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Abstract. This paper focuses on the information gathering support
needs for enterprises that operate over wireless mobile ad hoc networks.
While queries are a convenient way to obtain information, the highly
dynamic nature of such networks makes it difficult to ensure a precise
match between the results returned by a query and the actual state of
the enterprise. However, decisions can be made based on the perceived
quality of the information retrieved; specialized query support is needed
to control and assess the accuracy of the query results. In this paper, we
introduce the notion of inquiry mode to allow the user to exercise control
over the query processing policy so as to match the level of accuracy to
the requirements of the task. In addition, we describe the use of query
introspection, a process for assessing the fitness of a particular inquiry
mode. Both concepts are formalized, illustrated, and evaluated.

1 Introduction

Information drives the modern world. Everyday decisions depend on the quality
of data decision makers have. With the introduction of mobile wireless devices,
access to information has been extended to any individual carrying a phone or
PDA. This, in turn, led to changes in the very nature of the enterprise struc-
ture by empowering mobile users and by facilitating more decentralized decision
processes, faster reaction times, and more nimble data acquisition. A still more
radical transformation is made possible by the emergence of mobile ad hoc net-
works (MANETs) that support application domains where a still more fluid
organization is required to adapt to rapidly evolving circumstances. Emergency
response units, wilderness exploration groups, and battlefield intelligence teams
demand quality information gathered from distributed, cooperating sources.

The transformation will have far reaching implications, as enterprises that
rely on connectivity to the wired infrastructure are likely to evolve to include



operations over local MANETs with only occasional access to the wired network.
Construction sites are a representative example. Today, phones are used on the
site to gather information about the status of jobs and to track developing situ-
ations. A chemical spill is likely to trigger a large volume of phone conversations
to coordinate a response to the emergency and to assess the appropriateness of
those actions. Enterprise level systems on the wired network, though well-suited
to support logistics and planning, are not nimble enough to support these ad hoc
peer-to-peer interactions that emerge unexpectedly. A more effective solution is
required to acquire up-to-date data on-demand.

These new enterprises demand flexible and timely access to spatially corre-
lated information about highly dynamic environments. Because the information
is distributed, accessing it entails the evaluation of a distributed query over a
rapidly evolving network, rendering any atomicity guarantees infeasible much of
the time. The spatiotemporal dimension of the information encourages decision
makers to pose questions in a manner sensitive to one’s mental model of how
space is organized and how the system evolves. Furthermore, one is likely to
question the soundness of the decision process. Am I asking the right question?
Am I looking in the right place? Am I getting an accurate enough answer? By
knowing how a query is processed and how volatile the system state is, one
can gain important semantic information about the data a query returns. This,
combined with an ability to specify how queries are evaluated, can significantly
impact the quality of the decision process. For example, a construction site su-
pervisor can specify that a query will be evaluated by sampling across the entire
site or by acquiring values from all devices within a smaller local area. Even
though the queries may return identical results, a supervisor will interpret the
data differently. Finally, changes in query results over time (e.g., rising chemical
concentration readings) or the presence of unexpected values may offer insight
into the adequacy of the query relative to the decision maker’s goals.

This paper explores the semantic dimension of query processing over MANETs.
Starting with the premise that the universe of discourse is the global state of
a connected mobile ad hoc network that represents a distributed mobile enter-
prise, we seek to provide decision makers with a new set of query processing
tools. These are meant to enable both flexible control over the spatiotemporal
dimension of query processing and the ability to assess the fitness of the query
processing for the specific task at hand. Our contribution is twofold:

– We propose an inquiry mode as the means to specify how a query is evaluated
across a MANET; we identify several inquiry modes that relate to different
semantic interpretations of results; and we offer both a general formalization
of the concept and specific query processing protocols.

– Complementing the notion of inquiry mode is query introspection, which
enables evaluation of the adequacy of an inquiry mode. We propose the
use of adequacy metrics that compare query results against expectations or
results obtained from previous correlated queries.

Our approach represents an important shift in the way one thinks about query
processing. A query is intellectually decoupled from the traditional notions of



database processing and is promoted as a basic tool for exploring the surround-
ing world. Within this broad context, new user requirements for query processing
emerge, which suggest that queries should be sensitive to the spatiotemporal na-
ture of the environment and its evolutionary dynamics. In the remainder of this
paper, we first define, formalize and demonstrate inquiry modes. Section 3 then
defines and demonstrates query introspection. Section 4 presents our program-
ming model and a case study application that employs it. We discuss related
work in Section 5 and conclude in Section 6.

2 Defining Inquiry in Dynamic Networks

Our approach is based loosely on our previous work modeling change in mobile
environments [1]. In our model, queries can retrieve information from the network
using a variety of techniques, or inquiry modes, each of which entails its own
costs and benefits. Informally, an inquiry mode specifies the subset of hosts that
contribute to resolving the query. Different inquiry modes may generate vastly
different results for the same query. In this section, we formalize the specification
of queries, their inquiry modes, and their results and provide concrete examples
of how real protocols can be expressed using this formalization.

2.1 Hosts, Configurations, and Configuration Change

A mobile ad hoc network is a closed system of hosts, each represented as a
triple (ι, ζ, ν), where ι is the host’s unique identifier, ζ is its context, and ν is its
data value. In a simple model, the context can be simply a host’s location. In
more complicated models, the context may include a list of a host’s neighbors,
routing tables, and other system or network information. A snapshot of the
global abstract state of a mobile ad hoc network, which we call a configuration,
C, is simply the set of these host tuples, one for every host in the network.

To capture network connectivity, we define a binary logical connectivity re-
lation, K, to express the ability of one host to communicate with a neighboring
host. Using the values of the fields of a host triple, we can derive physical and
logical connectivity relations. As one example, if the host’s context element, ζ,
includes the host’s location, we can define a physical connectivity relation based
on communication range. K is not necessarily a symmetric relation; in the cases
that it is symmetric, K specifies bi-directional communication links.

The environment evolves as the network topology changes, value assignments
occur, and hosts exchange messages. We model network evolution as a state
transition system where the state space is the set of possible system configura-
tions, and transitions are configuration changes. Specifically, a single configura-
tion change consists of one of the following:

– neighbor change: changes in hosts’ states impact the connectivity relation.
– value change: a single host can change its stored data value.
– message exchange: a host can send a message that is received by one or more

neighboring nodes.



To refer to the connectivity relation for a particular configuration in this evolu-
tion, we assign configurations subscripts (e.g., C0, C1, etc.) and use Ki to refer
to the connectivity relation for configuration i.

We build on K to define reachability across configurations. The reachability
relation, R(i,j), is a binary relation on host tuples that indicates the potential
of one-way multi-hop communication between them that starts no earlier than
the ith configuration and completes no later than the jth configuration:

〈∀k : i ≤ k ≤ j :: h ∈ Ck ⇒ (h, h) ∈ R(i,j)〉
〈∀h1, h2, k : i ≤ k ≤ j :: (h1, h2) ∈ Kk ⇒ (h1, h2) ∈ R(i,j)〉
〈∀h1, h2, h3, k : i ≤ k < j :: ((h1, h2) ∈ R(i,k) ∧ (h2, h3) ∈ Kk+1) ⇒ (h1, h3) ∈ R(i,j)〉4

First, every host is always reachable from itself. Second, if one host (h1) is
connected to another (h2) in any configuration between i and j inclusive, then
h2 is reachable from h1. Finally, we recursively define reachability.

2.2 Queries, Inquiry Modes, and Query Results

We extend our definition of reachability to define query reachability, which, in-
formally, determines whether it was possible to deliver a query to and receive a
response from some host h within the sequence of configurations. Given the host
who issues the query, h, query reachability for query q, Rq, is defined as:

(h, h, i) ∈ Rq ⇔ (h, h) ∈ R(0,i) ∧ (h, h) ∈ R(i,m)

It is not only necessary that h was reachable from the query issuer during the
query, but also that, after h was able to receive the query, h was reachable from
h, ensuring that it was possible for h’s response to reach the query issuer.

In our model, the inquiry mode is the technique used to process the query
over a set of configurations. An inquiry mode is defined by a forward-function
and a respond-function, both of which use a host’s state to make a decision about
whether to propagate and/or respond to a query. From any host’s perspective, an
inquiry model is simply the application of two independent functions: I , 〈f, r〉.
Each of f and r is a boolean function over a host tuple h. In the same atomic step
in which a host receives a query, it evaluates both f and r given the particular
query and the host’s state. Since a message exchange constitutes a configuration
change that takes the network from some configuration Ci to Ci+1, the two
functions are evaluated on the receiving host’s tuple in configuration Ci+1.

Next, we define a trio of relations over host tuples that allow us to formalize
a query’s result. Briefly, the forwards relation, Φq, specifies pairs of senders and
receivers of the query and the configuration of reception; the receptions relation,
Γq, specifies hosts that received the query and the relevant configuration; and the
responses relation, Ψq, specifies whether a host qualified to generate a response.
4 In the three-part notation: 〈op quantified variables : range :: expression〉, the vari-

ables from quantified variables take on all possible values permitted by range. Each
instantiation of the variables is substituted in expression, producing a multiset of
values to which op is applied. If no instantiation of the variables satisfies range, the
value of the three-part expression is the identity element for op, e.g., true if op is ∀.



The forwards relation is a ternary relation over host tuples and configuration
numbers. Specifically, (h1, h2, i) ∈ Φq if the host identified by h1.ι forwarded the
query q in a configuration in which h1 captured its state, and the host identified
by h2.ι received the query in a configuration in which h2 captured its state. In
addition, the host that forwarded the query (h1) must also have satisfied the
query’s forward-function, q.f in the state that it received the query. Formally:

(h1, h2, i) ∈ Φq ⇒
〈∃j, h′

1 : i < j ∧ h′
1.ι = h1.ι :: (h′

1, i) ∈ Γq ∧ q.f(h′
1) ∧ (h1, h2) ∈ Kj〉

In this formalization, i and j identify configurations; i is the configuration in
which the host h′1 received the query, and j is the configuration in which the
forwarding occured. Forwarding the query caused the transition Cj → Cj+1.

We next define the receptions relation, Γq. A host is in the receptions relation
if it was the target of a forward or if it is the query issuer:

(h, i) ∈ Γq ⇒ (h = h ∧ i = 0) ∨ 〈∃h′ :: (h′, h, i− 1) ∈ Φq〉

This requires that for a host other than the query issuer to receive a query in
Ci, the query must have been forwarded by a neighboring host in Ci−1.

Finally, the responses relation, Ψq, defines the hosts that received the query
and generated a response to it. To generate a response, the host must receive
the query and satisfy the respond-function. Formally, Ψq is:

h ∈ Ψq ⇒ 〈∃i :: (h, i) ∈ Γq ∧ q.r(h))〉

A query’s result, ρ, is a subset of a configuration: it is a collection of host
tuples that constitute responses to the query; no host in the network is repre-
sented more than once in ρ, though it is possible that a host is not represented at
all (e.g., because it was never reachable from the query issuer). The constraints
defining a query’s result stem from the concepts derived above. First, a result
present in the query must come from a host that responded to the query:

h ∈ ρ ⇒ h ∈ Ψq (1)

Second, any result must have satisfied the aforementioned property of query
reachability. This ensures that both forward and reverse paths exist for query
propagation and response collection. Formally, given the query issuer, h:

h ∈ ρ ⇒ 〈∃i, j : i ≤ j :: (h, i) ∈ Γq ∧ (h, h, j) ∈ Rq〉 (2)

2.3 Examples of Application Protocols

The ability to specify the inquiry mode with which a query executes gives an
application fine-grained control. Consider an application that has some require-
ment for query quality. Given the availability of forward and respond function
definitions, the application can construct a variety of possible query processing
protocols, honing in on the implementation best suited to the combination of
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Fig. 1. Potential inquiry modes. Solid lines indicate available connections, dashed lines
indicate sent messages. (a) Flooding. Every node within the constraint (2 hops) re-
transmits the query. (b) Probabilistic. Every node within the constraint (3 hops) that
receives the packet retransmits it to 2 random neighbors. (c) Location Based. The
query reaches the nodes in region A. (d) Random. The query reaches any 5 nodes.

the application’s requirements and the query environment. In this section we
show how query processing protocols that are commonly used in mobile ad hoc
networks can be easily represented using inquiry modes and their components.

Flooding Inquiry Mode: Flooding based queries are most common in
mobile applications [2, 3]. The sending node broadcasts the query to all of its
one-hop neighbors, who in turn propagate the message to their neighbors. A
query is very likely to reach every node in the network. However, this approach
can be very expensive in terms of the message overhead [4]. Approaches also exist
that constrain the flooding to some region of the network [5]. Because a basic
flooding protocol is deterministic, it cannot be parameterized, so no protocol
parameters are included in the inquiry mode. However, a constrained flood can
be parameterized by specifying the number of hops across which the query is
flooded. Fig. 1(b) shows the messages sent by and the nodes responding to a
flooding inquiry constrained to nodes within two hops of the query issuer.

Expressing the flooding inquiry mode using our formulation is trivial:

Iflooding = 〈true, true〉

This query reaches all hosts but at a significant communication overhead.
Probabilistic Inquiry Mode: Probabilistic techniques distribute the query

with a lower message overhead by reducing the number of nodes involved in
query propagation. Fig. 1(c) depicts an example, where each node receiving
a query retransmits it to two randomly selected neighbors. A more common
variant is to use a probability function to determine whether a particular node
should rebroadcast a received message [4]. Additional parameters can be used
to determine how many times to retransmit a message [6].

Here, the respond function is identical to flooding’s respond function. The
forward function ensures that only a fraction of messages propagate. Every
host generates a random number (rand) and passes it as an argument to the
fprobabilistic function, which is used to determine satisfiability:

fprobabilistic(θ) , (θ < p)

Iprobabilistic = 〈fprobabilistic(rand), true〉



In this inquiry mode, the query reaches only a probabilistically selected set of
hosts, which comes with added complexity but reduced overhead.

Location based Inquiry Mode: If location information is available, it can
direct queries to particular regions. Fig. 1(d) demonstrates a location based query
targeting region A. In this inquiry mode, it is important to be able to compute
a logical function that determines whether a given node satisfies the query’s
location requirements. This is accomplished by writing forward and respond
functions that use the cartesian distance to evaluate satisfiability:

flocation(x1, y1) , ((x1 − x2)
2 + (x2 − y2)

2 < maxD)

rlocation(x1, y1) , ((x1 − x2)
2 + (x2 − y2)

2 < maxD)

Ilocation = 〈flocation(h.ζ.λ.x, h.ζ.λ.y), rlocation(h.ζ.λ.x, h.ζ.λ.y)〉

The parameters come from the host’s location (λ) stored in its context (h.ζ). The
query targets hosts in a specific location, reducing the communication overhead
but requiring significantly increased computation and resource demands.

Random Inquiry Mode: At the far end of the spectrum, a random sam-
pling algorithm may just randomly select a fraction of hosts to reply to the query,
as depicted in Fig. 1(e). These protocols can be parameterized by specifying how
many or what fraction of nodes should take part in the query.

The forward function is the same as in flooding. However, the respond func-
tion needs to ensure that only k% of the query receptions are replied to:

rrandom(θ) , (θ < k)

Irandom = 〈true, rrandom(rand)〉

The value of k is used as decision criteria and a randomly generated num-
ber, rand , is passed in as a parameter. The random inquiry mode reaches only
randomly selected hosts, radically reducing communication complexity.

3 Inquiry Introspection

Using different inquiry modes can yield different results for the same query.
The suitability of an inquiry mode is determined by the needs of the querying
application and may depend on the dynamics of the environment. We define
query introspection as the use of information about a query’s result to determine
if the associated inquiry mode meets the application’s needs. In this section,
we discuss the use of adequacy metrics, which compare query results against
application expectations, to support query introspection.

3.1 An Informal Introduction to Query Introspection

Different inquiry modes provide different sets of tradeoffs as they collect infor-
mation from a distributed network. The inquiry mode selected depends on an
application’s needs; how well a particular inquiry mode meets the needs of the
application is dependent, in part, on the environment during query execution.



For example, a query issued by a construction supervisor may determine the
concentration of a dangerous compound on a construction site. If it is important
to minimize the query’s overhead, the application may use a random inquiry
mode to collect concentration readings from randomly selected hosts across the
site. However, given the environmental conditions in which the query operates,
the random inquiry mode may not provide results that are accurate enough. In
a dense network of spatially-correlated values, a random inquiry mode would
likely provide a representative result; the same query may not provide an accu-
rate enough view of a sparse network to enable a decision about site safety.

This kind of analysis can be supported through query introspection, using
feedback about query execution to determine if an inquiry mode is appropriate.
The ideal approach to evaluating an inquiry mode’s tradeoffs is to determine how
well results reflect the ground truth of the environment during the query’s execu-
tion, but this is impractical. Instead, query introspection examines query results
directly, using a history that may include results for this query and for queries
recently executed using the same inquiry mode. Since each host’s contribution
to a query result contains information about its context, we can consider prop-
erties of the execution environment relevant to the application’s query execution
needs. For example, when using a random sampling inquiry mode to collect a
sample of spatially correlated sensor readings, query introspection can be based
on context information that describes the density of the network around each
responding node to determine if the results are representative.

Using a history of query results, we can approximate a view of the world
that can be used to determine if an inquiry mode is appropriate in the current
environment given the application’s needs. Query introspection, then, can be
achieved by applying an adequacy metric over similar queries’ results. In the
next section, we formalize query introspection and provide examples of adequacy
metrics that can be used in the introspection process.

3.2 Formalizing Query Introspection

Query introspection is the process of determining if an inquiry mode is suitable.
This decision is often related to a tradeoff between the desired properties of the
result and the cost of query execution. A desired property may be that the results
are representative samples; another is that the results are relatively stable and
do not change rapidly over time. Variability in the network topology, the query’s
execution context, and randomness introduced by the inquiry mode can impact
how well results delivered by a query reflect the desired properties.

To support quantifiable introspection, we apply adequacy metrics to query
results. An adequacy metric, d, measures the logical distance between the desired
property of a query’s execution and the actual properties of the achieved query
result. For each distance function, an associated threshold (δ) can be defined by
the application to aid in evaluation. This simple construction supports expression
of arbitrary adequacy metrics that can enrich decision-making processes.

We identify two categories of adequacy metrics. The first measures the qual-
ity of the data captured by a query based on the variability between successive



queries. The second compares an idealized property of the execution environ-
ment to the environment’s measured state during query execution. This set of
metrics is not exhaustive; rather, we intend to illustrate applications’ needs and
to provide a framework for identifying and expressing adequacy metrics.

Data Capture Quality Metrics. Often, decisions regarding the appropriate-
ness of an inquiry strategy are related to the desired quality of the result. One
way to measure the quality of query results is to define an adequacy metric
based on a measurement of the changes in the captured data due to network
variability during query execution. This type of adequacy metric can be sup-
ported by constructing a baseline for comparison using the results of a previ-
ously executed query. In general, this kind of distance metric can be expressed
as: d(Pj(ρj),Pk(ρk)), where ρj is the result for the jth query issued in a sequence
of queries that employ the same inquiry mode, Pj maps a desirable property of
the result to a numerical value, and j ≤ k.

Set Difference. Consider a construction site supervisor that uses a proba-
bilistic inquiry mode to return an inventory of available materials; however, the
supervisor realizes that when the network is highly dynamic, this type of inquiry
mode is not sufficient to achieve a high-quality result that presents an accurate
view of the inventory. To support this kind of introspection, the quality of re-
sults can be assessed by measuring variability between different collections of
results. The set difference metric quantifies the percentage of items returned by
a query that are newly available, have been modified, or are no longer reachable
in comparison to previously collected results. We can express a distance metric
that determines the number of new results as:

d =
| ρk |

| ρk − ρj |

where the kth query is the most recently issued in a sequence of queries using
the same inquiry mode, and j < k. The threshold δ associated with this metric
depends on application needs.

The set difference operator can similarly be used to describe how many result
elements have departed between the submission of a previous query and the
current query. In our construction site scenario, the amount of bricks available
on-site is likely to remain steady until a job consuming them begins, so the
construction site supervisor may initially use a random sampling inquiry mode
to check the inventory of bricks. The supervisor can use the departure distance
function to determine when a job on the site that consumes bricks has begun,
and can alter the inquiry mode if necessary to more closely track brick use.

We can also define an adequacy metric based on a cumulative view across
an entire sequence of returned results. For example, we can define an adequacy
metric based on transitive departures, which counts the number of hosts that
departed between the beginning of the execution of query i and the conclusion
of query k, even if the hosts later return. This can be captured as:

d =
| ρk |

| (
k⋃

i=1

ρi)− ρ0 |



Transitive additions can be specified similarly. These transitive distance metrics
allow a construction site supervisor, for example, to make a decision regarding
the use of the inquiry mode to more closely monitor inventory after an influx of
supplies due to a delivery or the departure of supplies to another site.

Aggregate distances. Another way to describe the quality of a query’s
result is to measure the distance between the aggregated numerical values of a
previous result and the aggregated values for the current result. Such aggregate
distance measures can define adequacy metrics based on trends in the reported
results. For example, a construction supervisor may initially use a probabilistic
inquiry mode to monitor the total level of hazardous chemicals. If the hazardous
chemical level rises at a rate that implies a leak, the probabilistic inquiry mode
may no longer be suitable; given the potential danger, an inquiry mode which
gives more accurate view of the world is needed regardless of the associated cost.
To make this kind of assessment, an aggregate distance metric can compute the
distance of an aggregate (e.g., a total) between two queries:

d = |〈sum p : p ∈ ρi+1 :: p〉 − 〈sum p′ : p′ ∈ ρi :: p′〉|

Variations on this metric can be applied to other aggregates such as count,
minimum, maximum, and average.

Environmental Property Metrics. The previous class of adequacy metrics
are concerned with the quality of a query’s result. These metrics defined the
distance between the most recent query result and an approximate view of the
ground truth. Here, we describe adequacy metrics that evaluate the distance be-
tween a query result and a desired property of the execution environment during
query processing. These metrics can be defined in terms of the distance between
an ideal environment and the conditions under which the query executed, as
captured by the context field ζ for each host tuple in the result.

Network Coverage. In some cases, a query’s network coverage is important
in determining the suitability of its inquiry mode. A query covers an area if
the elements of the result form a connected graph that spans the associated
geographic region. In regions of the network where the data is dense, an area
can be covered by an inquiry strategy that selects a small subset of hosts. This
would yield a query result that is representative of the data in the region while
reducing the associated overhead. In sparse regions of the network, a query result
may cover a region only if all hosts in the region report results. The query issuer
can use query introspection to determine if results obtained using a particular
inquiry mode provide a reasonable representation of the surrounding area.

While finding the minimum set of nodes that cover a geographic region is
an NP-hard problem, it is still possible to provide an adequacy metric based on
whether the results approximately satisfy a network coverage constraint using
information about the density of results. We can get a rough estimate of this
density through average numbers of neighboring results; a relatively high aver-
age results suggests that the results are dense, while a low average suggests that
results are sparse. To provide an example based on location, we first define a
connectivity relation over host locations that defines the existence of commu-
nication links between hosts. A physical connectivity relation that represents a



connectivity model with a circular, uniform communication range can be defined
using the location variable λ from a host’s context ζ:

(hι0 , hι1) ∈ K ⇔ |(hι0 .ζ.λ)− (hι1 .ζ.λ)| ≤ b

where b refers to a bound on the distance between two hosts to consider them
connected. We can roughly determine the density of the query results by aver-
aging across the number of one-hop neighbors, which we compute by applying
the connectivity relation to hosts in the query result. This characterization of
network density can be expressed as:

n =
〈sum hι0 , hι1 : hι0 ∈ ρi ∧ hι1 ∈ ρi :: 1〉

〈sum h : h ∈ ρi :: 1〉

The distance metric can be expressed simply as the difference between n and the
ideal number of neighbors (i.e., d = |ideal−n|). The application can dictate how
the average connectedness measure relates to ideal network density and define a
threshold that determines adequacy.

Semantic Discovery. It may also be desirable to determine inquiry strategy
suitability based on the presence of a particular value:

n = 〈sum p : p ∈ ρi ∧ p = v :: 1〉

where v is the desired value. A distance metric can be specified as d = 1 − n.
For an application that wishes to be alerted of the presence of a single value, the
associated threshold is specified as δ = 0.

The value of interest may not be directly related to a query’s reported result.
Instead, causal relationships between different values may be the basis for adap-
tation. For example, the discovery of smoke on a construction site implies the
presence of fire. If smoke is detected, then a inquiry mode which trades accuracy
for overhead should be abandoned in favor of one that provides a higher accuracy
in a search for a fire. These causal relationships can be captured in an adequacy
metric by collecting and evaluating a metric over causally related values in the
context field ζ of responding hosts.

4 Implementing Inquiry Modes and Introspection

We have implemented our model using Java5; we use the public interface pre-
sented below to demonstrate how our model can be realized in practice in a real
application example. Fig. 2 shows this public interface, which includes a defini-
tion of a Query and its InquiryMode. Implementations of inquiry modes like the
ones described in Section 2 extend these abstract classes with concrete function-
ality. For this discussion, consider a scenario where a construction site supervisor
has deployed sensors across the site over which he issues queries to monitor the
concentrations of hazardous airborne materials. The manner in which queries

5 The source code and settings used are available at http://mpc.ece.utexas.edu/

InquiryMode/index.html



are processed should differ depending on the conditions on the site; our model
captures this in a changing inquiry mode.

Phase 1: Initially, the supervisor may use a query with these characteristics:

– Forward Function: Probabilistic (Parameters: p = 0.7)
– Respond Function: Random Sampling (Parameters: k = 0.5)
– Introspection: Aggregate Data Capture quality (Parameters: δ = 0.1)

To execute this query, concrete implementations of the probabilistic forward and
random respond functions (such as the one shown in Fig. 3) need to be provided.

When a node receives a query, it executes the query’s forward and respond
functions. If the forward function returns true given the host’s current context,
the host forwards the query. If the respond function returns true, the node
processes the query at the application level. This entails updating the query
with its data value(s) and the cost as defined by the introspection type. In
this phase, the introspection cost is simply an aggregate on data quality, so no
metadata outside the query result is required.

This query is adequate for baseline monitoring. The forward and respond
functions ensure that only a fraction of all the devices are involved in query
processing, reducing resource usage. By choosing data quality as the introspec-
tion strategy, the supervisor can keep issuing such low cost queries until there is
an indication of variance in data quality. In our example, a 10% change in the
concentration indicates a chemical leak.

Phase 2. When a leak is detected, more serious monitoring is warranted.
The first step is detecting where the leak emanates from.

– Forward Function: Flooding (Parameters: None)
– Store Function: Flooding (Parameters: None)
– Introspection: Spatial Coverage (Parameters: 10 units)

By issuing such a query, the supervisor spends more resources by employing a
flooding based inquiry mode to detect the location of the leak. By correlating

class Query {

public Query(InquiryMode inquiry, Introspection metadata);

}

class InquiryMode {

public InquiryMode(ForwardFunction f, RespondFunction s);

}

abstract class ForwardFunction {

abstract public boolean Execute(Context nodeContext);

}

abstract class RespondFunction {

abstract public boolean Execute(Context nodeContext);

}

Fig. 2. The Inquiry and Introspection API



class FowardProbabilistic extends ForwardFunction {

double p;

FowardProbabilistic(Conext c) {

p = c.probThreshold;

}

public boolean Execute(Context nodeContext) {

return (nodeContext.getRandomNumber() < p);

}

}

Fig. 3. Defining a probabilistic forward function

P11 P12 P13 P21 P31 P32

Data Response 484 504 559 604 609 598

Spatial Coverage ∅ ∅ ∅ (900, 915), (805, 311), ...(700, 232) ∅ ∅
Cost 19 10 23 175 45 51

Table 1. Case Study query results by phases

those regions (obtained from the metadata information) with the response values,
the application can establish regions of leakage.

Phase 3. Once the leak has been localized, the application can adapt the
query once again to focus on the area of the leak:

– Forward Function: Location (Parameters: Area enclosing quadrant of site)
– Store Function: Location (Parameters: Area enclosing quadrant of site)
– Introspection: Data Quality (Parameters: δ = 0.2)

Only devices in the vicinity of the leak respond to the query, and the user can get
more detailed data from that region. In addition, this data can be collected more
quickly since the network is focusing on a smaller amount of communication.

Results. Table 1 highlights the values for responses, metadata, and cost
observed during the execution of this case study; in the table, P12 refers to
the second query issued in Phase 1. When the first query is issued, the average
concentration of chemicals is determined. Subsequent queries show a jump from
an average that exceeds the threshold of 10% stipulated by the application. The
application switches to Phase 2’s flooding query, and the introspection strategy
determines the query’s spatial coverage. The supervisor identifies the location
coordinates that have a high value for the amount of chemicals sensed. Once
the areas of interest are located, he issues queries to get data only from those
locations. At every step, he can evaluate the data against the cost of obtaining
it. The cost expressed here is the number of messages to obtain the query result
and its associated metadata. When the supervisor is obtaining just the data
elements and using a low cost inquiry mode like random sampling, he incurs
a lower cost. However, the cost increases to a higher value (175) when a more
expensive inquiry mode like flooding is used. However, once this information is



used to locate the area of interest, the supervisor can revert to an inquiry mode
that restricts the overhead by scoping the query to a particular region of interest.
This example demonstrates that introspection can provide great flexibility to the
application developer and has the potential to save resources. Introspection thus
provides an important mechanism in analyzing feedback, which is critical to
developing intelligent adaptive systems.

5 Related Work

Our approach takes a novel perspective on modeling queries in mobile ad hoc
networks by defining two new concepts: inquiry modes and query introspection.
In this section, we examine related approaches with respect to modeling queries
in these dynamic environments and adapting querying techniques.

Several related approaches to modeling dynamic environments rely on process
calculi [7, 8] or petri nets [9]. The former tend to focus on evolutionary changes
(like our configuration changes), but make it difficult to capture the impact
of time, space, and other constraints on query processing. The latter focus on
low-level aspects of the environment such as packet transmission and energy con-
sumption, lacking constructs to capture query processing behavior. More closely
related work on coordination techniques for mobile and disconnected environ-
ments defined a concept similar to our reachability [10]: disconnected routes,
which allow decoupling of mobile communication in space and time. The model,
however, focuses on using the availability of motion profiles to plan nodes’ inter-
actions over time. Existing work in applying query processing to these dynamic
environments focuses primarily on mobile distributed databases and the ability
(or inability) of a system to provide traditional strong semantics (e.g., [11]). Our
approach explicitly separates dissemination (through our forward function) from
result generation (through our respond function). This approach in essence treats
the entire network as a global virtual data structure, which is more in line with
approaches targeted to database abstractions for sensor networks (e.g., [12]).

Our work also has some similarities to what can be broadly categorized as
stream processing systems. Some of this work has explored model-driven query
processing [13] where each node constructs a local model of the data available.
If the estimated error of the model is below a threshold, a node processes a
query over the local data model to avoid consuming resources. A model driven
approach is less suitable for mobile environments because of the inherent un-
predictability of movement. Our formalization of introspection provides a more
systematic approach to exposing relevant adequacy metrics (both data and net-
work related) to facilitate adaptivity. By evaluating these metrics over values,
informed decisions can be made on the trade-off between the cost of executing a
particular query against application needs and switch inquiry modes as applica-
tion requirements change. Similarly, reflection is common in mobile computing
middleware and models [14]; our work recognizes the importance of reflection
to the adaptivity of mobile applications and provides a formal foundation for



exposing information about query results to applications through a principled
use of introspection.

6 Conclusions

In this paper, we have presented a new perspective on query processing in mobile
and pervasive networks. We presented a formalism for the concept of an inquiry
mode that defines which devices participate in query resolution. In addition, we
also formally defined the notion of introspection that helps evaluate the tradeoff
between the cost of a chosen inquiry mode and its effectiveness by exposing rele-
vant metadata in the form of adequacy measures. We showed how our model can
be used to specify a variety of real world inquiry modes and adequacy measures.
In addition, we provided a Java implementation that helps realize our model for
practical application development and demonstrated its effectiveness.
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