
Composable Context-Aware Architectural Connectors
Christine Julien and Dewayne Perry

The Department of Electrical and Computer Engineering
The University of Texas at Austin

c.julien@mail.utexas.edu, perry@ece.utexas.edu

ABSTRACT

In mobile and pervasive computing systems, the ability of an
application to adapt its behavior in response to a changing
environment is essential. In this paper we propose a new class of
context-aware architectural connectors that enable software
designers to incorporate context-aware aspects into a software
architecture design. These context-aware connectors must also be
composable to allow multiple types of context to be applied to a
single architectural connection. We introduce our notion of
context-aware connectors and describe some intended uses.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Data abstraction, Patterns
(e.g., client/server, pipeline, blackboard) C.2.4 [Distributed
Systems]: Distributed applications

General Terms
Design, Reliability, Theory.

Keywords
Software architecture, connectors, context-awareness

1. INTRODUCTION

As mobile computing systems become increasingly prevalent, it
becomes increasingly important to be able to carefully and
precisely model the architecture of these dynamic systems in an
expressive manner. In addition, architectural models must be able
to capture context, or the nature of the environment in which
mobile applications operate. Some work has developed a
methodology for expressing self-adaptive software architectures
in a manner flexible enough to allow for runtime changes [6],
identifying a number of important design challenges for self-
adaptive systems. A bit closer to our intended approach, imposing
context constraints on top of existing architectural components
has been explored in conjunction with CommUnity [4]. This
approach also motivates the need to explicitly separate context
and context-awareness from other aspects of a software
architecture. Along the same lines, the ability to express context
acquisition in software architectures is also important, and should

be separated from other architectural aspects [5].

In this paper, we put forth some first steps in defining the
fundamental architectural constructs and composition approaches
necessary to expressively modeling software architectures in
dynamic mobile environments. We adopt the component and
connector style of software architecture in which a software
system is modeled as a set of components held together by
connectors that define the interactive behavior [1, 8]. While we
recognize that there is no fundamental structural difference
between a connector and a component (i.e., both connectors and
components are composed of process and data elements, have a
sub-architecture, etc.), we also recognize the importance of the
logical differences, similar to traditional coordination approaches
which explicitly separate coordination tasks from
computation [2]. In fact, explicitly separating context from
interaction has previously been explored from a coordination
perspective [9].

In moving from the more traditionally static software
environments in which existing architectural modeling approaches
have been applied to dynamic environments, one must be able to
consider the context in which components’ interactions occur.
The nature of this context can significantly impact the nature of
interaction specified by connectors, and, as the context changes in
response to dynamics in the environment, the connectors must
respond accordingly, perhaps changing the nature of the
connections they specify, or, more radically, the specific
endpoints that they connect.

Given that there is little or no structural difference between
components and connectors and the fact that component
composition is well-studied, it stands to reason that connector
composition is also feasible. The general view of connectors as
merely communication is too limited; they may be sources of
mediation and coordination as well. To our knowledge, no one
has ever before considered composing connectors; although
different uses of connectors have been distinguished [7]. With the
emergence of mobile software systems, the ability to represent the
impact of context and context-awareness within an architectural
model becomes essential, and we believe that connector
composition offers a natural and expressive way to achieve this
representation in a modular way.

In this paper, we discuss our research directions in defining a set
of well-defined context styles that capture common notions of
context-awareness and can be applied to architectural connectors.
We also discuss the use of composition to compose the resulting
context-aware connectors to allow a single connection to account
for multiple types of context information and their impact on a
single interaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAM’08, May 10, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-022-7/08/05...$5.00.

2. DEFINING CONTEXT-AWARE
ARCHITECTURAL STYLES

In this paper, we take the first steps necessary to define an
abstract model of context-aware architectural connectors. In
general, there are two places in which a context-aware connector
can be adaptive:

1) The connector can internally adapt its behavior in response
to changes in the operating context, e.g., to use a different
type of communication or to provide more or less robust
synchronization or end-to-end guarantees.

2) The connector can externally adapt the endpoints of its
connection, e.g., to connect to a different component or
connector based on the context.

As a simple example to demonstrate our approach, consider a
mobile user who wishes to be connected to a printer throughout
his movement through his environment. From an architectural
perspective, his printing application component is connected (via
a context-aware connector) to a printer component. Throughout
the remainder of this section, we use this example to demonstrate
how context styles can be applied to this connector to enable its
behavior to respond to a changing environment.
Our intent is to encapsulate aspects of the context mobile
applications experience in architecture styles, or incomplete
architectural prescriptions that, in the case of a context style
specify constraints imposed on the relevant architectural
connector. In our intended model, multiple such context styles
can be composed on top of a single interaction connector to form
a context-aware connector. The context styles define additional
constraints that are placed on the communication and
coordination activities implemented by the connector. Table 1
provides some categories of context styles and an example of
each.
It is important that this approach explicitly separates the context
style from the actual interaction behavior. This makes it easier to
compose a single context style with an arbitrary connector that is
not context-aware. In addition, we posit that this will make it
possible to layer multiple (non-contradictory) context styles on a
single connector. For example, a connector between a printing
application component and a printer component could have both
the data style and the capability style from Table 1 imposed at the
same time; this connector would connect the application to the
color printer whose connection consumes the least amount of
power when printing color and to the black and white printer
whose connection consumes the least amount of power otherwise.

In this way, context-styles are simply additive with respect to a
standard interaction-based connector.

3. DISCUSSION AND FUTURE WORK
While the model of context styles described in the previous
section lays the ground work for enabling traditional connectors
to become context-aware, several key questions remain to be
resolved. In this section, we explore a few of these challenges.
First, while it is straightforward to compose a single context style
with a standard interaction-based connector, imposing multiple
context styles on a single connector may not be as simple.
Traditionally, multiple compositions may induce “conflicts”
which are commonly interpreted as erroneous. In this case, we
would not like to view the conflicts as errors but merely as
challenging environments that may require a degree of mediation
to resolve the specific constraints imposed by the context styles
with the dynamic environment. Future work will explore the
nature of such mediation and its ability to resolve competing
context styles in a manner that matches both the application
components’ expectations and the mobile computing
environment.
Exploring and defining new context styles for mobile application
environments has the potential to open up new research in
defining architectural connectors that represent basic interactions
in mobile networks. For example, one could envision connectors
specifying different styles of routing and end-to-end guarantees
that may apply in different mobile application scenarios.
Composing these new connectors with context styles may
generate new directions in implementing communication
efficiently in mobile networks. In addition, this opens up the
possibility of creating compositions that may not be efficiently
implementable; future work will explore representations that
expose these challenges and provide direction for their resolution.

4. REFERENCES
[1] R. Allen and D. Garlan. Formalizing architectural

connection. In Proceedings of the 16th International
Conference on Software Engineering, May 1994.

[2] D. Gelernter and N. Carriero. Coordination languages and
their significance. Communications of the ACM, 35(2):97-
107, 1992.

[3] M.M. Gorlick and R.R. Razouk. Using Weaves for software
construction and analysis. In Proceedings of the
International Conference on Software Engineering, pp 23-
34, 1992.

Table 1: Examples of Context Styles

Category of Context Style Example (The context style applied to the printer connector connects…)

Functionality available in the environment to the highest quality available printer.

Availability to the available printer with the most up time in the last 24 hours.

Quality of Service (QoS) to the available printer whose connection has the lowest latency.

Capability using the communication type that requires the least amount of power.

Location to the physically nearest printer.

Data to a color printer if the document is in color; to a black and white printer otherwise.

[4] A. Lopes and J.L. Fiadeiro. Context-awareness in software
architectures. In Proceedings of the 2nd European Workshop
on Software Architecture, June 2005.

[5] J.J. Martinez and I.R. Salvert. A conceptual model for
context-aware dynamic architectures. In Proceedings of the
23rd International Conference on Distributed Computing
Workshops, pages 138-143, May 2003.

[6] P. Oreizy, M.M. Gorlick, R.N Taylor, D. Heimbigner, G.
Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum, and
A.L. Wolf. An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems and their Applications,
14(3):54-62, May/June 1999.

[7] D.E. Perry. Software architecture and its relevance to
software engineering. Keynote. 2nd International
Conference on Coordination Languages and Model,
September 1997.

[8] D.E. Perry and A.L. Wolf. Foundations for the study of
software architecture. Software Engineering Notes,
17(4):40-52, October 1992.

[9] G.-C. Roman, C. Julien, and J. Payton. Modeling adaptive
behavior in context unity. International Journal of Theoretic
Computer Science, 376(3):185-204, May 2007.

