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Queries are convenient abstractions for the discovery of information and services, as they offer

content-based information access. In distributed settings, query semantics are well-defined, e.g.,
queries are often designed to satisfy ACID transactional properties. When query processing is

introduced in a dynamic network setting, achieving transactional semantics becomes complex

due to the open and unpredictable environment. In this paper, we propose a query processing
model for mobile ad hoc and sensor networks that is suitable for expressing a wide range of

query semantics; the semantics differ in the degree of consistency with which query results reflect

the state of the environment during query execution. We introduce several distinct notions of
consistency and formally express them in our model. A practical and significant contribution of

this paper is a protocol for query processing that automatically assesses and adaptively provides

an achievable degree of consistency given the operational environment throughout its execution.
The protocol attaches an assessment of the achieved guarantee to returned query results, allowing

precise reasoning about a query with a range of possible semantics. We evaluate the performance
of this protocol and demonstrate the benefits its serves applications through examples drawn from

an industrial application.
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1. INTRODUCTION

The widespread adoption of portable devices has the potential to support truly ubiq-
uitous computing. These developments have led to heightened interest in design-
ing software-intensive systems for mobile ad hoc networks, i.e., dynamic networks
formed opportunistically by nodes within wireless communication range. Applica-
tions in such settings are often designed to exploit information and services provided
by other applications in the network. In marketplace applications, a shopper may
search for nearby services or products. On an intelligent construction site, a site
supervisor can collect information from a network deployed on the site to manage
assets and maintain safety.

An abstraction that can help simplify the process of discovery in such applications
is a query. Query processing masks the details of complex network communication
required to discover information and services distributed across a mobile ad hoc
network. Query use in such open and dynamic settings is particularly appropriate,
as queries eliminate the unrealistic assumption of knowing in advance the location
or exact nature of the desired information.

Traditionally, database query semantics have been precisely defined to ensure
that executing a query results in a single, correct answer, usually requiring a trans-
action which upholds the ACID properties of atomicity, consistency, isolation, and
duration. In distributed databases, preserving these properties often requires a dis-
tributed locking protocol that prevents changes to data during query execution. In
effect, a query appears to execute over all hosts in the network in a single step.
Applying the ACID properties becomes more complicated when hosts are mobile
because such locking protocols are expensive in highly dynamic environments rife
with disconnections. In addition, using locking protocols in these networks, which
are often designed to provide access to streaming data, is not feasible. Attempting
to strictly adhere to the ACID semantics makes it difficult, if not impossible, to
receive any query results under common operational conditions.

We contend that a number of applications for dynamic computing environments
may require guarantees other than strict transactional semantics. We propose a
new perspective on query semantics that allows us to discover, precisely define, and
reason about the kinds of query semantics needed by applications in these dynamic
environments. We introduce a model that can be used to formalize a range of
consistency semantics associated with query execution in mobile ad hoc networks.
To our knowledge, this is the first attempt to provide a general specification method
for query execution semantics in such networks. We use this model to formally
express novel consistency semantics that lie in between the extreme strong and
weak forms of consistency typically identified in query processing models.

The ability to express query consistency semantics will provide a solid intellec-
tual foundation for discovery and enhanced understanding, but without a practical
realization of a particular semantic, it is of no use in application design. For this
reason, our work couples the formal expression of query semantics with protocol
development. We present a protocol for query execution in dynamic ad hoc net-
works that automatically assesses the changing operating environment and adapts
its execution to provide query results. An assessment of the achieved consistency
semantic is provided with the query results. Such a protocol offers a more flexible
ACM Journal Name, Vol. V, No. N, Month 20YY.
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approach to query execution than transactional approaches yet allows for careful
reasoning about query results.

This remainder of this paper is organized as follows. Section 2 overviews related
work and uses it as a foundation to motivate our problem definition. Section 3
introduces our model of dynamic networks and query execution within them. A
range of consistency semantics are introduced in Section 4, coupled with application
examples and formalizations. In Section 5, we present an adaptive, self-assessing
protocol for query execution that provides varying degrees of consistency; an im-
plementation and evaluation of that protocol is described in Section 6, including
an application-driven analysis. Section 7 concludes.

2. RELATED WORK AND PROBLEM DEFINITION

In this section, we review existing approaches that relate to our proposed query
processing and assessment framework. We then use this existing work to crystallize
the definition of the specific problem we undertake.

2.1 Existing Approaches

Distributed databases have traditionally focused on wired, strongly connected en-
vironments. As devices become increasingly mobile, the research community has
responded by investigating the deployment of databases in mobile and peer-to-peer
network settings [Barbara 1999]. Several of these strategies focus on issues related
to dynamic cache allocation [Sistla et al. 1998] or optimistic replication [Kistler
and Satyanarayanan 1992], while others allow applications to explicitly issue weak
operations that are allowed to operate over potentially inconsistent data [Pitoura
and Bhargava 1995]. Our approach differs in that we avoid caching data locally,
instead desiring to acquire it on-demand from a dynamic environment. We also
postpone the decision of how weak of an operation to perform until run time, pro-
viding applications with the strongest semantic achievable in a given operational
context.

In a similar vein, researchers have looked within mobile database systems at
transactional semantics. This work has begun to address the need for a new view
of consistency semantics by proposing new transaction models for mobile settings.
Many of these models relax the constraints imposed by the ACID properties and ex-
ecute queries using transactions which adhere to a weaker set of properties, though
the approaches tend to differ significantly. A few [Dunham et al. 1997; Walborn
and Chrysanthis 1999] use the concept of split transactions to handle intermittent
disconnections and reconnections. Others focus on maintaining or relaxing a par-
ticular ACID semantic; isolation-only transactions [Lu and Satyanarayanan 1994]
ensure only that committed transactions appear as though executed independently;
toggle transactions [Dirckze and Gruenwald 1998] enable extended execution, relax-
ing both atomicity and isolation; and the pre-write transaction model [Madria and
Bhargava 1998] focuses almost exclusively on data-availability. These models are
generally limited to use in nomadic networks, in which periodic access to the wired
infrastructure is available, and solutions can rely on the use of a resource-rich fixed
node to manage transactions. Because of their reliance on powerful and fixed nodes
on the fringe of the network, these weakened transactional models cannot be applied
to the more extreme form of mobility found in mobile ad hoc networks. Moreover,
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the frequent disconnections and reconnections in a mobile ad hoc network could
result in significant overhead when employing similar approaches.

Closely related to our work is a study of query semantics for dynamic net-
works [Bawa et al. 2004]. The authors define a new class of semantics based on the
“single site validity” principle, in which a query result appears to be equivalent to
an atomic execution from the query issuer’s perspective. While the themes are sim-
ilar, the work differs in scope. Their study defines a particular class of semantics,
while we attempt to provide a model that can define classes of semantics.

2.2 Problem Definition

As a motivation for the problem we undertake, consider an application querying
a network spanning a construction site. Such intelligent construction sites are be-
coming increasingly commonplace, connecting sensors distributed around the site
to measure environmental and structural conditions with small mobile devices car-
ried by workers and inspectors and more powerful stationary computers. A worker
may pose queries to the network to retrieve measures of the concentration of a po-
tentially hazardous compound. Given that the worker knows what concentration
constitutes a danger, he can use the result of this query to take subsequent actions.
However, in a dynamic environment, there may be some degree of uncertainty asso-
ciated with the query’s result, due simply to movement in the network over which
the query was issued. If the worker has an understanding of the degree of this
uncertainty, his subsequent actions may change. For example, while a dangerous
concentration may call for evacuation in all cases, containment measures may de-
pend on the actual concentration. If the worker is certain of the query response
(i.e., the query was executed with the traditional strong semantics), he may be able
to begin the appropriate containment procedure immediately. However, if uncer-
tainty exists, further measurements may be necessary before the appropriate action
is known.

Such a scenario provides a motivation for a query processing protocol that can
assess a query’s achieved guarantee as it processes the query. This is in contrast
to existing protocols that provide rigid implementations at one extreme or the
other. For example, a protocol providing a strong guarantee may only deliver a
result when that strong guarantee can be achieved, leaving applications without
any information when the guarantee is not possible. On the other hand, a best-
effort protocol may be able to always provide a result, but an application has no
idea how that result relates to the ground truth. Therefore, it becomes meaningful
to provide a self-assessing query processing protocol that not only delivers a query
result but also labels that result with the achieved semantic.

In this paper, we build on our previous work [?] in addressing the need for
a fundamental reexamination of query processing theory and practice. This re-
quires a formal framework that enables characterization and reasoning about query
consistency coupled with a precise formal characterization of a range of application-
relevant types of consistency. Providing these consistency ranges to concrete ap-
plications requires a protocol that not only supports the semantics but can reflect
upon its own behavior to provide an assessment of its achieved consistency. Such
self-assessment allows application logic to rely on query consistency to adapt deci-
sion making processes.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3. A MODEL OF QUERY EXECUTION

In this section, we introduce the concepts that lay the foundation for our study
of query processing in mobile environments. The idea is to model the evolution
of the system as transitions between successive configurations and to relate new
concepts such as query consistency semantics to this model. By modeling config-
urations as sets of mobile entities with associated attributes, we provide a model
that is general and flexible enough to capture different types of queries over differ-
ent types of mobile entities independent of a query specification language, and we
can easily express mobility and time as state transitions. We subsequently use this
model to precisely define the query processing guarantees that can be offered to
queries in dynamic mobile computing environments. Furthermore, this model can
drive the discovery of new semantics that may be further beneficial to application
development.

3.1 Modeling the Environment

Understanding the environments in which queries execute is fundamental to mod-
eling their semantics. We view a mobile ad hoc network as a closed system of
hosts where each host h has a location and a single data value (though a single
data value may represent a collection of values). A host is represented as a tuple
(ι, ν, λ), where ι is a unique host identifier, ν is the host’s data value, and λ is the
host’s location. The global abstract state of an ad hoc network, which we call a
configuration, is simply a set of host tuples. Formally, we describe a configuration
as:

C ≡
H⋃

i=0

(ι, ν, λ)i

where H is the number of hosts in the network.
Given a specific host h̄, called the reference host, we define an effective configura-

tion as the projection of the configuration with respect to the set of hosts that are
reachable from h̄. Reachability is often defined in terms of physical network connec-
tivity, captured by a relation that conveys the existence of a (possibly multi-hop)
network path between a pair of hosts. We use a binary logical connectivity relation
K to express the existence of a direct (one-hop) communication link between two
hosts. Reachability is defined as the reflexive transitive closure relation K∗. Using a
host’s state (i.e., the values of fields of a host tuple), we can derive physical and log-
ical connectivity relations in a configuration and, in turn, the reachability relation
on hosts in the ad hoc network. A physical connectivity relation that represents a
connectivity model with a circular, uniform communication range can be defined
using the location field of host tuples:

(h1, h2) ∈ K ⇔ |h1 ↑ 3− h2 ↑ 3| ≤ d

where ↑ 3 refers to a tuple’s third field (i.e., the host’s location) and d is the
communication range. It is possible to model other physical connectivity models in
a similar fashion, and logical connectivity relations can be defined using constraints
on the identifier and value fields of a host tuple.

Given this definition of reachability, we define the portion of the global abstract
state of the ad hoc network that may, in principle, be visible to a reference host.
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Fig. 1. Query bounds and active configurations

We call this locally visible state an effective configuration, which is a projection of
a configuration with respect to the reachable hosts. We formally define an effective
configuration E for a reference host h̄ in a configuration C as:

C ↓ h̄ = 〈∪h, h̄ : h ∈ C ∧ h̄ ∈ C ∧ h̄K∗h :: h〉

where K∗ is logical connectivity, and ↓ denotes projection.
The environment, however, is not static; it evolves as the network topology

changes and value assignments occur. We model this evolution as a state tran-
sition system in which the state space is defined by the set of possible system
configurations, and transitions are defined as configuration changes. Sources of
configuration change include:

—variable assignment a single host changes its data value ν, resulting in a new
configuration. Formally, this is:

value change ≡ 〈∃h : h ∈ Ci :: 〈∃h′, v : h′ ∈ Ci+1 ∧
v 6= h ↑ 2 :: h′ = (h ↑ 1, v, h ↑ 3)〉〉

—neighbor change: the change in a host’s location impacts the logical connectivity
of the network; as a result, some host in the network will experience a change in
its set of logically connected neighbors. A neighbor change occurs when a host
is no longer connected to a previous neighbor (i.e., the pair of hosts no longer
belongs to the connectivity relation K) or becomes connected to a new neighbor
(i.e., the pair of hosts now belongs to the relation). We formally describe this as:

neighbor change ≡ 〈h1, i : h1 ∈ Ci ::
〈h′

1, h2, l : h′
1 ∈ Ci+1 ∧ h2 ∈ Ci+1 ::

h′
1 = (h1 ↑ 1, h1 ↑ 2, l) ∧ l 6= h1 ↑ 3 ∧

(((h′
1, h2) ∈ K ∧ (h1, h2) /∈ K)) ∨

(((h′
1, h2) /∈ K ∧ (h1, h2) ∈ K)))〉〉

We can now define a configuration change as:

∆C ≡ 〈value change⊕ neighbor change〉

The exclusive-or notation ⊕ indicates that we model one change at a time. From a
global perspective, system evolution can be viewed as a sequence of configurations
associated with successive transitions. For a reference host, this evolution can be
viewed as a sequence of effective configurations.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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3.2 Defining Queries and Results

We use this model of an evolving system to reason about the results of a query issued
over a mobile ad hoc network. Consider the sequence of configurations in Figure 1.
A single query may span such a sequence, starting with the configuration in which
the query is issued (the query initiation bound, C0) and ending in the configuration
that corresponds to the delivery of the result (the query termination bound, Cn). We
define 〈C0, C1, . . . Cn〉 as the set of configurations over which a query is executed.
No configuration outside these bounds can impact the query’s result. Since there
is processing delay associated with issuing a query to and returning results from
the network, we define a query’s active configurations as the configurations within
the sequence 〈C0, C1, . . . Cn〉 during which the query actually interacted with hosts
in the network. Every component of a query’s result must be a data element
that is part of some configuration belonging to the set of active configurations.
In reality, only the query issuer’s effective configurations (containing the reachable
hosts) can contribute to its active configurations. These are the effective active
configurations, bounded by the effective active initiation bound, E0, and the effective
active termination bound, Em as shown in Figure 2. E0, E1, . . . Em is the sequence
of effective active configurations over which a query is evaluated.

query 
initiation 
bound

query 
termination 

bound

 

active configurations

C0 CnA0 Am... ... ...

E0
Em

Fig. 2. Effective active configurations. Circles are hosts; solid lines represent the logical connec-
tivity relation. Dashed lines show effective active configurations.

A query can be viewed as a function from a sequence of effective active configu-
rations to a set of host tuples. Since a configuration is simply a set of host tuples,
this model lends itself to a straightforward expression of a query’s result (ρ). In
fact, the result itself is a configuration. This novel perspective directly correlates
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the result with the environment in which the query was executed, simplifying the
expression of the consistency of those results.

The configuration comprising the results is subject to a set of constraints. First,
each element r in the result configuration ρ must be reachable from the query issuer
(h̄) in at least one of the effective active configurations. Second, only one query
result per host should be present in the result set. Formally:

h ∈ ρ ⇒ 〈∃i : 0 ≤ i ≤ m :: h ∈ Ei ∧
〈∀r : r ∈ ρ− {h} :: h ↑ 1 6= r ↑ 1〉〉

which states that any host tuple h in the result ρ must have existed in one of the
effective active configurations (Ei) and that, for every host tuple in the result, there
must not be another tuple in the result with the same unique id (h ↑ 1).

Our goal is to define the degree of consistency for a query issued over a dynamic
ad hoc network. Given our model, we can achieve this by examining the relationship
between the result configuration ρ of a query and the effective active configurations
that contributed to the query’s evaluation. Next, we use this model to formalize
new notions of consistency that are useful to application developers.

4. DEFINING QUERY CONSISTENCY

We wish to capture a range of consistency degrees that are desirable for applica-
tions in mobile ad hoc and sensor networks. In this section, we enumerate a set
of consistency guarantees that can be determined for queries that involve a single
request/reply exchange between the query sender and the other nodes in the active
configuration(s). For each of the semantics we provide, we give a precise formaliza-
tion that conveys the relationship between the state of the ad hoc network and the
query’s returned result. To make such specifications useful to application develop-
ers, the next section presents a single protocol that provides different consistency
guarantees depending on the run-time environmental characteristics. The protocol
also communicates the resulting consistency of a requested query to the application.

To demonstrate the usefulness of this new set of consistency guarantees, we pro-
vide application examples from two domains and indicate how results for each
semantic can be used. In the first domain, we demonstrate how query consistency
can prove useful in gathering information from a construction site. Specifically,
we will look at a query that gathers information about the amount of a material
(e.g., palettes of bricks) on the site. We revisit examples from construction sites
in later sections to demonstrate the applicability of our approach. In the second
example, a query searches a mobile ad hoc network for ticket reservation prices (or
any commodity offered by multiple sellers) and returns specifics about the potential
reservation (e.g., flight times) and the associated price.

4.1 Guaranteed Availability: IMMEDIATE

The strongest consistency guarantee ensures that all of the results a query returns
were available at the same time and that they are still available when the query
returns. In the construction site example, a query with immediate semantics can
give the construction site supervisor a complete and accurate picture of his site at
the instant his query returns, allowing him to know which materials are currently
ACM Journal Name, Vol. V, No. N, Month 20YY.
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present and to subsequently make future plans and schedules based on the results.
In a travel reservation system, a query response with such strong semantics indicates
that all of the returned potential reservations are competitive prices that can be
purchased at the instant the query returns.

Formal Specification. The immediate consistency states that not only were
all of the results returned present in the same configuration but that the results
were available when the query started and were still available to the requester when
the query returned, i.e., that nothing changed while processing the query. Formally,
this is:

IMMEDIATE ≡ ρ = E0 ∧m = 0

where ρ is the set of results returned and m indicates a configuration in the sequence
of active configurations.

4.2 Strong Guarantees: ATOMIC

Many applications require that a query result provides an exact view of the sur-
rounding environment but may not require the added component of the immediate
guarantee that the results are still available. In our construction site example, a
sequence of results with atomic semantics gives the construction site supervisor a
temporal picture of how materials are consumed across the site. In a travel reser-
vation system, a query with such semantics gives the shopper a guarantee that the
prices quoted are comparable across different carriers since the results were all col-
lected in the same configuration. In these cases, the relationship among the items
returned is important; all of the responses returned should have been present in
the same configuration to give an accurate picture of the network state at a single
point in time.

Formal Specification. We capture the atomic consistency level in our model
by stating that the query was performed on a single effective active configuration
(Ei(h)) and that it effectively returned a snapshot of that configuration. Formally,
this is simply:

ATOMIC ≡ ∃i : 0 ≤ i ≤ m ∧ ρ = Ei(h)

where h is the reference host (so Ei(h) is an effective active configuration for host
h). Setting ρ equal to the configuration signifies not necessarily that the application
uses all of the results but that they are available. We believe this is the strongest
consistency semantic we can potentially provide given data and network dynamics.

4.3 Partial Results: ATOMIC SUBSET

In many instances, applications may only need a certain number of resources to
complete a task. A construction site supervisor may know that he requires a certain
amount of a given material for a particular task, and a query that returns the
subset of the assets available may be sufficient to complete a particular task. In the
reservation system, a query that has an atomic subset guarantee ensures that all
the results that are returned are comparable (since they were all collected in the
same configuration). It does not guarantee, however, that all possible ticket prices
were returned.

Formal Specification. An atomic subset consistency dictates that all of the
results that are returned should have been present in the same effective configura-
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tion, but does not require that everything present in that configuration is returned.
Formally, we express this as:

ATOMIC SUBSET ≡ ∃i : 0 ≤ i ≤ m ∧ ρ ⊂ Ei(h)

which states that the result set ρ is exactly a subset of one of the effective active
configurations. That is, all of the results in ρ were present in a single configuration,
but the result set may not contain all of the values from that configuration.

4.4 Degrees of Partial: QUALIFIED SUBSET

A slightly better picture for the reservation system would provide the shopper some
information about what fraction of results the query potentially missed. If the
returned result represents a large sample of the possible results, the shopper may
have more confidence in the lowest fare reported being near the actual lowest fare.
We refer to this semantic as qualified subset because the result is qualified with
respect to the potential result. In the construction scenario, a query of materials
on the site gives the site supervisor a view of a certain percentage of the available
materials, potentially allowing him to make some worst-case plans.

Formal Specification. The formalization of the qualified subset consistency
level is a specialization of atomic subset to constrain the results returned. It
requires that at least α percent of the results that were available in all of the
effective active configurations are returned. Formally:

QUALIFIED SUBSET ≡ ∃i : ρ ⊂ Ei∧ |ρ |> α |Ei |

where | ρ | is the cardinality of the set of results returned, and | Ei | is the total
number of results that were present over all the effective active configurations.

4.5 Weak Guarantees: WEAK

The weakest guarantee our framework provides to applications simply ensures that
all of the results returned were present in at least one of the effective active con-
figurations. Our construction site supervisor may have no significant use for weak
semantics because they give him no reliable information about his materials. In
our reservation system, on the other hand, there is no guarantee that the fares are
directly comparable (since they may have been collected from different carriers at
different times), but they offer a view of some of the options. This can give the
shopper a quick idea of what the fare range is, but it is likely not something a
shopper will want to base a purchase on unless pressed for time.

Formal Specification. We capture the weakest form of guarantee by ensuring
that anything that was returned was at least present in one of the effective active
configurations:

WEAK ≡ ρ ⊆
m⋃

i=0

Ei

This semantic does not provide any information about the relationships among the
returned results and is the weakest meaningful consistency semantic we can provide.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.6 Degrees of Weak: WEAK QUALIFIED

The final consistency semantic our framework can provide is weak qualified. In
this case, the results collected may have come from across all effective configura-
tions (i.e., they may not have all existed at the same time), but the requester is
guaranteed to have received at least some fraction of the possible results. In the
construction site scenario, this gives the commander some information about the
relative recent availability of some materials. He can use this information to make
some worst-case plans, but he can’t base these plans on complete information on,
for example, relative locations of materials, since the information comes from dif-
ferent configurations. In the reservation system, the shopper is again guaranteed to
have received a certain percentage of the available fares, but since these may have
come from different configurations, they may not be directly comparable.

Formal Specification. As a slightly stronger version of the weak guarantee,
the WEAK QUALIFIED consistency specifies that the result contains at least some
minimum fraction of the results that were present over all the effective active con-
figurations. That is:

WEAK QUALIFIED ≡ ρ ⊆
m⋃

i=0

Ei∧ |ρ |> α |
m⋃

i=0

Ei |

5. A SELF-ASSESSING QUERY PROTOCOL

In this section, we present a protocol that can provide any of the consistency seman-
tics introduced in Section 4. The semantic achieved depends on the conditions of
the environment during query execution. The protocol dynamically assesses which
semantic is achieved and attaches this assessment to the returned query results. By
providing this protocol, we demonstrate the feasibility of implementing the seman-
tics and provide developers with a flexible mechanism for query execution that has
an underlying formal foundation for precise reasoning about query results.

5.1 Protocol Overview

A typical approach to providing strong consistency relies on locking data items
that contribute to a query’s result. This solution may hinder concurrent execution;
data items that are merely read and not changed by a query’s execution are locked
and therefore unavailable to others during query execution. Our approach does not
require data items to be locked during query execution and instead maintains state
about data values that will be accessed during query evaluation and determines
if the values remain accessible and unchanged throughout execution. Using this
information, the protocol can compute the semantic the query achieved.

We rely on a controlled flooding approach to distribute and evaluate a query.
One can think of a message spreading throughout the reachable portion of the
network like a wave. Hosts that have received the message are “behind” the wave,
while hosts that have not yet received the message are “in front of” the wave.
We use these notions of “behind” and “in front of” to determine the impact of
environmental changes on the protocol’s execution and the semantic achieved.

Our protocol uses two flooding phases, shown pictorially in Figure 3. The first
phase precisely identifies the query initiation bound (as defined in Section 3), while
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Fig. 3. Protocol Phases and Waves

the second collects the data values to return. The first phase constructs a tree of
the query’s initial participants, and every member in this tree knows both its parent
and its children. This phase completes when the reference host has collected replies
from all of its children, and the query initiation bound is established. When a host
in the tree receives the second phase of the query, it passes the query to its children.
When all of its children have replied, the host replies. The query is complete when
the reference host has received replies from all of its children.

Each of these flooding phases comprises two waves: one that disseminates the re-
quest and one that returns the response. Each participating host monitors changes
in its state (i.e., variable changes and neighbor changes) that occur behind and
in front of each wave and may impact the achievable consistency semantic. For
example, if a host that is established as a participant in the query during the first
phase becomes disconnected before replying in the second phase (i.e., in front of
the second phase’s second wave), the atomic guarantee cannot be provided. The
disconnected host’s parent logs the disconnection and passes this information to the
query issuer with the result. The reference host communicates to the application
the strongest possible semantic that the protocol can guarantee was satisfied.

In practice, flooding an entire network can be prohibitively expensive and may
cause unreasonable response times. One way to control this cost is to limit the
query’s scope. In our approach, flooding is constrained by a query’s logical con-
nectivity relation K. Previous work provides practical solutions for scoping [Julien
and Roman 2002; Kabadayi and Julien 2007; Roman et al. 2002]; these can easily
be adapted to provide foundational execution support for our protocol.

In Section 5.2, we provide a detailed description of this self-assessing query ex-
ecution protocol. We assume the use of a reliable message delivery mechanism
(research on reliability continues to advance, e.g., [Julien et al. 2008; Si and Li
2004; Vellambi et al. 2007]). Also, we assume that each host can detect connection
and disconnection of its neighbors using one of the mentioned scoping approaches.
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5.2 Protocol Description

The state variables for each host are shown in Figure 4. Only the state for a single
query execution is shown; each query execution has a duplicate set of variables. To
define the protocol’s behavior, we use I/O Automata notation [Lynch and Tuttle
1989]. We show the behaviors of a single host, A, indicated by the subscript A
on each behavior. Each action (e.g., ParticipationRequestReceivedA(r) in Figure 5)
has an effect guarded by a precondition. Actions without preconditions are input
actions triggered by another host. Each action executes in a single atomic step.
We abuse notation slightly by using, for example, “send ParticipationRequest(r) to
Neighbors” to indicate a sequence of actions that triggers ParticipationRequestRe-
ceived on each neighbor.

Each host uses two boolean flags, membership and monitoring, to aid in the
determination of the consistency semantic. The membership flag is used in the first
flooding phase to identify participants in the query execution protocol, while the
monitoring flag is used in the second flooding phase to identify data values that
are being queried. The departed-flag and added-flag variables are used to support
the determination of the consistency assessment; if either is non-zero, then atomic
consistency cannot be provided.

State characterization for host A

id – A’s unique host identifier

neighbors – A’s logically connected neighbors

results – set of (id, data value) pairs provided by A and its descendants.
membership – boolean, indicates A is in the query; used in first phase

monitoring – boolean, indicates A is preparing result; used in second phase

request – the request currently being processed
parent – A’s parent in the tree

replies-waiting – neighbors still to respond

participants – A’s descendants that are participating
results – set of (id, data value) pairs provided by A and its descendants.

departed-flag – true if one or more nodes below below A in the tree has departed
added-flag – true if one or more nodes has been added below A in the tree

Fig. 4. State Variables for Protocol

5.2.1 Establishing the Query Initiation Bound. The first flooding phase of the
protocol constructs a spanning tree that consists of all hosts that are initial partici-
pants in the query’s execution. In terms of the query model presented in Section 3,
the first flood defines the initial configuration members and establishes the query
initiation bound. Two waves are used within this first flood: one to disseminate the
participation request, and one to return the responses of participating hosts. The
reference host is responsible for initiating the first wave to receive acknowledgments
of participation. Figure 5 shows the action that occurs when a host receives this
query participation request in the first wave. The host sets its membership flag and
records its parent in the tree. The host then sends the request to its neighboring
hosts and records them. The host must wait for all of its children to reply before
it can send its own reply. Once the initial wave of the first flood reaches a host
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on the boundary of the network, the boundary host initiates the reply process, i.e.,
the second wave in the first flood. If a host receives the same participation request
(i.e., along a second communication path), it cancels this request. When this mes-
sage is processed at the parent, the parent removes the host from its replies-waiting
variable (since another host is the parent). This action is omitted for brevity.

Since the network is open and hosts may be mobile, the set of hosts that partici-
pate in the query’s execution may change over time. These changes can impact the
consistency semantic achieved. Some changes to the set of participating hosts can
be tolerated and the strongest form of consistency, atomic, can still be achieved.
For instance, we can tolerate additions to and deletions from the set of participating
hosts until the members of the set are officially established at the query issuer. The
actions NeighborAdded and NeighborDeparted in Figure 6 describe how our protocol
handles these changes.

ParticipationRequestReceivedA(r)
Effect:

if ¬membership then
membership := true
parent := r .sender
request := r
if (neighbors − r.sender) 6= ∅ then

for each B ∈ (neighbors − r .sender)
send ParticipationRequest(r) to B
replies-waiting := neighbors − r .sender

end
else

send ParticipationReply to parent
end

else
send CancelParticipationRequest to r.sender

end

Fig. 5. The ParticipationRequestReceived action

In both actions in Figure 6, the first if condition handles the neighbor change
event between the first and second waves of the first flood. In both cases, we can
handle the neighbor change; we must simply ensure that the request propagation is
handled correctly. In the case of an added neighbor, the new host is added to the
participation request and becomes this host’s child. For a departed neighbor, this
host no longer waits for the host’s reply. We will revisit the other cases in Figure 6
as we move through the flood phases.

Once the initial wave of the first flood reaches a host on the boundary of the
network, the boundary host initiates the reply process, i.e., the second wave in the
first flood, by sending a ParticipationReply to its parent. Figure 7 shows the action
handling the reception of this message.

When a host receives all of the participation replies it is waiting on, it replies to
its parent. When it does, it aggregates the participant information it has received
and passes its parent a list of all participants in its subtree.
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NeighborAddedA(B)
Precondition:

connected(A, B) ∧B 6∈ neighbors
Effect:

neighbors := neighbors ∪ {B}
if membership then

if ¬monitoring ∧ (replies-waiting 6= ∅) then
send request to B
replies-waiting := replies-waiting ∪{B}

else
added-flag := true

end
end

NeighborDepartedA(B)
Precondition:

¬connected(A, B) ∧B ∈ neighbors
Effect:

neighbors := neighbors − {B}
if membership then

if B = parent then
[reset state]

else if ¬monitoring ∧ (replies-waiting 6= ∅) then
replies-waiting := replies-waiting −{B}

else if ¬monitoring then
departed-flag := true
participants := participants − {B}

else if (replies-waiting 6= ∅) then
departed-flag := true
replies-waiting := replies-waiting−{B}

end
end

Fig. 6. Actions for handling neighbor changes

ParticipationReplyReceivedA(r)
Effect:

replies-waiting := replies-waiting−r.sender
participants := participants ∪ {r.participants}
if replies-waiting = ∅ then

if r.requester 6= id
send ParticipationReply to parent

else
send Query to neighbors ∩ participants

end
end

Fig. 7. The ParticipationReplyReceived action

The first phase of the protocol is complete when the reference host has collected
all replies from its children, and the query initiation bound is established. The
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QueryReceived(q)
Effect:

if membership ∧ ¬monitoring
∧q .sender = parent then
monitoring := true
if participants 6= ∅ then

replies-waiting := participants)
send Query to neighbors ∩ participants

else
send QueryReply to parent
[reset state]

end
end

Fig. 8. The QueryReceived action

reference host’s participants variable contains the query’s established participants.
Any changes in connectivity that result in change of membership after the com-
pletion of this phase will result in a semantic weaker than atomic. At the end of
the first phase, the reference host sends a Query to its participating neighbors to
initiate the second flooding phase.

5.2.2 Establishing and Reporting Query Results. The protocol’s second flood
requests query results from hosts in the tree constructed in the first phase. Once
again, two waves are used: one to disseminate the query and one to propagate
results. The action performed by a host receiving a query is shown in Figure 8.
Each host receiving the query sets its monitoring flag. As before, each parent in the
tree must wait for responses from its children before sending its own query results.
Boundary hosts initiate the second wave of the second flood to deliver query results.
In constructing a query result, a boundary node includes its own data value and
its departed-flag and added-flag variables. As these replies propagate up the tree,
parents aggregate the results and flags of their children, add their own information,
and send a summary further along. This allows the reference host to assess the
query consistency. In this flooding phase, the setting of the monitoring flag and
checking for changes in data during query execution is analogous to the use of locks
in traditional protocols, but is less restrictive.

Changes in the environment that occur “in front of” the second flood’s second
wave may impact the set of hosts participating in the query as well as the avail-
able data, which will impact what consistency semantic the protocol can achieve.
As shown in Figure 6, in this phase of the protocol, if a parent host detects the
disconnection of a child, the parent alters its protocol-related flags to reflect that
change. Specifically, the parent sets the departed-flag variable. Similarly, if a new
host becomes connected “in front of” the second wave, the parent sets its added-flag
variable. Recording this information allows the protocol to determine what guaran-
tee can be provided to the query issuer. For example, when a neighbor departs “in
front of” the second wave of the second flood, the protocol can provide the atomic
subset guarantee by discounting the departed host(s) and reporting the remainder
of the results. QueryReply messages propagate back to the query issuer in a manner
ACM Journal Name, Vol. V, No. N, Month 20YY.
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QueryReplyReceivedA(r)
Effect:

replies-waiting := replies-waiting−r.sender
results := results ∪ {r.results}
added-flag := added-flag ∨ r.added-flag
departed-flag := departed-flag ∨ r.departed-flag
if replies-waiting = ∅ then

if r.requester 6= id
send QueryReply to parent
[reset state]

else
[assess query consistency]
[deliver result to application]

end
end

Fig. 9. The QueryReplyReceived action

similar to ParticipationReply messages. The action QueryReplyReceived is shown
in Figure 9. In this protocol, changes that occur behind the second wave of the
first flood (i.e., after the query’s participants are set) and before the second wave
of the second flood (i.e., before the query’s results are returned) can impact the
query’s semantics. Specifically, the following changes during this period result in
the following semantics:

—No changes: the atomic semantic can be provided.
—Only departing participants: the atomic subset semantic can be provided.

If the number of departing participants can be determined (e.g., by comparing
the participants to the results), the qualified subset semantic can be provided.

—Departing and adding participants: the weak semantic can be provided. If
the number of departing participants and the number of added participants can
be determined then the weak qualified semantic can be provided.

—Data value changes: data value changes can be modeled as departing partic-
ipants; thus, the atomic subset semantic can be provided. If the number of
data value changes is known, the qualified subset semantic can be provided.

When the last QueryReply message that the query issuer is waiting on arrives,
the host extracts the departed-flag and added-flag values from the messages it has
received. It aggregates these values and determines the query semantic that was
achieved. For example, if the values of departed-flag and added-flag are both false,
then the query issuer can determine that the query was executed with atomic
semantics. After making this determination, the host returns the query results and
the achieved semantic to the application.

6. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of the self-assessing protocol described in Sec-
tion 5 using the open source OMNeT++ discrete event simulator [Vargas 2008]
and its mobility framework extension [Loebbers et al. 2008]. This protocol is ca-
pable of executing one-time queries and assessing their achieved consistency se-
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mantics. In this section, we first provide a general-purpose evaluation of our
self-assessing query protocol. We demonstrate the semantics that our protocol
can achieve in different situations and provide a performance characterization for
the protocol’s behavior. We then provide a more thorough semantic evaluation
grounded in a particular application example to demonstrate how the protocol and
the consistency semantics it can achieve can be used by domain programmers. The
source code and settings details we used to generate these results are available at
http://mpc.ece.utexas.edu/consistency/consistency.html.

6.1 A General-Purpose Evaluation

The first of our two simulation scenarios is general purpose. We use generic simula-
tion settings to demonstrate the behavior of our self-assessing protocol in different
conditions. Because these conditions are not grounded in a specific application
scenario, we subsequently demonstrate the use of our self-assessing protocol for a
particular scenario, specifically queries issued in the construction domain.

6.1.1 Simulation Settings. The results below were obtained from running our
query execution protocol 50 times on varying numbers of nodes within a 1000x900m2

rectangular area. Since the area size is constant, varying the number of nodes in
the network (discussed below) effectively changes the network’s density. The nodes
move according to the random waypoint mobility model [Broch et al. 1998], in which
each node is initially placed randomly in the space, chooses a random destination
within that space, and moves in the direction of the destination at a given speed.
Once a node reaches the destination, it pauses for a specified interval (the pause
time) then repeats the process. Our simulations use a pause time of 0 seconds to
provide more dynamicity. We used the 802.11 MAC protocol. When possible, 95%
confidence intervals are shown on the graphs.

Variables. To demonstrate our protocol under different environmental and ap-
plication conditions, we varied three parameters. First, the number of nodes in the
network varied from 5 to 100 in multiples of 5. Second, the average speed of nodes
varied from 0m/s (completely static) to 30m/s (the speed of a fast moving vehicle
on a highway). Finally, we varied a time-to-live (TTL) parameter that restricts the
scope of a query in terms of the number of hops it can travel. A TTL value of 1
indicates that a query only contacts directly connected hosts. We varied the TTL
from 1 to 3; with a TTL of 3, the queried nodes were between 85-100% of the total
nodes in the network. Due to space limitations, we report results only for TTL
values of 3.

Metrics. We report results for several metrics. The first two categories (reported
in Sections 6.1.2 and 6.1.3) demonstrate the protocol’s capability of assessing a
query’s consistency after it has completed execution. These results show which
semantics from Section 4 can be achieved under which operating conditions. The
results in Section 6.1.3 pertain to the qualified semantics (i.e., qualified subset
and weak qualified), and show what percentage of the nodes contributed to
the subsets when those semantics were achieved. The final metrics, reported in
Section 6.1.4, evaluate trends in the protocol’s performance with respect to overhead
(the number of bytes transmitted to evaluate a query) and latency (the time between
when a query is issued and when its result is returned). These results serve as a
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Fig. 10. Achieved query semantic vs. number of nodes in a static network.

sanity check to ensure that our protocol does not incur significant overheads or
delays in reporting the semantics with the result.

6.1.2 Reporting Query Consistency. Because the goal of our protocol is to ex-
ecute a query and deliver the results along with a report of the consistency with
which the results match the execution environment, the most important aspect of
our evaluation demonstrates which query semantics can be achieved under different
conditions. In this section, we look at instances in which atomic, atomic sub-
set, and weak semantics can be provided. The next section looks at the qualified
semantics: qualified subset and weak qualified.

Figure 10 shows the query semantics achievable in a completely static network
as the number of nodes participating in the query varies from 5 to 100. Two
things are notable about this result. First, even if no mobility occurs, the atomic
guarantee is not achievable in all situations, especially as the number of nodes in
the network grows. This is a result of increasing network density and the fact
that nodes must compete to access the shared (wireless) medium. Second, in all
cases, if the atomic consistency cannot be achieved, at least the atomic subset
consistency can be. This means that nodes only seem to have lost neighbors, not
added any new neighbors after the query began. In fact, nodes have neither added
nor lost neighbors (there is no mobility). Instead, the higher density networks
suffer because nodes are competing to return their query results, making it appear
as though some did not respond at all.

Figure 11 adds a small amount of mobility (5 m/s is approximately equivalent
to 11mph, or a very slow moving vehicle). In this case, given a query that spans
three network hops, the figure shows when each of the atomic, atomic subset,
and weak semantics can be achieved.

Figure 12 shows the same metric for a high degree of mobility (20 m/s). Here, the
percentage of time in which the atomic semantic can be achieved is even further
reduced. However, in comparison to other approaches that simply fail they cannot
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Fig. 12. Achieved query semantic vs. number of nodes in a highly dynamic network.

achieve the atomic semantic, our approach can often (around 10% of the time
in the 20 m/s case) still achieve some degree of atomicity and report a formal
description of that degree of atomicity.

Figure 13 shows the effect of changing speed on the achievable query semantic.
In this case, we plotted the achievable semantic as the speed varied from 5 to 30
m/s in a 30 node network. Again, the key observation is that, even in highly
dynamic situations, our protocol can provide a query semantic better than best-
effort more than 10% of the time. If an application developer were choosing from
existing protocols, in these instances he may be forced to choose one with best-
effort semantics. Using our self-assessing protocol, roughly 10% of the time, he can
achieve a better guarantee.
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Fig. 14. Percentage of nodes replying vs. number of queried nodes for a highly dynamic network.

6.1.3 Qualifying Query Results. The previous section shows results only for the
atomic, atomic subset, and weak semantics. The two additional semantics
presented in Section 4 qualified the atomic subset and weak semantics to fur-
ther communicate to the application the degree with which the results match the
execution environment. That is, qualified subset and weak qualified both
communicate the percentage of the potential responders that successfully replied
to the query. Because of its design, any time our protocol can report the atomic
subset semantic, it also has enough information to report the qualification that is
part of the qualified subset semantic. The same is true for the pair weak and
weak qualified. Therefore, Figures 14 and 15 should be looked at in conjunction
with Figures 12 and 13, respectively.

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 · Jamie Payton et al.

Percentage of Replies vs. Speed (ttl3, 30nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Speed (m/s)

Pe
rc

en
ta

ge
 o

f R
ep

lie
s

Fig. 15. Percentage of nodes replying vs. speed for a 30 node network.

Figure 14 shows that, as the number of nodes increases, the percentage success-
fully responding to a query decreases. In combination with Figure 12, when the
query result reported has the weak semantic (the dark gray space in Figure 12),
Figure 14 shows what percentage of the nodes it was possible to contact actually
responded. For example, in a network of 85 nodes, every query had the weak se-
mantic, and, on average, the results represented approximately 30% of the results
that were available over all of the effective active configurations. Figure 15 shows
a similar result: as the speed of the nodes increases, the percentage of results re-
turned drops. The same exercise as above can be performed with the combination
of Figures 13 and 15.

While the qualified semantics do not provide consistency results that are strictly
stronger than the atomic subset and weak semantics, the ability to communicate
the percentage of the potential query responders from which results were received
provides extra beneficial information to the application, as discussed in Section 4.

6.1.4 Protocol Performance. Figures 16 and 17 show the performance of our
self-assessing protocol as it varies with both increasing numbers of nodes and speed,
respectively. We measured both the query latency (i.e., the amount of time that
elapses between the application issuing the query and the results being returned to
the application) and the overhead (i.e., the number of bytes sent as part of issuing
the query and in control packets to maintain the network). Both the latency and
overhead results show that our protocol scales well with both increasing network
density (number of nodes) and average node speed. The leveling off experienced
by the latency values for increased numbers of network nodes is due to the fact
that, at these increased densities nodes begin to have many different paths from
the query issuer, and, on average, the paths become shorter, reducing the latency
to complete the query.

A next step would be to compare our protocol’s performance to one that provides
strong consistency semantics and to one that provides best-effort semantics. As the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 16. Performance vs. number of nodes for a highly dynamic network.
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Fig. 17. Performance vs. speed for a network of 30 nodes.

focus of this paper is on the ability of the protocol to self-assess its behavior, we
have omitted these results due to space and time considerations. We also plan to
apply our approach to one or more specific application domains in the future.
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Fig. 18. Mock construction site used for scenario evaluations.

6.2 Application-Driven Simulation

To further demonstrate how an application can use the self-assessing protocol and
the consistency semantics it can achieve, we demonstrate its use in a specific appli-
cation domain for some different queries.

Figure 18 shows the set up for our application-driven simulation. This scenario
models a construction site and components likely to be on that site. Within the
scenario, we modeled construction workers (who move at walking speeds and carry
handheld devices that can issue queries), mobile vehicles which may be outfit-
ted with communication devices, sensors scattered throughout the construction
site, and a crane, also outfitted with sensors. Devices in this scenario move in
application-specific manners depending on the type of device. The majority of sen-
sors scattered about the site are stationary. The device attached to the vehicle
(the dump truck in Figure 18) move at vehicular speeds (in our experiments, these
vehicles moved at approximately 30 mph). Devices attached to the crane moved
within the circle defining the cranes swing (the dashed ellipse in Figure 18) and
according to the physical movement allowed by the components of the crane. De-
vices carried by workers move at reasonable walking speeds (approximately 4 mph
in our experiments). Devices attached to materials move rarely.

Using this scenario, we created and evaluated the consistency of two different
queries representative of those likely to be issued on a construction site. The first
query is issued periodically from a worker’s handheld device and queries nearby
sensors for the strength of a gaseous VOC (volatile organic compound) leak. The
second query is issued from the (fixed) office computer, disseminated to the entire
site, and returns a count of the available bricks on the job site.

Figure 19 depicts the result of issuing a query in a local area requesting the
concentration of a hazardous gas. While the previous evaluations considered how
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 19. Queries for hazardous conditions on the job site.

network dynamics impact the consistency of query results, this example allows us
to assess the impact of changing data. In this case, the data change is exemplified
by the dissipation and deterioration of the gaseous cloud. To get a sense for how the
rate of changing data impacts our self-assessing protocol, we vary the sensitivity
of our hazardous gas sensors. In the results shown in Figure 19, we varied the
sensitivity of our sensors from 0 up to 10%. A sensitivity of k% indicates that
the concentration of the sensed gas must to change by k% for a sensor to detect a
change in concentration. Therefore, for the same data sets, small values for the data
change threshold in Figure 19 will represent cases in which the sensors detect a high
degree of changing data, while larger values represent cases in which the sensors
will not detect as much change in the data. As the figure shows, the percentage of
atomically consistent queries decreases as the tolerance for change decreases, but,
even in highly dynamic scenarios, our protocol can still achieve a good degree of
consistent queries.

Figure 20 shows the result of issuing queries from the office for available materials
(in this case bricks). The query is distributed over the entire site, whose dynamics
are as stated above. Because the rate of data change in this case is much slower in
comparison to the movement of the devices in the network (in the depicted example,
bricks are consumed at a rate of 10 per minute), the x-axis in the figure shows
changing network density. As can be seen in the figure, even in this application-
based example, increasing network density also results in decreased consistency.
This is because the query is more wide-ranging, increasing the likelihood of network
dynamics during query execution.

6.3 Applying Consistency Information to Decision Making

An essential aspect of our self-assessing query execution protocol is the ability to
offer a range of query consistency semantics, providing the strongest semantics
achievable at run time and delivering information about the achieved semantics
with the query’s result. This flexible approach to query processing can support
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Fig. 20. Queries for available bricks on the job site.

the development of query-based applications in a way that has not been possible
until now, since it provides applications with information about the query’s consis-
tency semantics that can benefit application-level decision processes. When using
any other existing approach to supporting query execution in dynamic networks,
an application developer must decide in advance which kind of query semantics,
transactional or best-effort, will suit the application’s purpose and selects a sin-
gle query execution protocol that provides results with those semantics. With our
self-assessing protocol, however, the application developer can avoid making an ad-
vance selection of consistency semantics; instead, the developer can use the results
returned by a self-assessing query as well as their reported semantics to determine
what action to take, whether it be to employ a different query strategy or to alter
other application-specific behavior.

Consider, as an example, a safety monitoring application for use in the instru-
mented construction site introduced in Figure 18. This application would allow a
construction site supervisor to check for the presence of a gaseous volatile organic
compound (VOC) leak; the application will take appropriate action on behalf of
the supervisor, ordering the evacuation of the construction site if necessary and
initiating VOC containment procedures if possible. To implement this application,
a developer can use a query to check chemical sensors distributed across the con-
struction site and use the results to determine if there is a VOC leak present in
the area. With our approach, this safety monitoring application can be designed
to be adaptive and autonomous, using a decision-making strategy that is based
on the query results as well as their associated semantics. Below, we outline a
possible decision-making strategy for an adaptive construction safety monitoring
application.

Ideally, the construction site supervisor wants to check for the possibility of a
VOC leak across the entire construction site. In order to take actions that are
safety-critical (e.g., issuing an “all clear” signal or ordering an evacuation of the
site), the supervisor must have high confidence in the results that are returned by
ACM Journal Name, Vol. V, No. N, Month 20YY.
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a query. When conditions are relatively stable in the construction site network,
our query execution protocol can achieve reasonably strong consistency semantics.
However, if the network is constantly changing throughout execution of the initial
query, the returned query results will likely not be strongly consistent enough for use
in making a sound decision. Therefore, we design the application so that it uses a
query execution protocol to issue an initial query across the entire construction site,
and if the result is returned with weak semantics, then we adapt the application’s
query strategy to attempt to elicit more strongly consistent results. We observe
from the results presented in Section 6.1.2 that reducing the scope of a query in a
highly dynamic environment can lead to more strongly consistent results; therefore,
we design our application to use a divide-and-conquer strategy in which several
queries are reissued by the application, each with a reduced scope that focuses on
an area in the construction site that is at a high risk for VOC leaks.

Given this general strategy for adaptation, let us explore this application and
its use of query results for adaptation in more detail. The supervisor’s application
will find one of two categories of query results: either there are no dangerous VOC
readings in the area or there are. Consider the first case in which the application
finds that the query does not return any dangerous VOC readings. If such a result
is returned with reasonably strong semantics (i.e., atomic, atomic subset, or
qualified subset), the construction site supervisor can be reasonably confident
that no leak exists. Therefore, the application makes the decision to generate an
“all clear” report and deliver it to the supervisor. However, if the supervisor’s query
results are associated with weak semantics, then he should not have a high level
of confidence in the results; it is possible that dangerous VOC readings exist, but
were missed by the application’s query due to the drift of the VOC leak into the
surrounding atmosphere, the mobility of network nodes, or rapid changes in the
values of the VOC readings performed by chemical sensors. Since the supervisor is
concerned with the safety of every person on the site, he wants more information
to determine if a leak exists. Therefore, the application will make the decision to
issue another query on the supervisor’s behalf, reducing the scope of the query to
focus on areas that are at high risk for chemical leaks in hopes of acquiring a result
with stronger consistency semantics.

The adaptive construction safety monitoring application also takes action when
a dangerous chemical reading is found. The application will always issue an alert
to evacuate the site when a dangerous chemical reading is found. However, the
consistency semantic associated with that result can also be used to determine if
additional action can be taken. If the query result containing a dangerous chemi-
cal reading is associated with atomic semantics, then the application can use the
results returned by the query to determine the relative locations of the danger-
ous chemical readings since they are directly comparable; this location information
can be used to begin VOC leak containment procedures. However, if the seman-
tic associated with the query’s result is not atomic, then some chemical readings
may have been missed and the results are not directly comparable; more accurate
information is needed to estimate the severity and location of the leak to begin
containment procedures. In this case, the application will reissue the query over an
area estimated to surround the initial dangerous VOC readings.
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Protocol API

void issueQuery(Query q, QueryListener ql, Scope s);

QueryListener Interface

void queryCompleted(Result r, QuerySemantic qs);

Fig. 21. The Self-Assessing Query Protocol Programming Interface

This construction safety monitoring example demonstrates that the use of query
semantics associated with the query results can aid in an application’s decision-
making process, through adaption of the application’s query strategy or its application-
specific behavior. To promote the development of such applications, we provide a
simple application programming interface (API) for our query execution protocol.
We believe that this API provides a simple way to incorporate the use of query
results and their associated semantics in the design of an adaptive application’s
decision-making processes. Below, we briefly describe the programming interface
applications can use to access our protocol and then show by example how this
interface is exercised using the construction safety monitoring application example.

Figure 21 shows the two key elements of our API. Applications access the protocol
through the issueQuery method. Using this method, an application can dispatch
a request (encapsulated in a Query object whose details are omitted for brevity).
Upon issuing a query, an application designates a responsible QueryListener, i.e.,
an object that has implemented the QueryListener interface also shown in Fig-
ure 21. The final component of an application’s request is a Scope. This object
instructs the protocol as to how widely to distribute the query. The initial imple-
mentation we have used for this paper uses a simple hop count scope restriction;
more sophisticated implementations of scope restriction mechanisms [Julien et al.
2008; Kabadayi and Julien 2007] can be easily integrated into the protocol.

When the two phases of the query complete, a result is returned to the application
that issued the query. This occurs through the queryCompleted callback in the
QueryListener interface. The application receives two things. The first is the
result of the query; in our simple initial implementation, the result is just a set of
all of the values collected from the nodes queried. This could also be extended with
more expressive aggregation mechanisms. The application also receives an object
that encapsulates the consistency semantic associated with the query execution. To
a first approximation, this query semantic is a simple enumeration; in the qualified
semantics cases, this enumeration is coupled with the fraction associated with the
subset semantic.

To demonstrate the use of this API, we return to our construction safety moni-
toring example introduced earlier in this section, providing a simple and straight-
forward implementation for the application. A code snippet highlighting how the
construction safety monitoring application uses the query API is shown in Fig-
ure 22. The application constructs a Query object that asks for VOC readings
from chemical sensors. When the construction site supervisor clicks a button to
check for VOC leaks, the application submits this query to be executed over the
entire construction site using the issueQuery method. A ChemicalQueryListener
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public class ConstructionSafetyMonitor implements ActionListener{

private Query q;

private ChemicalQueryListener cql;

ConstructionSafetyMonitor(){
q = ..new query object that requests VOC sensor readings
cql = new ChemicalQueryListener(this);

}

...ConstructorSafteyMonitor builds a graphical user interface...

...a button click results in a searchForChemicals over the entire site

public void ActionPerformed(ActionEvent ae){
if (ae.getSource() == chemicalCheckButton) {
Scope site = ...new scope that defines entire construction site
searchForChemicals(site);

}
}

void searchForChemicals(Scope s){
issueQuery(q, cql, s);

}

}
Fig. 22. The Construction Safety Monitoring Application

object, which embodies the strategy previously described for handling the results
of a query for VOC readings, is provided as a parameter. As outlined previously,
the application’s decision-making processes uses the query results and their as-
sociated semantics to decide whether to reissue the query over a new scope (or
scopes), issue an evacuation order, or contain a VOC leak. The code snippet for
the ChemicalQueryListener class in Figure 23 highlights how the query consis-
tency semantic attached to the result of a query is used to adapt the behavior of
the construction safety monitoring application. As this example demonstrates, the
query protocol programming interface can be used to facilitate the development of
adaptive applications based on query results and their associated semantics in a
simple and straightforward manner.

7. CONCLUSIONS

This work offers a new perspective on query execution in pervasive environments.
The novelty of our approach lies in the ability to formally express varying degrees
of consistency semantics in a dynamic ad hoc network. We have introduced several
new notions of consistency and captured them using our formal model. To realize
these query semantics, we have developed a self-assessing protocol that can deter-
mine the achievable consistency during query execution and report the assessment.
Our evaluation suggests that this protocol can indeed be useful in dynamic ad hoc
networks to deliver a richer, more flexible alternative to traditional transactional
query processing. In addition, we have demonstrated that our approach is useful
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public class ChemicalQueryListener implements QueryListener {
...variables and constructor omitted for brevity...

public void queryCompleted(Result r, QuerySemantic qs){
ChemicalResult cr = (ChemicalResult) r;

if(!cr.containsDangerReading()) {
//no danger found
...
if(qs.getSemantic() == WEAK){

//low confidence in result
//need to look more closely at high risk areas
Scope[] riskAreas = new scopes that focuses on risk areas
for(i=0; i<riskAreas.length; i++)

safetyMonitor.searchForChemicals(riskArea[i]);

}
} else {

//dangergous reading has been found
} if(qs.getSemantic() == ATOMIC){

//result yields exact knowledge of VOC presence
//evacuate site and initiate containment
safetyMonitor.issueAlert();

safetyMonitor.startContainment(...);

} else{
//alert workers, find out more about VOC presence to aid in containment
csm.issueAlert();

Scope interestArea = new scope focusing on area where dangerous readings were found
csm.searchForChemicals(interestArea);

}
}

}
Fig. 23. The ChemicalQueryListener Class

to real industrial applications and can benefit their decision making processes.
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