
A Demonstration of Pervasive Device Integration with
SEAP-based Middleware

Drew Stovall, Seth Holloway, Jorge Lara-Garduno, Christine Julien
The University of Texas at Austin

Mobile and Pervasive Computing Group
Austin, TX, USA

{dstovall, sethh, jlara-garduno, c.julien}@mail.utexas.edu

ABSTRACT
In this paper, we describe a demonstration of the SEAP
middleware architecture applied to pervasive computing ap-
plications. SEAP, or Sensor Enablement for the Average
Programmer, is an architectural pattern specifically tar-
geted at junior and hobbyist level programmers. It builds
on existing knowledge and technology resources commonly
available to this target audience, and provides a friendly en-
vironment to create customized applications that interact
with the physical world. While we discuss some of the mo-
tivation behind our work and give a brief overview of the
SEAP architecture, the majority of this paper describes a
proposed demonstration of the technology. This interactive
demonstration is designed to be accessible to a wide variety
of people, and to spur discussions on middleware for end-
users of pervasive computing.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software Architectures

; D.2.11 [Software Engineering]: Software Architec-
tures—Domain-specific architectures

General Terms
Standardization

Keywords
SEAP, sensors, demonstration

1. INTRODUCTION
Pervasive computing technology has found its way into the

military, industry, and even our homes. Devices are required
to work together to perform useful tasks that are simply
not feasible without cooperation. However, the cooperation
that we see between devices is almost invariably predefined
by manufacturers. Implementation details are often inac-
cessible or require an immense amount of product-specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware’08 Companion December 1-5, 2008 Leuven, Belgium
Copyright 2008 ACM 978-1-60558-369-3/08/12 ...$5.00.

knowledge. These factors limit the ability of end-users to
customize the behaviors of devices and their interactions in
pervasive environments.

The SEAP middleware architecture [8] creates a simple co-
ordination framework to allow novice programmers to write
programs that collect data and issue commands to remote
devices, allowing them to quickly develop valuable person-
alized applications that rely on device coordination.

Currently, sensors are hard to use; they use proprietary
communication protocols, unique data formats, and a vari-
ety of programming languages. The combination of these
effects keep sensors from their deserved place in the wild.
Imagine an aware home scenario where a user wants to lower
his electric bill by enabling home automation to proactively
adjust light levels as inhabitants move around the building.
While the concept is simple in theory, there are few real-
izations in practice. Lights may be motion controlled using
specialized hardware, but this represents a closed solution
that a user cannot modify. Similar systems use RFID, but
they are also closed. To integrate more features, custom
installations are possible, but they are prohibitively expen-
sive and likely use specialized hardware. Instead of using
an expensive, proprietary system, we propose an easily un-
derstood software approach that uses open standards and
well-known languages. In addition, our approach will allow
the home’s inhabitants to easily tailor applications’ behavior
to their particular requirements and preferences.

While SEAP is broadly applicable, characteristics of the
approach favor specific applications. Because SEAP is opti-
mized for approachability rather than performance, we en-
vision SEAP being applied to rapid prototyping and hetero-
geneous device integration for projects such as automation,
monitoring, and latency-tolerant command and control; ex-
ample domains include smart spaces, aware homes, and in-
telligent construction sites. SEAP applications are quickly
created, easily customized, and extensible. Disparate data
sources are easily aggregated and processed which opens the
wide world of sensors to developers that would otherwise be
excluded by the exotic programming languages and other
intimidating road-blocks.

In the next section we discuss related work. In Section 3
we briefly describe the SEAP approach. Section 4 details
how we propose to demonstrate SEAP, and how conference
participants will interact with the display. As requested, in
Section 5 we specify some equipment that we require. A
brief conclusion is offered in Section 6.

2. RELATED WORK
The notion of sensor and web integration is not entirely

new, and several related projects have paved the way for
our proposed approach. CoolTown allows networked mo-
bile devices to publish data on the web through a variety of
tailored protocols [2]. Data being published includes infor-
mation about a device’s characteristics (location, for exam-
ple), enabling a degree of content-based discovery. Another
ambitious project has created a centralized website that will
accept sensor data generated worldwide [4], a technique clev-
erly titled slog (sensor log). Here, sensors first communicate
their data to a base station supporting a particular sen-
sor network. The base station funnels sensor data to the
clearinghouse using a connection to the Internet. Because
we are interested in enabling more personal applications, in
SEAP, users control their own data. This provides a more
distributed computing approach since data and actuation
events are only shared relative to a local space.

Other current approaches to sharing sensor data build on
standard web services using SOAP, WSDL, and XML. The
Open Geospatial Consortium (OGC) allows governments
and affiliated companies to take advantage of a massive set
of federated devices and sensors using SensorML, a sensor
model language that defines an XML schema to identify and
use sensors [3]. Microsoft’s SenseWeb project [11] has also
provided a generic method to push sensor data online. How-
ever, both approaches rely on SOAP web services, which
can be inflexible, slow, hard to maintain and manage, and
heavyweight [9]. For large deployments, economies of scale
marginalize the overhead, but SOAP web services present an
unnecessary cost for small deployments that we set out to al-
leviate. This is especially relevant to ubiquitous computing
deployments where devices are often resource-constrained,
demanding efficient and streamlined solutions.

While rooted in different technologies, there are a number
of other designs to reduce the efforts required to develop per-
vasive computing applications. For example, Weis et al. [13]
use visual programming techniques to reduce the learning
curve typically required. Other approaches such as [7] and [1]
provide additional layers of abstraction to manage complex-
ities that can be hidden from the developer. We anticipate
that these techniques to be complementary to the SEAP
middleware architecture, and might be combined to further
ease software development for pervasive computing.

In the SEAP approach we minimize the interface for both
devices and programmers by relying on a simple but ex-
pressive form for data movement, HTTP GET and POST
commands. Our approach is consistent with representa-
tional state transfer (REST) principles [6] in an effort to
be lightweight, flexible, and compatible. REST is an archi-
tectural style for network systems that promotes the trans-
mission of domain-specific data over HTTP. Key to REST is
the notion of resources; every piece of specific data should be
universally accessible as a resource. Users interact with re-
sources using a small set of well-defined commands to manip-
ulate the representation of a resource. Some work has been
done to apply the REST style in the sensor domain [5], how-
ever, this work violates many REST principles with large,
complex systems that require a great deal of configuration
and knowledge; this reduces benefits innate in the initial
REST proposal. SEAP, on the other hand, approaches the
problem with a minimalist perspective: get the data online
in a form that entry level web programmers can already use.

Figure 1: SEAP data flow among devices and user.

By using standard HTTP, we inherit the benefits of both
past and future work on HTTP and allow programmers to
begin writing ubiquitous applications immediately.

3. SEAP ARCHITECTURE
The SEAP architecture addresses the challenge of custom

coordination by exploiting the widespread knowledge of ba-
sic website programming. At a high level SEAP extends
standard web-programming techniques by replacing users
with devices. This simple substitution allows us to build
on the vast teaching- and knowledge-base already available
to the web-programming community, as well as various tech-
nologies already built and maintained by various organiza-
tions.

In the deployment of a typical web application, a pro-
grammer installs their code in an application server. The
application server handles the details of HTTP, thread man-
agement, and a number of other complex issues that are
orthogonal to the application itself. Thus, when clients in-
teract with an application, their requests are presented to
the programmer in tidy, high-level data structures. To sup-
port a variety of languages, there are a number of COTS
application servers each allowing the programmer to apply
any existing programming skills.

In the deployment of a SEAP application, the program-
mer also uses an application server to deploy their code.
Instead of web application clients, a SEAP application han-
dles requests from pervasive computing devices. Some of
these requests provide data to the application in much the
same way a form is submitted in a web application. Other
devices request new configuration or commands, an analog
to the web application’s personalized content. A digram of
how the data flows in a SEAP application is shown in Fig-
ure 1. In this Figure, data is passed between the devices
and the application server using HTTP. Since the user ap-
plication is hosted by the application server, data is passed
by simply passing control to the appropriate function.

The architecture described here serves as the basic system,
but a number of extensions (which mirror web programming
advances) will allow even simpler application development.
For example, people create blogs using services hosted on
remote machines. Pervasive computing coordination appli-
cations hosted remotely can likewise provide server support
and domain specific programming “languages”.

Figure 2: Flow of data among devices in demon-
stration. On the left are sensors, on the right are
actuators, and in the center is the SEAP server.

4. THE DEMONSTRATION
To demonstrate the novel features of our middleware ar-

chitecture and how it is used to create new applications, we
will use the devices typical of a pervasive computing envi-
ronment (e.g. a user’s home). A laptop computer will host
the example applications during the demonstration; applica-
tions will receive data from a subset of devices and send data
to a different subset of devices. An overview of the demon-
stration equipment is shown in Figure 2. In this section,
we will detail the specific devices that will be present and
their capabilities. We will then talk about how conference
participants will interact with the demonstration on site.

4.1 Sensors
For the purposes of this description, we will refer to any

device providing data to the SEAP server as a sensor. For
example, a Sun SPOT device [12] provides readings taken
from its internal 3-dimensional accelerometer. The device
will provide three floating point numbers representing the
relative direction of gravity to the SPOT’s own coordinate
system. Using these values, a SEAP application can discern
how the device is tilted. We will talk about how this value
is used later in this section.

To represent more abstract contextual values, we will also
provide an active RFID system which will periodically send
presence information to the SEAP server. Using a small
Faraday cage, we will simulate the movement of tagged items
or personnel in a monitored area. Several tags will be avail-
able so that applications may build on the interplay between
multiple tags.

To provide the ability to model very diverse and rich
source data for the SEAP system, we will also be provid-
ing a virtual sensor in the form of a small GUI application.
This sensor will provide a number of user controls to pro-
vide numerical and boolean data to the SEAP server, as
well as free-form area where participants may provide their
own (character-based) data. We anticipate using this func-
tionality to replicate any example applications provided by
spectators.

4.2 Actuators
To show how pervasive computing might affect users’ en-

vironments, we will provide a number of devices that are
capable of acting on data provided by a SEAP application.
We will will refer to these devices as actuators. As one ex-

Figure 3: A web-browser will be able to read any
advanced SEAP server output.

ample, a Roomba Create robot will request commands from
the SEAP server. Using only two numerical outputs, speed
and turning angle, a SEAP application will be able to steer
the robot remotely.1

The Sun SPOT devices mentioned in the previous sub-
section will be providing sensor data to the SEAP server.
However, the devices also provide eight tri-color LEDs. The
device will periodically request color and intensity informa-
tion and update the LEDs appropriately. Additionally, since
the SEAP server is making values available to HTTP clients,
a simple web-browser will also be able to display the server’s
values as shown in Figure 3. Like the virtual sensor above,
this will allow us to demonstrate the SEAP approach to any
application domain.

Another possible actuator included in the demonstration
is a camera with pan-and-tilt capabilities. The camera’s
output will be displayed for participants to view while the
servos will be controlled by the SEAP server.

4.3 The SEAP Server
At the center of the demonstration, we will provide a lap-

top computer hosting application servers in at least two pro-
gramming languages (Java & PHP). While only one appli-
cation server can run at a given time, we can switch between
them quickly. Each server will be pre-populated with appli-
cations to demonstrate the SEAP approach. Attendees will
be able to interact with the demonstration both passively
and actively. They will be able to manipulate the sensors
and view their effects on the actuators. The source code for
the example applications will also be available for inspec-
tion and manipulation. Specifically, we will allow attendees
to update the applications on-site to realize new behaviors
and interactions.

The software running on the sensors and actuators them-
selves will not be modifiable (as in a real SEAP deployment)
which protects the integrity of the demonstration. No mat-
ter what changes are made to the SEAP server, the sensors
will continue feeding data to it and the actuators will con-
tinue reading commands. If a bug is introduced into the
SEAP server, the example application can be restored and
the demonstration returned to normal.

1The current implementation uses a long data cable to con-
trol the robot. We anticipate the completion of an on-board
controller which will allow untethered operation.

4.4 Example Applications
Here is a brief list of applications that we will provide as

examples or create on-site with attendees:

• Spot-to-Bot: As the Sun SPOT is tilted forwards and
backwards, the Roomba robot will drive faster and
slower. Like-wise, tilting the SPOT left and right
will effect the robot’s steering. One application might
interpret the SPOT’s input as speed while another
might interpret it as acceleration, a simple conversion
to make on the demonstration floor.

• Presence monitor: As Active RFID Tags are moved in
and out of range of the reader, the SEAP server will
instruct a Sun SPOT to alter the color of its LEDs.
This will model a simple In-Out board like the one
described in [10]. There are a number of variations on
this theme that attendees can explore on-site.

• Energy efficient home: Using the SunSPOT LEDs to
model the activity of a home’s air-conditioning sys-
tem, we can set up an application that only turns the
air conditioner on when an occupant is home and the
measured temperature is above a given threshold. We
will use the RFID system to monitor occupancy and
the current temperature will be provided by the virtual
sensor.

5. REQUIRED EQUIPMENT
As described, the demonstration requires the following

items in addition to those we will supply. However, if some
of these items are not available, we are convinced that we
can still provide an interesting demonstration a subset of the
functionality described above.

• Power, four outlets: Much of the equipment is battery
powered, but we will require at least four outlets.

• Table: To lay out the devices and provide a work sur-
face for participants, a table about two meters long
should be sufficient.

• Floor space: The Roomba robot will be moving about
on the floor. We do not anticipate requiring any special
considerations for this, but want the organizers aware
of it.

6. CONCLUSION
This paper details a demonstration of the SEAP mid-

dleware architecture for pervasive computing environments.
With the SEAP middleware, hobbyists will be able to de-
velop meaningful, custom applications without learning the
low-level details of sensors and sensor networks. We hope
that showing both premeditated and improvised examples
will clearly show how simple these applications are to build
given the proper support.

7. ACKNOWLEDGMENTS
The authors would like to thank the Center for Excel-

lence in Distributed Global Environments and the Pervasive
Computing Test Bed for providing research facilities and the
collaborative environment. This research was funded in part
by NSF Grant #CNS-0626777 and AFOSR Grant #FA9550-
07-1-0157. The views and conclusions herein are those of the
authors and do not necessarily reflect the views of the spon-
soring agencies.

8. REFERENCES
[1] F. J. Ballesteros, E. Soriano, G. Guardiola, and

K. Leal. Plan B: Using files instead of middleware
abstractions. IEEE Pervasive Computing, 6(3):58–65,
July-September 2007.

[2] J. Barton, T. Kindberg, H. Dai, and N. Priyantha.
Sensor-enhanced mobile web clients: an XForms
approach. WWW, pages 80–89, 2003.

[3] M. Botts. Sensorml. http://vast.uah.edu, 2007.

[4] K. Chang, N. Yau, M. Hansen, and D. Estrin.
SensorBase.org-A Centralized Repository to Slog
Sensor Network Data. DCOSS/EAWMS, 2006.

[5] W. Drytkiewicz, I. Radusch, S. Arbanowski, and
R. Popescu-Zeletin. pREST: a REST-based protocol
for pervasive systems. MASS, pages 340–348, 2004.

[6] R. Fielding and R. Taylor. Principled design of the
modern Web architecture. TOIT, 2(2):115–150, 2002.

[7] R. Handorean, J. Payton, C. Julien, and G.-C.
Roman. Coordination middleware supporting rapid
deployment of ad hoc mobile systems. In Proceedings
of the 1st International Workshop on Mobile
Computing Middleware, co-located with ICDCS 2003,
pages 362–368, May 2003.

[8] S. Holloway, D. Stovall, A. Dalton, and C. Julien. So
many sensors, so little data. In Proceedings of the First
International Workshop on Software Architectures and
Mobility (SAM ’08), Leipzig, Germany, 10 May 2008.

[9] C. Kohlhoff and R. Steele. Evaluating SOAP for High
Performance Business Applications: Real-Time
Trading Systems. WWW, pages 03–2002, 2003.

[10] D. Salber, A. K. Dey, and G. D. Abowd. The context
toolkit: Aiding the development of context-enabled
applications. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’99),
pages 434–441, New York, NY, USA, 1999. ACM.

[11] A. Santanche, S. Nath, J. Liu, B. Priyantha, and
F. Zhao. SenseWeb: Browsing the Physical World in
Real Time. Demo Abstract, IPSN, 2006.

[12] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and
D. White. Java on the bare metal of wireless sensor
devices. In Proceedings of the 2nd International
Conference on Virtual Execution Environments, June
2006.

[13] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and
A. Brandle. Rapid prototyping for pervasive
applications. IEEE Pervasive Computing, 6(2):76–84,
April–June 2007.

