built on regression models to predict local
values. The application uses these models and input from the
sensors about outliers to understand the observed phenomenon.
Distributed regression [8] uses kernel linear regression in
which the sensors share a general model and communicate
constraints on that model that fit their data. These approaches
both focus on observing phenomena with predictable degrees



of low dynamics (e.g., sensing temperature reduction at night)
rather than highly dynamic phenomena. MauveDB [7] pro-
vides database style interactions with uncertain sensor data,
using interpolation and regression to remove irregularities.
In these approaches it is unclear how often the underlying
model is (or should be) updated to reflect dynamics; we have
demonstrated how our approach can be used to provide such
guidance. In addition, existing techniques do not support the
simple temporal validity our decay function provides, which
enables us to process temporal range queries.

Another project similar to ours in spirit involves the use
of data-driven processing to suppress sensor network commu-
nication when data values do not deviate significantly from
expected ranges [20]. This work does not rely on a priori
models fit to the sensed data but on the live data itself.
However, the focus of their work is on the use of models to
distinguish between suppression and failure when employing
suppression based techniques for data reduction; we instead
focus on filling in the missing pieces using statistical inference.

Finally, there has been some work in pervasive computing to
infer high-level patterns or behaviors from low-level data [1],
[14]. These approaches use sophisticated models to represent
higher level tasks that are inferred from lower level observable
phenomena. In their application to date, these models must be
generated for each application domain, which is infeasible in
application to general sensor network inference. In addition,
it is unclear how efficient these models are when performing
temporal inference in a very large network.

VIII. CONCLUSIONS

Pervasive computing is increasingly supported by sensor
networks that perform continuous monitoring of network or
physical phenomena. However, continuous monitoring can be
expensive in terms of communication and energy costs. There-
fore, continuous queries in pervasive computing applications
inevitably contain missing or uncertain data items. Attempting
to understand trends and patterns in measuring these contin-
uous phenomena is hindered by this inherent uncertainty. In
this paper, we designed a framework that employs statistical
modeling to both infer missing and uncertain data and to
understand the degree of confidence an application should
place in that inferred information. We demonstrated how
applications can use both inference and confidence to create
robust and meaningful queries of continuously monitored
dynamically changing phenomena in an efficient manner. The
addition of these easy to understand validity metrics provides
a powerful level to understanding and employing continuous
monitoring in pervasive computing applications.
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