
PAQ: Persistent Adaptive Query Middleware for
Dynamic Environments

Vasanth Rajamani1, Christine Julien1, Jamie Payton2, and
Gruia-Catalin Roman3

1 The University of Texas at Austin
{vasanthrajamani, c.julien}@mail.utexas.edu

2 The University of North Carolina, Charlotte
payton@uncc.edu

3 Washington University in Saint Louis
roman@wustl.edu

Abstract. Pervasive computing applications often entail continuous mon-
itoring tasks, issuing persistent queries that return continuously updated
views of the operational environment. We present PAQ, a middleware
that supports applications’ needs by approximating a persistent query
as a sequence of one-time queries. PAQ introduces an integration strat-
egy abstraction that allows composition of one-time query responses into
streams representing sophisticated spatio-temporal phenomena of inter-
est. A distinguishing feature of our middleware is the realization that the
suitability of a persistent query’s result is a function of the application’s
tolerance for accuracy weighed against the associated overhead costs. In
PAQ, programmers can specify an inquiry strategy that dictates how in-
formation is gathered. Since network dynamics impact the suitability of
a particular inquiry strategy, PAQ associates an introspection strategy
with a persistent query, that evaluates the quality of the query’s results.
The result of introspection can trigger application-defined adaptation
strategies that alter the nature of the query. PAQ’s simple API makes
developing adaptive querying systems easily realizable. We present the
key abstractions, describe their implementations, and demonstrate the
middleware’s usefulness through application examples and evaluation.

1 Introduction

Computing and communication have undergone a dramatic change with the
introduction of mobile devices and sensor networks, enabling new applications
characterized by a tight embedding of computation to the environment, dynamic
network topologies, and the physical distribution of application components. The
ad hoc nature of such networks aligns with fluid applications that must respond
to rapid and frequent changes. As such, applications are often designed to mon-
itor changes in information or conditions in the surrounding environment. As
examples, an application on a construction site may monitor for the presence of
a hazardous materials leak to ensure safety conditions, and a driver’s navigation

system may monitor a network of vehicles to detect traffic conditions that could
impact the planned travel route.

Programming applications that monitor information across an open and
rapidly changing network can be challenging. A persistent query is an abstraction
that can simplify the development of applications that require continuous mon-
itoring. A persistent query allows a programmer to describe the data of interest
to the application without requiring him to specify network communication de-
tails. At the abstract level, a persistent query may be defined as the continuous
reporting of relevant state changes in a dynamic network. However, accurate
evaluation of a persistent query that continuously reports all state changes is
feasible only in relatively static networks; the cost of continuous monitoring is
prohibitive in the face of networks that exhibit rapid change.

To support application development using persistent queries, we introduce
the Persistent Adaptive Query (PAQ) middleware. PAQ introduces strategies
that approximate a persistent query using a sequence of reports generated by
successive one-time queries, i.e., queries evaluated once at a given time over some
portion of the network. Although query processing systems exist which execute
long-lived queries in this manner [1–4], the results are typically presented to the
application in a traditional static database format. In contrast, PAQ presents the
results in a way that more closely simulates continuous monitoring, conveying
the dynamic and streaming nature of the persistent query. Key to supporting
this is a new abstraction called an integration strategy, which specifies how the
history generated by consecutive one-time queries is transformed into a seman-
tically precise approximation of the corresponding persistent query. Integration
strategies go beyond capturing simple aggregation schemes, such as those in [1,
3], allowing the programmer to specify compositions of one-time query results
that relate to spatial, temporal, and semantic properties of the collected infor-
mation. For example, a developer can specify an integration strategy in which
the result delivered to a construction site supervisor shows materials that were
not used throughout the day (i.e., the result includes data items that remained
available and unchanged throughout the execution of a persistent query).

A key insight in our work is that the suitability of an inquiry strategy, which
controls when, how, where, and what type of one-time queries are issued, depends
on the application’s needs with respect to overhead and the desired degree of ac-
curacy in the approximated persistent query result. For example, an application
that requires a high degree of accuracy and can tolerate significant overhead may
employ a query that floods the entire network, while an application with stricter
overhead constraints may employ an inquiry strategy that randomly samples
a set of network nodes. To balance these tradeoffs, PAQ allows an application
developer to specify an inquiry strategy that is best suited to serve the applica-
tion’s needs. More important, however, is the realization that the suitability of
the inquiry strategy changes as the dynamics of the network change. Therefore,
PAQ provides a programming abstraction called an introspection strategy, which
assesses properties of a persistent query’s execution as well as returned results
to determine its suitability. For example, an introspection strategy may use the

locations of responding hosts to determine if the query adequately covers a de-
sired area. Based on the value of such introspection metrics, an application can
use an adaptation strategy to dynamically adjust its inquiry strategy.

In this paper, Section 2 reviews related work on query processing and adap-
tation. Section 3 presents an overview of the PAQ middleware. Details on PAQ’s
abstractions for query execution and appear in Section 4, while Section 5 de-
scribes abstractions related to adapting query execution. Section 6 describes
our prototype implementation using two application examples, and Section 7
presents a performance evaluation. Section 8 concludes.

2 Related Work and Motivation

In the sensor networks and database communities, several query processing sys-
tems provide some version of persistent queries [1–3]. Persistent queries (also
called “continuous queries”) are typically implemented either as 1) a continuous
push of updated data from sensors to a collector with queries executed over the
collected data, or 2) as a sequence of one-time queries periodically propagated
over the network. The “push” approach requires maintenance of a distributed
data structure, which can be costly in dynamic settings. In addition, this method
often requires that a query issuer interact with a collector that is known in ad-
vance and reachable at any instant, which is often an unreasonable assumption.
Therefore, we think of a persistent query as being approximated by a sequence
of one-time queries issued with a given frequency from any node.

Researchers have recognized that a query’s environment changes over time
and that query processing should adapt [5]. The focus is typically to change the
order of query operations to optimize for the dynamics. For example, Continuous
Queries (CACQ) [6] relies on eddies [7] to determine the order in which tuples are
processed by different operators. Similarly, SteamMon [8] adapts the query plan
to accommodate arbitrary changes in the data stream. These approaches use
system-defined adaptations. Alternate approaches use a model that suppresses
the amount of data collected from the network. In model-driven approaches [9],
a local model of the environment is constructed and used to answer queries.
The model obtains data from the network only when it cannot answer a query.
Adaptive filters [10] uses a model of the network to adjust the rate of updates
that stream from each node in the network to a collector as part of a persistent
query; the adjustment is based on acceptable tradeoffs between an application’s
tolerance of numerical imprecision and the current cost of sending updates. A
centralized coordinator periodically adjusts the bounds of each update filter on
each node to suit application needs. Such model-based approaches are not well-
suited for dynamic environments because their unpredictability counteracts the
temporal correlations that form the basis for the models.

None of the above approaches to adaptive query processing provide gen-
eral support for dynamically adapting a persistent query based on application-
specified strategies. For example, while using numerical precision bounds as a
trigger for adaptation is useful, support is still needed for expressing richer types

of adaptation triggers, such as “does the query cover an adequate area of the net-
work”, that would be useful in applications deployed in dynamic environments.
We focus on providing the tools required to expose information about changes
taking place in a dynamic environment and the ability to respond to them.

In general, this ability to inspect and act is called reflection [11, 12], and the
PAQ middleware embodies our effort to systematically provide abstractions for
reflection on persistent queries in dynamic networks. Consequently, we provide
programming abstractions that support the construction of applications that
dynamically evaluate the cost of executing a query in the current environment
and adjust the query’s processing according to the application’s needs.

3 A Middleware for Persistent Query Processing

A persistent query should provide a reflection of the “ground truth,” the actual
state of the world during query execution. This is equivalent to a complete
picture of all of the states of the environment that exist during the persistent
query’s execution. We approximate the results by modeling a persistent query
as a sequence of non-overlapping one-time queries, or queries that appear to
be issued over a single state of the environment. In this section, we introduce
foundational concepts to create and control this kind of approximated persistent
query. We begin by reviewing a model of one-time query execution [13] and then
use the model to precisely define the PAQ perspective and its abstractions.

3.1 A Model of One-Time Query Execution

A mobile ad hoc network is a closed system of hosts, each represented as a triple
(ι, ζ, ν), where ι is the host’s unique identifier, ζ is its context, and ν is its data
value. In a simple model, the context can be simply a host’s location, but it can
be extended to include a list of neighbors, routing tables, and other information.
A snapshot of the global abstract state of a network, a configuration, C, is simply
a set of these host tuples, one for every host in the network.

We capture network connectivity through a binary logical connectivity rela-
tion, K, to express the ability of a host to communicate with a neighbor. Using
the values in a host triple, one can derive physical and logical connectivity re-
lations, e.g., if a host’s context, ζ, includes the host’s location, a connectivity
relation can be defined based on communication range.

The environment evolves as the network topology changes, value assignments
occur, and hosts exchange messages. Network evolution is modeled as a state
transition system where the state space is the set of possible configurations and
transitions are configuration changes. A single configuration change consists of
a: 1) neighbor change: the connectivity relation, K changes; 2) value change: a
single host changes its stored data value; or 3) message exchange: a host sends
a message that is received by one or more neighboring nodes.

We assign subscripts to configurations (e.g., C0, C1, etc.) and use Ki to refer
to the connectivity relation for configuration i. We define query reachability in-
formally, to determine whether it was possible to deliver a one-time query to and

receive a response from some host h within the sequence of configurations [13].
A host’s response to a one-time query is a copy of its host tuple. A one-time
query’s result (ρ), then, is a subset of a configuration: it is a collection of host
tuples that constitute responses to the query. No host in the network is repre-
sented more than once in ρ, though it is possible that a host is not represented
at all (e.g., because it was never reachable from the query issuer).

3.2 The PAQ Perspective

Ideally, a persistent query re-
!"#$%&'(

)*&+*,-'(

.",/0%1,(

2$,&'(

3,)45"),(

!"*&5)4,675"(

8*&+*,-'(

9,",&+*,(4&5*565:(

;<%6<(%)(+44:%,=(

(*5(",*;5&>(
3,)$:*(<%)*5&'(

?,,=@+6>((

:554(*5(6<+"-,((

%"#$%&'()*&+*,-'(!"*,-&+75"(

8*&+*,-'(

A,&)%)*,"*(

2$,&'(

3,)45"),(

05(B44:%6+75"(

B=+4*+75"(

8*&+*,-'(

Fig. 1: A Persistent Query Framework

flects the ground truth. An exact re-
flection of the ground truth is equiv-
alent to acquiring all of the configu-
rations (C0 . . . Cj) of the persistent
query’s execution. Since providing
such accuracy is feasible only in rel-
atively static networks, we extend
our model to approximate a per-
sistent query as a sequence of non-
overlapping one-time queries. Fig. 1
provides an overview of our middle-
ware model, described below.

In evaluating a persistent query’s component one-time queries, it is impor-
tant to understand the behavior of an underlying query processing protocol. For
example, flooding may be expensive but may achieve strongly consistent results,
while randomly sampling a few nodes provides much weaker consistency, but is
much less expensive. The manner in which we query the environment, the in-
quiry strategy, includes not only the one-time query protocol (called the inquiry
mode) but also the frequency of the one-time queries.

A persistent query’s result is formed from the component queries using an
integration strategy, a function f evaluated (and reevaluated) over the sequence
of one-time query results. We denote the results of the sequence of one-time
queries as ρ0 . . . ρi, and the result of a persistent query after the results of the
ith component query have been incorporated as πi = f(ρ0 . . . ρi). This result is
still a set of host tuples, but without the constraint that the set contain only
one result from any single host.

As application requirements and conditions change, applications must deter-
mine the suitability of their particular inquiry strategy. We define an introspec-
tion strategy also as a function over host tuples. However, in the introspection
strategy, a function, d, generates not a set of host tuples but instead a value for
a metric that describes the quality of that history. Based on the value of this
metric, an application can specify adaptation strategies that govern how the in-
quiry strategy is changed. In the remainder of this paper, we discuss how inquiry,
integration, introspection, and adaptation work together to enable applications
to process expressive persistent adaptive queries over dynamic mobile networks.

(a) (b)
ttl = 3, spread = 2

(c)

A

(d) (e)

Fig. 2: Query protocols. The query issuer has a dark boundary. (a) Sample network.
(b) Flooding. (c) Probabilistic protocol. Every node within the constraint (3 hops) that
receives the packet retransmits it to 2 randomly selected neighbors. (d) Location based
protocol that queries the nodes in region A. (e) Random protocol that queries 5 nodes.

4 Two Abstractions for Persistent Query Processing

We next present PAQ abstractions that are essential to creating a persistent
query result. Using these, applications can specify how to retrieve information
from the network and how to combine intermediate results over time.

4.1 Inquiry Strategies

A persistent query’s inquiry strategy comprises the inquiry mode, or the protocol
used to disseminate the one-time queries, and the frequency with which one-time
queries are issued, represented as a tuple 〈I, freq〉. The PAQ interface is:

Listing 1: InquiryStrategy

public class InquiryStrategy{
public InquiryStrategy(InquiryMode mode, int frequency);

}

Defining an inquiry mode effectively entails generating a routing protocol
that defines how the query and its replies propagate in the network. Fig. 2 de-
picts a sample network and example inquiry modes. The most common type of
queries in mobile networks are flooding queries and their derivatives that reduce
overhead by restricting the query’s scope [1, 14, 15]. Fig. 2(b) depicts a simple
scoped flooding query restricted to a two hop radius around the query issuer.
Several approaches explore parameterizing flooding protocols using probabili-
ties [16–18], as shown in Fig. 2(c). Location information can direct queries to
particular regions (Fig. 2(d)). Finally, a random sampling algorithm randomly
selects k hosts to send the query, as depicted in Fig. 2(e). The network paths
used to communicate in random sampling depend on the network’s connectiv-
ity. In all these cases, significant differences between successive one-time queries
can occur even if they are issued close in time using the same inquiry mode.
Variance stems from randomness, network dynamics, and even environmental
factors. These aspects can all influence the suitability of a particular inquiry
mode to a particular persistent query.

To specify an inquiry mode in PAQ, we rely on the insight of previous
work [13], which showed that inquiry modes can be described as a combina-
tion of a forward and a respond function; these functions use a host’s state to
determine whether the host should propagate the query and respond to it, re-
spectively. In PAQ, we leverage these abstractions to allow developers to create
new inquiry modes as a combination of forwards and responds functions.

4.2 Integration Strategies

A PAQ application can define an integration strategy, which dictates how a
history of one-time query results are transformed into a persistent query result.
An integration strategy’s execution is managed by the PAQ middleware. As we
will see, since a one-time query’s result is a set of host tuples, a natural way to
express integration is through the use of set operations.

In the PAQ middleware, an application developer can introduce a new inte-
gration strategy by implementing the IntegrationStrategy interface:

Listing 2: IntegrationStrategy

public interface IntegrationStrategy{
QueryResult integrate(Vector<QueryResult> history);

}

In the above, history is the complete set of historical one-time query results.
Next, we present a set of integration strategies; this set is not exhaustive, but
instead demonstrates PAQ’s ability to address the needs of a variety of queries.

The simplest way to get a persistent query result from a sequence of one-time
queries’ results is to simply return all results to the application. Such cumulative
integration is useful when a persistent query is intended to generate a picture
of all results available over the query’s lifetime. For example, on a construction
site, the supervisor may want to monitor the identities of all workers and visitors
to the site. In this case, the persistent query result is: πi = πi−1∪ρi. Cumulative
integration is depicted in Fig. 3(a).

component query results (ρi) persistent query
result (πi)

(a)

component query results (ρi) persistent query
result (πi)

(b)

Fig. 3: Cumulative Integration (a) and Stable Integration (b). The query issuer is white.
Other colors indicate data values. Between the first two queries, two nodes were added
and two departed. Between the last two queries, two nodes’ values changed.

A cumulative integration strategy that uses only a specified window of the
history of one-time query results to construct a persistent query result can be
expressed by providing an implementation for the IntegrationStrategy in-
terface, and, most importantly, defining the integrate method4:

Listing 3: WindowedCumulativeIntegration

public QueryResult integrate(Vector<QueryResult> history){
//omitted: define top and bottom of history window
QueryResult temp = new QueryResult();

for(int i = top; i>=bottom; i--){
QueryResult nextResult = history.elementAt(i);
Vector<HostResult> results = nextResult.getResults();
for(int j = 0; j < results.size(); j++){
if(!temp.getResults().contains(results.elementAt(j)))
temp.addResult(results.elementAt(j));

}
}
return temp;

}
}

Cumulative integration may result in delivering an overwhelming amount of data
to an application, much of which may not be required. More tailored strategies
may better serve the needs of specific applications; we give examples below.

Stable Integration (Fig. 3(b)). A stable integration gives the results that
have not changed during the query. A construction supervisor may want to know
which materials are not commonly used and thus available for reallocation. A
stable integration’s persistent query result is: πi = πi−1∩ρi. This result depends
only on the result at the previous stage and the result of the current query.

component query results (ρi) persistent query
result (πi)

(a)

component query results (ρi) persistent query
result (πi)

(b)

Fig. 4: Additive Integration (a) and Departure Integration (b)

Additive and Departure Integration (Fig. 4). Two additional integra-
tions collect results that have added or departed since the start of the query. The
former allows the construction supervisor to monitor materials that have been
delivered, while the latter allows him to keep track of assets that have been con-
sumed. An additive integration is the difference between the current result and

4 We provide only this single example of an integration strategy implementation due to space
constraints. Section 6 demonstrates their use, and the complete PAQ implementation can
be found at http://mpc.ece.utexas.edu/AdaptiveFramework/index.html.

the first result: πi = ρi−ρ0. A departure integration is the difference between the
first and current results: πi = ρ0−ρi. These compare results for two instances in
time; they cannot collect transient changes. More sophisticated (and therefore
potentially more expensive) transient integrations can capture these semantics.

Transient Additive and Departure Integration (Fig. 5). Transient ad-
ditive integration provides a complete view of all assets added to the site, even
if they were subsequently consumed: πi = (πi−1 ∪ ρi)− ρ0. Transient departure
integration monitors results that departed, even if they returned. For example, a
construction supervisor may keep track of tool usage since frequently used equip-
ment may require maintenance. Recursively, this is: πi = πi−1∪(ρ0∩(ρi−1−ρi)).
A straightforward extension would count the number of times a particular result
departed, the result πi being a set of pairs.

component query results (ρi) persistent query
result (πi)

(a)

component query results (ρi) persistent query
result (πi)

(b)

Fig. 5: Transient Additive Integration (a) and Transient Departure Integration (b)

Returns Integration (Fig. 6). A returns integration gives exactly those
results that departed, but have since returned; this could give a construction
site supervisor a picture of all of the tools used today.
The returns integration is more diffi-

component query results (ρi) persistent query
result (πi)

Fig. 6: Returns Integration.

cult to state in terms of previous persis-
tent query results, but the result is di-
rectly related to a transient departure
integration. A returns integration sim-
ply checks whether a departed result is
present in the current query result:

πi = πi−1∪〈setp : p ∈ ρi∧p ∈ πt departs
i−1 :: p〉5

The negation of this could monitor tools that went missing during the query.
This example demonstrates the power of integration; by defining fundamental
integration strategies, new strategies can be defined.

5 Two Abstractions for Persistent Query Adaptation

Different inquiry and introspection strategies entail different tradeoffs. A pro-
grammer must be able to evaluate these tradeoffs in light of his application
needs. We describe PAQ’s two abstractions for query adaptation: introspection
and adaptation. The former specifies when to adapt and the latter defines how.
5 In the three-part notation: 〈op quantified variables : range :: expression〉, the variables from

quantified variables take on all possible values permitted by range. Each instantiation of the
variables is substituted in expression, producing a multiset of values to which op is applied.
If no instantiation of the variables satisfies range, the value of the three-part expression is
the identity element for op, e.g., true if op is ∀.

5.1 Introspection Strategies

We define an introspection strategy as the use of information about a persistent
query’s execution to determine how well-suited the associated inquiry strategy
is. An introspection strategy examines the persistent query’s history and com-
pares it to an idealized result. We model introspection as a function d over the
component query results and the ideal result; d maps to a single numeric value
that conveys the quality of the result; the range of d must be a partial ordering.
The application also defines a threshold δ that is the application’s tolerance for
the introspection metric. Although introspection strategies may often be simi-
lar to integration strategies, the purpose is fundamentally different. While the
result of integration answers an application-level question, the result of intro-
spection measures the quality of that answer. In PAQ, an application developer
can introduce a new introspection strategy through the following interface:

Listing 4: IntrospectionStrategy Interface

public interface IntrospectionStrategy{
double introspect(Vector<QueryResult> history);

}

Environmental Introspection Metrics. Introspection can determine the qual-
ity of a persistent query with respect to a desired property of the execution envi-
ronment, as captured by the context (ζ) for each host tuple. In general, this kind
of distance metric can be expressed as d = (γ,P), where γ is the ideal property
and P is a function over the history of query results. The context-aware com-
puting community has performed introspection over context data successfully in
the past. For example, context-aware tour guides adapt displays according to a
tourist’s location and interests [19]. Consider the following example of environ-
mental introspection in the PAQ middleware.

Spatial Coverage Introspection. Applications may require queries to pro-
vide sensing coverage of a physical area. For example, a persistent query that
monitors a chemical’s dissipation across a construction site to ensure readings
are within safety guidelines will have to acquire readings from across the entire
site. We can determine the spatial coverage achieved by the persistent query
using the location information included in the context associated with query re-
sults. We can then compare this achieved spatial coverage to the desired spatial
coverage to determine whether or not the inquiry strategy is appropriate in the
current operational environment. The distance metric can be expressed simply
as the difference between the achieved spatial coverage region s and the ideal
region (i.e., d = |ideal− s|).

For example, a construction supervisor may describe the desired coverage
area as a circle centered at some point on the site. For each component query,
we can find the radius of the region by finding the maximum distance between
a pair of points using the location information λ in the context variable ζ:

r = 〈max ζ.λ, ζ′.λ′, i : (ι, ζ.λ, ν) ∈ ρi ∧ (ι, ζ′.λ′, ν) ∈ ρi ::| ζ.λ − ζ′.λ′ |〉

We can then find the center of the circle; using the center of the spatial coverage
area and the radius, we can plot the actual circular coverage area achieved by
the component query. We can then determine the amount of overlap between
the circle that represents the achieved spatial coverage region and the circle that
represents the ideal spatial coverage region.
Semantic Introspection Metrics. The quality of a query can also be assessed
based on data collected; we call this semantic introspection. These metrics are
computed over the data values (ν) in result’s host tuples. We give the implemen-
tation of the introspect method for a simple semantic discovery metric. Here,
the introspection metric evaluates to 1 if a specified value is found in the history
of query results and to 0 otherwise. We model the complete history of results as
always being provided to an introspection strategy, even if the introspection only
uses part of the history (in this case the most recent result). In this strategy, the
variable value is the target value that triggers adaptation.

Listing 5: SemanticDiscoveryIntrospection

double introspect(Vector<QueryResult> history)
QueryResult newResult = history.elementAt(history.size()-1)
Vector<HostResult> results = newResult.getResults();
HostResult nextResult = null;
for(int i = 0; i < results.size(); i++){

if(nextResult.getValue().equals(value)
return 1;

}
return 0;

}

This metric could be used in a construction site supervisor’s safety moni-
toring application to trigger adaptation from a low-overhead inquiry strategy
like random sampling to a flooding inquiry with higher accuracy when a dan-
gerous chemical reading is discovered. Semantic introspection metrics like this
one, however, are not limited to evaluation over data values of direct interest
to an application. Instead, these metrics can be evaluated over any data values
collected for the purpose of measuring the quality of the query’s execution.

Each of our integration strategies can be translated into a semantic intro-
spection metric that quantifies the kinds of changes that occur. In general, this
is captured by quantifying the difference between the query result at stage k
and a windowed history of previous results. For example, we can define an intro-
spection metric based on stable integration. The interesting part of this metric
describes an evaluation over the history of results; here, P is defined as:

P =| 〈set ν : (ι, ζ, ν) ∈ ρk :: ν〉 −
k−1⋃
i=j

〈set ν : (ι, ζ, ν) ∈ ρi :: ν〉 |

where k is the current stage of the persistent query, and 0 ≤ j < k − 1.
Data Change Rate Introspection. In many cases, the suitability of an

inquiry strategy depends on the data dynamics. Our data change rate introspec-
tion measures the rate at which values change over time. For example, if the

data values in the network are relatively stable, an expensive flooding based
high frequency strategy may not be necessary. Similarly, we define additive data
change rate introspection as a running percentage of data values that have been
added to the persistent query’s result. The introspection metric relates to the
use of the history of results to describe the achieved quality in defining P:

i∑
j=i−k+1

| 〈set ν : (ι, ζ, ν) ∈ ρj :: ν〉 − 〈set ν : (ι, ζ, ν) ∈ ρj−1 :: ν〉
〈set ν : (ι, ζ, ν) ∈ ρj :: ν〉

|

k

When k = i, this measures the rate since the beginning of the persistent
query. This introspection can be specified for departures and changes in a similar
fashion. In measuring the rate of change due to newly arriving hosts, we instead
sum the number of data values associated with new unique host identifiers.

5.2 Adaptation Strategies

Applications can use introspection to assess the quality of the persistent query’s
reflection of the environment. If the persistent query’s result does not meet
the application’s requirements, adaptation strategies can be used to change the
persistent query to achieve, for example, higher quality results or to process the
persistent query at a lower cost. In general, an adaptation strategy is:

〈〈I, freq〉, d, δ+/−, 〈I∗, freq∗〉〉,

where 〈I, freq〉 is the persistent query’s current inquiry strategy, d is the intro-
spection strategy used when the persistent query uses this particular inquiry
strategy, and δ+/− is a threshold on the value resulting from applying d to the
history of one-time query results. If the superscript on δ is +, the adaptation is
triggered if the value of d exceeds δ; if the superscript is −, then the adaptation
is triggered if the value of d falls below δ. The persistent query switches to the
new inquiry strategy, 〈I∗, freq∗〉, when the computed value of the introspection
strategy, d goes either above or below the threshold δ.

As a simple example of how an adaptation strategy could be employed, con-
sider a persistent query using the basic flooding inquiry mode in which the
component one-time queries are issued every 10 seconds. The application may
associate with this persistent query an introspection strategy that changes the
frequency of the one-time queries if the rate of change between the component
queries grows too large. This adaptation policy would be defined as:

〈〈Iflooding , 10s〉, ddata change rate , 0.05+, 〈Iflooding , 5s〉〉

where the initial inquiry strategy 〈Iflooding , 10s〉 adapts to be 〈Iflooding , 5s〉 when
the data rate of change introspection strategy indicates a greater than 5% rate
of change in the data reported for successive one-time queries.

To define adaptation strategies in the PAQ middleware, an ap-
plication developer instantiates an AdaptationStrategy that com-
prises a set of AdaptationPolicy instances. Specifically, to create an
AdaptationStrategy, the interface presented to the developer is:

Listing 6: AdaptationStrategy

public class AdaptationStrategy{
public AdaptationStrategy();
public addAdpatationPolicy(AdaptationPolicy toAdd);
public removeAdpatationPolicy(AdaptationPolicy toRemove);

}

The interface to construct an AdaptationPolicy is:

Listing 7: AdaptationPolicy

public class AdaptationPolicy{
public AdaptationPolicy(InquiryStrategy start,

IntrospectionStrategy introspect,
double threshold, InquiryStrategy end);

}

More complex realizations of adaptation policies are also possible; for example,
the adaptation may change not only the inquiry but also the integration strategy.

6 The PAQ Middleware: Example Applications

This section describes our Persistent Adaptive Query (PAQ) Middleware and
demonstrates its use and performance through a pair of application examples.

6.1 Monitoring Hazardous Conditions

We first explore an application for an instrumented construction site that would
allow monitoring recording, and reacting to the presence of a dangerous volatile
organic compound (VOC). If a VOC leak occurs, the area of the incident may
spread as liquid chemicals spill and as airborne droplets are released. A site
supervisor wants emergency response crews to have as much and as accurate
information about the incident as possible to facilitate containment and response.

The application issues a persistent query over sensors scattered across the
construction site. If there is not a high risk for or evidence of a leak, the applica-
tion should be conservative in its use of network resources to perform background
monitoring of hazardous materials. So the query initially uses random sampling
with a low frequency to sample over the entire construction site. If the query
detects a dangerous concentration, the supervisor requires additional informa-
tion to determine if the reading is anomalous or indicative of an actual leak.
Therefore, this query will use introspection for detection of a particular value (a
high concentration) and will adapt the query to a much more frequent flood of
the entire site to attempt to corroborate the initial detection. To summarize:

– Inquiry strategy: random sampling with a low probability (e.g., k = 0.5),
low frequency (e.g., 5 seconds)

– Integration strategy: windowed cumulative integration, to acquire all con-
centrations that were sampled over the last 20 seconds

– Introspection strategy: semantic discovery of any dangerous reading
– Adaptation strategy: upon detection of a value over the threshold, change

the approach to flood the network with high frequency

In the PAQ middleware, defining this persistent query requires instantiating
each of the strategies, and creating and starting the persistent query.

Listing 8: Initial Query

private void startQuery(){
myInquiry = new Inquiry(new RandomSampling(0.5), 5000);
myIntegration = new WindowedCumulativeIntgration(4);
myIntrospection =

new SemanticDiscoveryIntrospection(new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, initialAdaptation);

}

The initial adaptation (initialAdaptation) takes the persistent query
from this query strategy to its second phase. In this second phase, the application
is alerted to a potential hazardous leak and begins a more expensive but robust
detection to corroborate the initial detection. This new query is:

– Inquiry strategy: flooding with a high frequency (e.g., 0.5 seconds)
– Integration strategy: cumulative integration, to acquire all concentrations

sampled since adapting the persistent query
– Introspection strategy: semantic additive change rate to measure the rate

of discovery of corroborating detections
– Adaptation strategy: if more than 10% of the sensors are newly detecting

a leak, localize the persistent query around the area of detection

Listing 9: Flooding Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new Flooding(), 500);
myIntegration = new CumulativeIntegration();
myIntrospection =

new SemanticAdditiveIntrospection(new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, leakAdaptation);

}

This second adaptation policy (leakAdaptation) changes the query strat-
egy from this second phase to target the persistent query exactly around the area
of the detected leak. This allows the network’s resources and the application’s
attention to be focused on exactly the desired sensing area. The persistent query
continues to monitor this area, adapting the size and scope of the target area as
the detected values change. This phase of the query continues until the danger
dissipates, when the query returns to the original random sampling:

– Inquiry strategy: location-based flooding, focused around the leak
– Integration strategy: windowed cumulative, to acquire the readings over

the threshold in the last 60 seconds
– Introspection strategy: spatial coverage, to ensure the area around the

leak is well-covered
– Adaptation strategy: adjust the flooding area if the coverage is poor;

return to random sampling if the leak disappears

Listing 10: Location Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 500);
myIntegration = new WindowedCumulativeIntegration(6);
myIntrospection =

new SpatialCoverageIntrospection(mid.x, mid.y, radius);
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, locationAdaptation);

}

Here, mid is the location at the center of the detected leak and radius is the
sensed spread of the leak. This application and the PAQ middleware are available
for download6. Fig. 7 shows a sequence of screenshots that demonstrate the three
phases described above.

Fig. 7: A sample execution for a network of 25 nodes. The values of black nodes are
unknown. The values of green nodes are below the threshold. The values of red nodes
are above the threshold. The left shows a snapshot in the middle of the first phase of
the persistent query; the middle shows a snapshot in the middle of the second phase;
the right shows a snapshot in the middle of the third phase.

6.2 Road Traffic Monitoring

Most cities have troublesome spots that have periodic episodes of jammed traffic.
We next use the PAQ middleware to construct an application for intelligent
traffic monitoring. The application monitors an area of interest and informs the
application if there is a backlog of vehicles. We imagine a scenario where both
vehicles and stationary objects are equipped with networked sensors.
6 http://mpc.ece.utexas.edu/AdaptiveFramework/index.html

The application issues a persistent query over sensors that have been scat-
tered across the an area of interest to monitor location information of the vehicles
in the area. Initially, the query probes only the area of interest to conserve the
battery of the hosts in the area. If the application detects several stationary
vehicles in the monitored area for an extended period of time, it can be deduced
that a traffic jam has indeed occurred. Therefore, this query will use an intro-
spection strategy that checks whether a certain number of hosts are present in
several continuous query results. Once, the traffic jam has been detected, the
application performs a random sample the entire network to detect alternative
routes to the application. This phase can be summarized as:

– Inquiry strategy: location-based random sampling, focused on a known
traffic trouble spot, low frequency query (e.g., 20 seconds)

– Integration strategy: None
– Introspection strategy: windowed stable integration to measure whether

the same cars remain in the query area in multiple consecutive queries
– Adaptation strategy: upon detection of a value over the threshold indi-

cating stranded cars, change the approach to random sampling of the entire
network with higher frequency

In the PAQ middleware, defining this persistent query requires instantiating
each of the strategies, and creating and starting the persistent query:

Listing 11: Initial Query

private void startQuery(){
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 20000);
myIntegration = null;
myIntrospection =

new WindowedStableIntrospection(3, new Integer(thresh));
PersistentQuery initialQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, trafficjamAdaptation);

}

This adaptation (trafficjamAdaptation) is invoked if the initial query no-
tices an unacceptable number of stranded cars. It takes the persistent query from
this query strategy to its second phase in which the application issues randomly
distributed queries to find alternate routes to re-route the stalled traffic:

– Inquiry strategy: random sampling with a relatively low probability (e.g.,
k = 0.5) but a higher frequency (e.g., 5 seconds)

– Integration strategy: cumulative integration, to observe all elements of
all of the roadways and get a picture of where to reroute the stranded cars

– Introspection strategy: counting introspection, to ensure that this par-
ticular component query has been issued a given number of times (e.g., 5)

– Adaptation strategy: when the query has sent alternate routes to the
jammed cars (not part of the persistent query), return to monitoring the
initial area to ensure that the traffic is clearing.

Aside from its use of CountingIntrospection, this query is similar to the
initial query in the first application; we omit its listing for brevity.

This second query’s adaptation policy changes the query strategy to once
again target the original location to see if the rerouting instructions are causing
it to clear of traffic. This phase continues unless the re-route did not succeed,
and cars cleared from this location are returning:

– Inquiry strategy: location-based flooding, focused on the original location
– Integration strategy: windowed cumulative integration, to acquire the

readings over the threshold (i.e., returning a number of cars indicative of a
traffic jam) in the last 60 seconds

– Introspection strategy: windowed returns introspection, to see if cars that
were instructed to reroute are in fact returning to the trouble spot

– Adaptation strategy: if the process has failed to clear the traffic, repeat
by resampling for rerouting possibilities

Listing 12: Location Based Query

private void adaptQuery(){
...
myInquiry = new Inquiry(new LocBased(mid.x, mid.y, radius), 5000);
myIntegration = new WindowedCumulativeIntegration(10);
myIntrospection =

new WindowedReturnsIntrospection(5, new Integer(thresh));
PersistentQuery locationQuery =

new PersistentQuery(myInquiry, myIntegration,
myIntrospection, trafficjamAdaptation);

}

This query employs WindowedReturnsIntrospection, which checks for ve-
hicles that return to the trouble spot. If many of the same vehicles return,
(trafficjamAdaptation) is used again, and the process repeats. An applica-
tion may also define a more complex persistent query that becomes increasingly
aggressive about finding alternate routes as it cycles through the process.

7 Evaluating the PAQ Middleware

In addition to the middleware implementation, we also prototyped PAQ using
OMNeT++ [20, 21]. We executed the described applications, modeling the net-
work space as a 1000m × 900m rectangular area. We used the 802.11 MAC
protocol.7 The included graphs show 95% confidence intervals.

We used the first example application to explore PAQ’s performance in the
absence of mobility. We implemented two different types of adaptation: “mod-
erate” and “aggressive.” Given a leak detection, the “aggressive” version im-
mediately starts issuing flooding queries at a high frequency. The “moderate”

7 The source code and settings used are available at http://mpc.ece.utexas.edu/
AdaptiveFramework/index.html.

adaptation increases the query rate more slowly (i.e., by increasing the query
rate by one every five seconds). We compare the behavior of these two adaptive
approaches with two standard query styles: “flooding,” a query that floods all
of the time, and “sampling,” a query that always samples half of the reachable
hosts.8 Fig. 8 highlights the value of employing adaptation to lowering overhead.

Allowing applications

0

5000

10000

15000

20000

25000

50 100 150 200 250 300 350

N
um

be
r
of
 M

es
sa
ge
s

Number of Hosts

Flooding

Aggressive
Adaptive
Sampling
(p=0.5)
Moderate
Adaptive

Fig. 8: Number of packets exchanged

to adapt leads to sub-
stantially lower overhead,
especially as network
density increases. The
moderate version has lower
overhead than randomly
sampling. At first glance,
the overhead of the aggres-
sive approach is similar
to flooding; however, the
aggressive version issues

three times as many queries because it adapts the query rate after leak detection
based on the application’s requirements. Even the moderate version issues 30%
more queries in certain time periods but still transmits far fewer messages.

These performance ben-

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250

Pe
rc
en

ta
ge
 o
f D

et
ec
ti
on

s

Number of Hosts

Sampling
p=0.5
Moderate
Adaptive
Aggressive
Adaptive
Flooding

Fig. 9: Percentage of Detections

efits may come at a cost to
accuracy. Since the nodes
are initially randomly sam-
pled, it is possible for the
leak to go undetected if rel-
evant sensors are not sam-
pled. Fig. 9 shows the per-
centage of times the leak
is successfully detected for
the different versions. In
sparse networks, none of

the versions are very effective because the leak is often in an unreachable network
partition. The moderate approach does not flag a leak unless two values pass
the semantic introspection test while the aggressive version requires only one
detected leak value before switching to a flooding based inquiry. Consequently,
the moderate version misses more leaks. Both the aggressive and flooding ap-
proaches produce a highly accurate picture. A similar effect can be observed
when the leak detection latency is compared. A flooding strategy detects the
leak slightly faster than the aggressive strategy which in turn is slightly faster
than the moderate strategy. This graph is omitted for brevity.

Using our second application scenario (the traffic monitoring example), we
have also evaluated the impact of mobility on PAQ’s query processing capabil-
ities. In our experiment, the query is issued from a central station at one end
of the 1000m × 900m field. The simulation consists of a well connected network
8 While we experimented with different values of k for the random sampling approach, k = 0.5

provides representative results.

with 150 hosts. One-half of these hosts are on vehicles while the remaining one-
half half represent sensors on stationary objects (e.g., traffic signals). A location
is deemed to be “jammed” if more than five vehicles are stationary at a region of
interest over three consecutive queries. In this experiment, we varied the speed
at which hosts are moving from very slow (5mph) to reasonably fast (45 mph).

Fig. 10 shows rates of

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

5 mph 15 mph 23 mph 45 mph

Tr
af
fic
 Ja

m
 D
et
ec
ti
on

 P
er
ce
nt
ag
e

Average Speed of Hosts

Successful Detection vs. Speed

Sampling p=0.5 Flooding Adaptive

Fig. 10: Percentage of Detections

traffic jam detections. Re-
gardless of the strategy
used, some traffic jams go
undetected due to the net-
work dynamics. This is cor-
roborated by the consis-
tent downward slope for all
of the approaches with in-
creasing mobility. However,
in addition to maintain-
ing its lower overhead, the
adaptive strategy achieves
a slightly better traffic jam detection success rate than flooding. This is because
the flooding approach generates many more messages in the network, resulting
in more messages dropped due to collision. Our adaptive strategy targets only a
particular area of the network, thereby reducing the number of messages in the
network. Consequently, fewer messages are dropped leading to better detection.

From these results it can be seen that having a flexible mechanism for adap-
tation is clearly beneficial to application developers. The PAQ middleware pro-
vides software developers a flexible and simple API that allows domain experts to
specify their design choices in a powerful way, allowing applications to explicitly
consider performance tradeoffs in developing their query uses.

8 Conclusions

In this paper, we introduced the PAQ middleware to help programmers quickly
construct applications that use adaptive persistent queries in dynamic networks.
We highlighted the different abstractions in PAQ that support simple specifi-
cation of policies used to govern adaptive applications. Integration allows pro-
grammers to create application-specific methods of composing and interpreting
approximate one-time query results into a result that resembles streaming data.
Inquiry strategies elegantly dictate how data should be gathered from a network.
PAQ’s introspection strategy abstraction provides programmers with the power
to specify arbitrary methods of assessing the quality of achieved results as the
persistent query executes; this assessment can be used to trigger adaptation of
the query. Our evaluation of PAQ through the implementation of two adaptive
applications indicates that our approach is feasible and can support adaptivity,
and can potentially reduce persistent query costs.

References

1. Intanagonwiwat, C., Govindan, R., Estrin, D., Heideman, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE Trans. on Net. 11(1) (Feb. 2003)
2–16

2. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: Proc. of ACM SIGMOD. (2003) 491–502

3. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation service
for ad-hoc sensor networks. In: Proc. of OSDI. (Dec. 2002)

4. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: Tele-
graphCQ: Continuous dataflow processing for an uncertain world. In: Proc. of
CIDR. (2003)

5. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends
databases 1(1) (2007) 1–140

6. Madden, S., Shah, M., Hellerstein, J., Raman, V.: Continuously adaptive contin-
uous queries over streams. In: Proc. of ACM SIGMOD. (2002)

7. Avnur, R., Hellerstein, J.: Eddies: Continuously adaptive query processing. In:
Proc. of ACM SIGMOD. (2000)

8. Babu, S., Widom, J.: Streamon: an adaptive engine for stream query processing.
In: Proc. of ACM SIGMOD. (2004) 931–932

9. Deshpande, A., Guestrin, C., Madden, S., Hellersetin, J., Hong, W.: Model-driven
data acquisition in sensor networks. In: Proc. of VLDB. (2004)

10. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over
distributed data streams. In: Proc. of ACM SIGMOD. (2003)

11. Capra, L., Blair, G.S., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflection
in mobile computing middleware. ACM Mobile Comput. and Comm. Review 6(4)
(Oct. 2002) 34–44

12. Chan, A., Chuang, S.N.: Mobipads: a reflective middleware for context-aware
mobile computing. IEEE Trans. Soft. Eng. 29(12) (Dec. 2003) 1072–1085

13. Rajamani, V., Julien, C., Payton, J., Roman, G.C.: Inquiry and introspection
for non-deterministic queries in mobile networks. In: Proc. of FASE. (Mar. 2009)
401–416

14. Johnson, D.B., Maltz, D.A., Broch, J.: Dsr: The dynamic source routing protocol
for multi-hop wireless ad hoc networks. Ad Hoc Networking 1 (2001) 139–172

15. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proc. of ICSE. (2002) 363–373

16. Haas, Z., Halpern, J., Li, L.: Gossip-based ad hoc routing. IEEE Trans. on Net-
working 14(3) (June 2006) 479–491

17. Kyasanur, P., Choudhury, R., Gupta, I.: Smart gossip: An adaptive gossip-based
broadcasting service for sensor networks. In: Proc. of MASS. (October 2006)

18. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proc. of MobiCom. (1999) 151–162

19. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proc. of MobiCom, ACM Press (2000) 20–31

20. Loebbers, M., Willkomm, D., Koepke, A.: The Mobility Framework for OMNeT++
Web Page. http://mobility-fw.sourceforge.net

21. Vargas, A.: OMNeT++ Web Page. http://www.omnetpp.org

