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Abstract

Wireless sensor networks are emerging as a convenient mechanism to constantly monitor the physical world.
The volume of information in such networks can be extremely large and, to be meaningful to applications, this
information must be processed at the right level of accuracy. However, there is an inherent trade-off between
achieving a high degree of data accuracy and the communication overhead associated with achieving it. We
present a simple mechanism for spatially approximate query processing. We present a protocol that leverages
gossip based routing to collect network data from a randomly selected set of nodes at a user-defined level of accu-
racy. We extend this protocol to address persistent queries, long running queries where network data is collected
periodically, by treating a persistent query as a temporal aggregate of individual queries. Finally, we provide a
novel protocol that dynamically adapts its accuracy based on the quality of the responses to individual requests in
the persistent query. We describe this protocol in detail and evaluate its performance through simulation.

1 Introduction

Sensor networks have been deployed in a wide range of applications that monitor the physical world in real
time such as habitat monitoring [17], intelligent construction sites [5], and industrial sensing [12]. When sensor
networks are deployed on a large scale, however, there is an explosion in the amount of data to observe and
analyze. Just as the plethora of web data was largely human-unusable until the advent of modern search engines,
querying techniques will play a pivotal role in comprehending sensor data. Requirements on the quality of data
collected varies by application. For example, an environmental monitoring application may require a small piece
of summary data every few hours. A construction worker testing bridge health may want as much information as
possible to certify that the bridge is structurally sound. Even within the same application, the granularity of the
desired data can vary over time and in response to events. Industrial sensing may require only occasional averages
of hazardous materials sensors until a toxic gas is detected. After detection, the application should acquire data
more frequently and with greater fidelity to quickly determine the location and severity of the hazard.

We address two types of queries that are of value in sensor networks: one-shot queries and persistent queries.
A one-shot query is a one-time occurrence in which the application requests data values from some or all of the
nodes in the network. This query has no relationship to other queries that may be issued by the application. A
persistent query is a long-lived operation that provides periodic responses. In this paper, we implement persistent
querying as a temporal aggregation of one-shot queries [10]. Doing so allows us to use results of component
one-shot queries to influence the behavior of subsequent component queries.

Sensor network devices are battery operated and hence extremely resource-constrained. Communication costs
account for a large amount of the battery drain during operation, and sending large amounts of unnecessary data



can reduce the network lifetime substantially. Two approaches have been proposed to reduce the query commu-
nication overhead—in-network aggregation (e.g., [16]) and approximate querying (e.g., [20]). The most common
in-network aggregation techniques build and maintain a tree over the network and distribute the aggregation oper-
ation along all non-leaf nodes of the tree. In approximate query processing, the response is typically provided to
the user as an estimation of the correct answer with deterministic or probabilistic guarantees quantifying the con-
fidence in the estimate. While not mutually exclusive, each approach has some attractive properties. In-network
processing uses actual data collected from sensors. Approximate query processing typically models the data at a
base station and periodically updates the stored model using values from the network [3]. Other approaches form
spatially correlated groups, and one node from every group participates in the query [22]. This results in fewer
message transmissions and removes the need to perform computation at every node.

In networks with dynamic data values, it is beneficial to retrieve actual data values and be less reliant on an a
priori model. In this paper, we present a querying technique that provides approximate querying by selecting a
subset of nodes and using actual data from these nodes at query time. This frees the approximation protocol from
maintaining state information on the nodes and at the same time alleviates the need for all nodes to participate.
While it is possible to accomplish this approximation using any number of underlying networking protocols, we
choose gossip routing [2, 13]. In its basic form, on receiving a packet, a node chooses to retransmit or drop a packet
based on a threshold parameter, p. When a node receives a query, if it chooses to retransmit the query, it actively
takes part in resolving the query; otherwise it drops the packet and reduces the likelihood that its downstream
neighbors participate. This style of protocol is inherently approximate, as the number of nodes participating varies
probabilistically. In addition to adapting itself nicely to approximate query processing at a conceptual level, gossip
routing is robust to changes. Current in-network aggregation and approximate algorithms tend to maintain a tree or
a cluster based overlay in which the failure of an intermediate node can lead to significant overhead in rebuilding
the aggregation framework. Gossip routing does not impose any hierarchy on the network, and the overhead of
performing successive queries is impacted less by the node failures that are common in sensor networks.

Some approximation algorithms cluster nodes with highly correlated sensor values [22]. This requires a priori
knowledge of the range of data values. Since we make no assumptions about the data or network characteristics,
we instead associate data quality metrics with query responses. These metrics may include the number of nodes
participating, the variance of sampled data, and the spatial distribution of the sampled nodes. For one-shot queries,
the user can use this quality metric as a yard stick by which to analyze his results [18]. For persistent queries,
where the query measures sensed conditions over a period of time, we use these data quality metrics to adapt
the query protocol’s intended fidelity automatically. In this paper, we present a mechanism to perform adaptive
approximate query processing. Because we view a persistent query as an aggregate of one-shot queries, we use the
data quality metrics associated with individual one-shot queries to adapt the fidelity of the protocol for subsequent
one-shot queries. Sensor network queries can be broadly classified into two types— aggregate and stream queries.
Aggregate queries provide a single aggregated answer, like the average value of the sensor network. Stream queries
typically return a stream of data values from different nodes in the network. In this paper we focus on providing a
protocol to accomplish adaptive approximate query processing for aggregate queries.

The novel contributions of this work are as follows. First, we propose a protocol that incorporates gossip routing
to perform spatially approximate query processing. Second, we discuss the impact of exposing various data quality
metrics and underscore how an application can use them to interpret the quality of a query response. Third, we
show how to incorporate data quality metrics to adapt the accuracy of the approximate query processing algorithm
for persistent queries. Finally, we evaluate our protocols and verify their utility.

The rest of this paper is organized as follows. Section 2 adapts gossip routing to approximate query processing.
Section 3 evaluates gossip routing for the task of approximate query processing. Section 4 provides a mechanism to
expose data quality and uses it to provide context to the application. Using the insights gained from evaluating the
approximate query processing protocol, Section 5 provides a protocol that performs adaptive approximate query
processing, and Section 6 evaluates its performance. Section 7 discusses related work, and Section 8 concludes.



2 Gossip Routing based Approximate Querying Protocol

In this section, we describe how gossip routing provides approximate responses to applications’ queries. Gossip
routing is based on probabilistic broadcasting, in which a predetermined threshold, p, determines whether a node
rebroadcasts or drops a received packet. If p is one, then the behavior is equivalent to flooding. In most networks,
setting p to a value smaller than one can still result in a packet reaching all nodes in the network with a very high
probability. In gossip routing, only a subset of nodes are involved in query execution. If the query is executed
several times, this subset is likely to be different each time, thereby spreading the query processing load more
evenly. However, since all nodes in the network do not participate in every query, the result obtained is inherently
approximate. In the rest of this section we explain specifically how we adapt it to suit our needs.

We first show a basic gossip pro- id – A’s unique host identifier
neighbors – A’s logically connected neighbors
parent – A’s parent in the tree
p – A’s probability threshold for broadcasting an incoming query
data – A’s data value obtained from its sensors

Figure 1. State Variables for Protocol on Node A

tocol and evaluate its use in provid-
ing approximate query results. The
state variables for each host in our
protocol are shown in Figure 1. Only
the state for a single query is shown;
each query has a duplicate set.

Our protocol uses two types of packets: Query packets and QUERYRECEIVEDA(q)
Effect:

if !received(q.query id) then
parent := q .sender
r = 〈q.query id , data, q.originator〉
send QueryReply(r)
p := rand()
if p ≥ q.p then

q.sender = A
send Query(q) to neighbors

end
end

QUERYREPLYRECEIVEDA(r)
Effect:

if r.destination = A then
//*** send r.data to application ***//

else
send QueryReply(r) to parent

end

Figure 2. Gossip based Approximate
Query Processing

QueryReply packets. A Query packet has the following form:

〈query id , p, data request , sender , originator〉.

The query id is used to ensure a node does not respond to or
forward the same query twice. The p value is the probability
with which a receiving node should retransmit the packet. The
data request contains the application’s data needs (e.g., the type
of sensor reading desired). The sender of a query is the node that
forwarded the packet, while a query’s originator is the query is-
suer. A QueryReply packet simply contains the data that is the
response, the unique query id number, and the id of the destina-
tion host (i.e., the query issuer):

〈query id , data, destination〉.

These two packet types are kept necessarily simple to accommo-
date resource-constrained networks. To define the protocol’s be-
havior, we use I/O Automata notation [15]. We show the behav-
iors of a single host, A, indicated by the subscript A on each be-
havior. Each action (e.g., QueryReceivedA(q) in Figure 2) has
an effect guarded by a precondition. Actions without precondi-
tions are input actions triggered by another host. In the model, each action executes in a single atomic step. We
abuse I/O Automata notation slightly by using, for example “send Query to neighbors” to indicate a sequence of
actions that triggers the QUERYRECEIVED action on each neighbor.

The basic gossip protocol is very simple. When a node receives a query, it first logs the query’s sender
(q.sender ) as its parent and sends its sensor data through its parent to the query issuer. It then uses the prob-
ability p to determine whether it will forward this query to its neighbors. To prevent nodes from processing the
same query multiple times, a node checks whether it has received the query previously (based on the query’s
unique id) before processing it at all. Figure 2 shows this behavior in I/O Automata form. Also shown in the figure



is a node’s behavior in response to receiving a QueryReply; the node checks if it is the targeted destination; if not,
the node forwards the packet to its parent. This is a slightly simplified version of the protocol that only considers a
single query from a single application that is active at a given time in the network. The protocol’s implementation
maintains additional state to sort out the forwarding information associated with different active queries.

Figure 3 illustrates the protocol with an example. The
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Figure 3. Protocol example.

value inside a circle is a node’s data value. The client is the
node in the center—the circle containing a PDA. This process
is repeated throughout the network. In the figure, the dashed
lines correspond to query replies, while the thick lines indi-
cate a query being forwarded. The tuples next to the response
line show the sensor readings carried by the query reply pack-
ets. Nodes with the pair of concentric circles dropped the
packet. On receiving a query from the application, the client
broadcasts it to its neighbors {c, f, g and h}. The query con-
tains a probability threshold specified by the application. In
this example, nodes f and h decide to drop the query. They
each create a reply packet containing their node identifier and
data value and send it back to the client. (The query identifier
has been omitted from the figure for brevity.) Based on the probability p, nodes c and g choose to forward the
query. Both create reply packets they send back to the client. Node c forwards the query to b and d. When node c
receives a reply from b or d, it simply forwards it to its parent, the querier.

An application can aggregate the collected values or use individual readings depending on its needs. A farmer
checking humidity levels in his field for indications of the onset of crop disease may be satisfied with an aggregate
value. A civil engineer might choose to build a picture of all the components on a bridge by displaying all of the
results received on a map of the bridge. Each query might probabilistically choose a different set of sensors and,
over a period of time, the engineer can build a complete picture without having to query all the nodes every time.
Since imprecision is an inherent part of any approximate algorithm, we expose data quality metrics to provide
context to the query response. A very simple data quality metric is the number of nodes that participated in the
query. Consider a query where the user is interested in sensor readings from nodes placed on cranes in an industrial
site. If he receives a stream of two values, when there are 10 cranes visible, he might choose to reissue the query
with a higher p. The farmer checking the humidity levels will feel a lot more secure about the query response he
receives if he is provided a confidence interval along with the average humidity. This can be done by exposing
the data’s variance and the number of nodes sampled. In the rest of this paper, we focus on situations where it is
beneficial to aggregate the data values returned from the sensor nodes. This protocol works on the assumption that
the client device provides the probability p as an input. In the next few sections we show that changing p does in
fact affect the accuracy of the results. We also show how this simple protocol can be leveraged to adaptively tune
the accuracy of the result for persistent queries by using the data quality metrics exposed.

3 Effectiveness of using Gossip Routing for Approximate Querying Processing

Our gossip protocol assumes that, given a good value of p, one can leverage gossip routing to perform approx-
imate query processing. In this section we study the impact of changing p and ascertain whether this assumption
holds in different environments. We also develop insights on how to manipulate p to accommodate different ap-
plication requirements. To thoroughly evaluate our protocol, we used the TOSSIM network simulator [14], which
allows direct simulation of TinyOS [6] code written for MICA2 motes1.

1The source code used in our simulations is available at http://mpc.ece.utexas.edu/AdaptivePersistant/index.
html



3.1 Data Set

For modeling sensor data we used a tool provided by Jindal and Psounis [9]2.
The tool generates spatially correlated synthetic data for

Figure 4. Correlation of Sensor Grids.

sensor networks of varying sizes. The data traces gener-
ated have been shown to be very close to physical phe-
nomenon observed in the real world. Since our goal is to
investigate the feasibility of using gossip routing to per-
form approximate query processing, this tool provides us
a convenient way to test under different simulated envi-
ronments. We generated spatially correlated sensor data
for a 150m x 150m grid. The tool takes in an input pa-
rameter β which allows us to manipulate the degree of
spatial correlation in the sensor network. A higher value
of β makes a node more likely to choose a data value independent of its neighbors’, thus producing spatially un-
correlated data. We varied the value of β to 0.001, 0.018 and 0.33, producing sensor networks with high, medium
and low data correlations respectively. Figure 4 shows example surface plots of two data traces we used; the plot
on the left shows highly correlated data, while the right shows a data trace that is significantly more uncorrelated.

3.2 Simulation Setup

We generated synthetic traces corresponding to the distribution of temperature data in a sensor network field.
Given the synthetic data, we explore whether using gossip routing is effective in performing approximate query
processing. The protocol is used to query data from the network and compute the value of the average temperature
in the network. We used a uniform random placement of sensor nodes. To model the radio transmissions, we used
TOSSIM’s disc model with a radius of 10 feet. The number of sensor nodes in the network was set to 100. Error
bars indicating 95% confidence intervals are included in the graphs whenever possible.

3.3 Evaluation

We posit that increasing p will increase the accuracy
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Figure 5. Number of Nodes Participating

of our protocol, in this case by increasing the number of
nodes responding to the query. Figure 5 shows the num-
ber of nodes participating in the query as p is raised from
zero to one in increments of 0.1. As can be seen from the
figure, the number of nodes responding with a data value
increases from about 5 to 23 regardless of the degree of
correlation in the underlying data. Even when p is 1, i.e.,
when the network is being flooded, every node does not
respond to the query. This is partly because the query
issuer sometimes finds itself in an incomplete partition
of the network (i.e., some nodes are not connected even
through multiple hops). A second reason only a reduced
number of query responses is received is due to packet
collisions that can occur both when the query is being transmitted and when the responses are being gathered.
Overall, however, increasing p does increase the number of nodes participating in the query in spite of network
partitions and packet collisions.

2The source code for the tool is provided at http://www-scf.usc.edu/˜apoorvaj/tool.html



Increasing the number of nodes involved in a query comes with the overhead of increased number of transmitted
messages. For example, when p is increased from 0.5 to 1, the number of messages transmitted increases almost
seven fold. Given this additional overhead, we next verify whether an increase in p leads to any discernible
improvement in the accuracy.

Figure 6 demonstrates that increasing the number of
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Figure 6. Accuracy as a function of p

nodes participating in the query does, in fact, increase the
accuracy of the query response (as measured by the rela-
tive mean error across all responses). The figure plots the
normalized error against different values of p for data sets
with three different correlation levels. The absolute error
is the difference between our protocol’s computed aver-
age and the actual average provided by an oracle. The
normalized error is the absolute error normalized by the
oracle provided correct average. The normalized error de-
creases as p increases, regardless of the data distribution,
although the decrease is much more pronounced when the
underlying data is less correlated. This is intuitive be-
cause, when all nodes have more or less the same data
value, sampling more nodes will not produce a large change in the final answer. We can infer from this graph that
using a large p is of limited value when the data is highly correlated. Even when querying very few nodes, by
setting p to a low value, a gossip protocol can produce an answer very close to the correct response. This is one
of the key insights we use in Section 5 to automatically adapt the protocol for persistent queries even when there
is no a priori knowledge of the underlying data distribution.

Figures 5 and 6 clearly establish that the retransmis-
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sion probability can be used as a convenient lever to vary
the number of nodes participating in the query, and conse-
quently, the accuracy of a query’s response. However, the
number of nodes participating in the query does not pro-
vide any insight on the spatial distribution of the nodes
that respond. When the retransmission probability is low,
the response obtained is a local one, i.e., it is biased to-
wards nodes close to the querier. Figure 7 shows the
spatial distribution of the nodes participating in a query.
The bins on the vertical axis represent the distance from
the querier. For example 20-30 represents nodes between
20m and 30m from the query issuer. The horizontal axis
is the percentage of nodes that responded out of all nodes
that were reachable from the querier at that distance range.
The percentage of nodes responding to the query decreases
as we move away from the querier. This effect is not only due to the value of p but is also impacted by packet
collisions. This is confirmed by the fact that the percentage drops to a low value even when the network is being
flooded. The farther a node is from the querier (e.g., nodes in the 80-90 bin are about 9 hops away on average),
the greater the chance of a collision related packet drop either while the query is being propagated or when the
response is being routed back. The same behavior is observed regardless of the underlying data correlation. One
insight gleaned from this experiment is that if the user is interested in distant nodes participating in the query, it is
imperative that he uses a high value of p, even if the desired accuracy level is low or the data is highly correlated.
Even if one uses a better link layer retransmission mechanism which mitigates the impact of collisions, it is still



beneficial to use a higher retransmission probability when there is a need to acquire non-local data.
4 Data Quality Metrics

Imprecision is an intrinsic part of any approximate query processing system. Different quality metrics such as
the number of nodes participating in the query, the variance of the underlying data, and the spatial distribution of
the nodes provide the application different types and amounts of confidence when interpreting a query response.
While this information can be useful for one-shot queries in helping the application determine the usefulness of
the returned data [18], it can be even more beneficial to persistent queries that can adapt their querying behavior
over time. We expose data quality metrics associated with a collective response to a query that can influence the
subsequent course of action. Some example data quality metrics for aggregate sensor queries are:

• Number of Nodes Participating (N): Knowing that a large number of nodes participated in the query may be
sufficient to represent the quality of a returned query result. If the number of nodes is too low, an application
may choose to re-issue the query with a higher value of p.

• Variance (V): Knowing the variance across the returned data samples can also be very useful to an applica-
tion. If the variance is low, the application may issue subsequent similar queries with a much lower value of
p to reduce overhead. A high variance within data that is expected to be correlated indicates a poor sampling,
and subsequent queries will likely benefit from a larger p.

• Locality (L): When sensor nodes are able to attach location to their readings, exposing the data’s spatial
distribution can add useful context. An easy alternative is to expose the distribution of the hop counts from
the querier. This can give a good intuition for how spatially distributed the nodes contributing to the response
are. If a user is interested in just local results, he may be quite content with setting a low p. This is a likely
scenario for sensor networks that support pervasive computing in which users search their immediate area
for information and resources. On the other hand, if one is interested in data from nodes farther away, the
query can be re-issued with a higher p.

These quality metrics can be exposed with very little additional computation or communication overhead. In
the next section, we focus on using these metrics to dynamically tune the sequence of queries that constitutes a
persistent query.

5 Adaptive Approximate Querying Protocol for Persistent Queries

We implement a persistent query as a sequence of one-shot queries. We refer to a particular one-shot query
within a persistent query as a round. In our adaptive model, the protocol can use the data quality metrics associated
with the previous rounds to parameterize the protocol’s execution for the next round. Using the data quality
metrics exposed, an application developer can write an adaptation function that dynamically changes the behavior
of a protocol for persistent queries, after considering data dynamics and user preferences. In this section we
demonstrate the feasibility of our approach using an example adaptation function.

5.1 Adaptation Function

One can write complex functions in which combinations of locality and variance influence adaptation. However
it becomes difficult for the application to express domain knowledge in a straightforward manner. Often, a simple
function can capture the essence of the required adaptation. For example, an application that monitors chemical
leaks must decide if the data obtained in any given round is significantly different from the previous rounds and
change the query behavior accordingly. A good adaptation function should specify the value beyond which a
chemical leak becomes dangerous, and tune the next round of the query based on the response obtained. We



present one such adaptation function; it is conceptually simple and yet shows a high degree of success during
adaptation. In this section, we focus on queries that obtain the approximate average value of the network, as it is
the most typical summary statistic used in long term monitoring applications. Our adaptation function uses the
confidence intervals of the average to change the retransmission probability in the next round if necessary.

Confidence intervals are often used to signify the likely range of an estimated value based on some samples
from the data. The standard formula for computing the confidence interval is:

ConfidenceInterval(CI ) = 1.96 ∗ σ/
√

(n)

σ is the standard deviation of the data, and n is the number of samples. The constant 1.96 indicates 95% confidence
in the computed estimate.

Confidence intervals can be calculated easily from a

QUERYREPLYRECEIVED(r)
if r.destination = A then

replyList := replyList ∪ r
else

send QueryReply(r) to parent
end

SENDPERSISTENTQUERYROUND()
Precondition:

queryTimer expires
Effect:

average := computeAverage(replyList)
error := computeError(replyList)
//*** send average and error to application ***//
diff := TE − error
if |diff | < 1 then

increment := 0.05
else

increment := 0.20
end
if diff > 0 then

increment := −increment
end
pi+1 := pi + increment
if pi+1 > 1 then

pi+1=1
end
if pi+1 < 0.1 then

pi+1=0.1
end
reset queryTimer

Figure 8. Updated Query Processing Algo-
rithm

set of data samples, and our protocol can use confidence
intervals as a basis for adaptation. However, it is an un-
intuitive way to express user preferences. It is easier for
an application to express the extent of error it is willing
to tolerate. We call this the Tolerable Error:

TolerableError(TE ) = 100 ∗ CI /µ

TE can be easily expressed by the application as a sin-
gle value. For example, a value of 10% indicates that
the confidence interval computed from a query response
should be no more than 10% of the mean of the samples.
A confidence interval is small only when a large number
of nodes participate or when the data is highly correlated
(i.e., the standard deviation is small). Consequently, the
error for a query round will be small for the same reasons.
We now show how to use a simple adaptation function
that employs this Tolerable Error to perform adaptive ap-
proximate query processing for persistent queries.

Figure 8 updates our query processing algorithm to use
an application-specified Tolerable Error. This figure as-
sumes a bit of expanded state. First, the node stores the
application-specified Tolerable Error (TE) for each per-
sistent query. The state variable p becomes a list of p val-
ues, one for each round of the persistent query. They are
indexed by i, the number of the round with which the par-
ticular p is associated. We also introduce a timer, query-
Timer, which fires when it is time to issue a new round
of the persistent query. It is at this time that the results
for the previous round are delivered to the application.
Finally, the variable replyList stores the samples consti-
tuting a round until the round is complete. The protocol

shown in Figure 8 is a simplified version of the actual implementation. Here it is assumed that all responses
received belong to the same round. In practice, we check the query-id before processing a node’s reply packet.

The figure shows the replacement behavior for the QUERYREPLYRECEIVED action. Instead of immediately
forwarding replies to the application, our protocol stores them in the replyList, and waits to aggregate the replies



for the application before the next query round. We add the action SENDPERSISTENTQUERYROUND to the
formalization. This action is timer driven; when the timer expires indicating it is time to send the next one-shot
query for this persistent query, this behavior is enabled. It first computes the average and the error for the samples
received in the previous round and sends the result to the application. It then compares the error to the application-
specified tolerable error TE. Our example protocol uses the TE very simply. If the error is close the tolerable error,
the protocol makes only a small adjustment in the value of p (an adjustment with a magnitude of 0.05). Otherwise
the protocol makes a bigger step (an adjustment with a magnitude of 0.20). A more sophisticated adaptation would
use a continuous adjustment scale, where the magnitude of the increment is computed relative to the magnitude
of the TE directly. The increment is adjusted based on whether p should be raised or lowered, and then pi+1 is
calculated. Finally, the value of p is adjusted if it went outside the range of 0−1. This is a simplified example that
matches what was used in our experiments. Other adaptation algorithms can be designed that use a larger history
(more than just the error in the last round) so that the changes are not as abrupt. Our goal was to demonstrate the
efficacy of the technique even when using a relatively simple adaptation function. In the next section, we show
that even this simple adaptation protocol is quite capable of dynamically trading message overhead for desired
accuracy.

6 Evaluation

In this section, we evaluate the performance of the simple adaptation mechanism outlined in Section 5. This
is just an example of how a combination of a parameterizable protocol and data quality metrics can generate a
protocol that incurs the least amount of overhead possible while still satisfying application-defined requirements.
We assume the application is sampling a field of sensors all measuring the same thing (e.g., the temperature in a
farm field). The application expects the values to be similar; therefore the deviation of the results from a mean is a
reasonable adaptation point. The application provides a Tolerable Error (as described in the previous section), and
the protocol adapts p to dynamically target this Tolerable Error. We use the same experimental setup as outlined
in Section 3. Once again, we have three types of data sets representing data with correlation varying from high to
low. We provide 95% confidence intervals for our results. A persistent query is run for 300 seconds, and a new
query round is issued every 25 seconds.

Figure 9 shows the number of nodes responding to
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Figure 9. Adaptation changing the number of
nodes in a Persistent Protocol

the query as the required Tolerable Error is increased.
A low value of tolerable error indicates an application
that requires a high degree of accuracy. Conversely,
a high Tolerable Error indicates that the application
does not require high fidelity data. When the Tol-
erable Error is very low (left of the graph), a large
number of nodes need to be involved to satisfy this
requirement. When the requirement is less restrictive,
receiving results from far fewer nodes will suffice. In
our experiments, p is set to 0.5 during the first round.
As the rounds progress, the adaptation function en-
forces a change in p based on the computed error. If
the error is low, p is progressively increased; if it is
high, p is decreased. The average value of p for the
persistent query varies from 0.92 (1% TE) to about
0.16 (20% TE). Figure 9 clearly shows that our pro-
tocol changes the number of nodes involved (and hence the communication overhead) progressively while taking
into account application constraints regardless of the nature of the underlying data. However, it also shows that the



underlying data can impact the number of nodes required to successfully match user expectations significantly. In
most cases, the number of nodes required to get the same result quality when the data is loosely correlated is much
more than when the data is highly. When the data is loosely correlated, the standard deviation is high, resulting in
a large value for the computed error.

Figure 10 takes a deeper look at the adaptation pro-
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Figure 10. Adaptation per Round

cess when the application specifies that the Tolerable
Error is 5%. The X axis shows the round number
of the persistent query. The Y axis in the top figure
shows the computed error at each round. The bot-
tom figure shows the retransmission probability (ex-
pressed as a percentage) used by the query for each
round. The first round’s one-shot query is issued with
a probability of 50%. When the data is not corre-
lated, the application is unable to meet the required
error of 5% (dashed line in the top graph), and conse-
quently ends up increasing its retransmission proba-
bility to 100% very quickly . Even when p is set to 1,
the protocol is still unable to attain the user required
error, but it does manage to reduce the error from
11% to 8%. The same algorithm behaves differently
when the data is moderately correlated. It is relatively
close to the desired Tolerable Error at about 50% re-
transmission probability. Consequently, it reduces its
retransmission probability in small amounts until it
reaches the desired degree of data quality. Once it sat-
isfies the application’s accuracy requirements, it hov-

ers around that value for the remaining rounds. Given highly correlated data, our adaptive protocol can achieve the
application’s Tolerable Error easily with the starting value of p set to 50%. Consequently, it tries to minimize the
number of nodes involved in query processing. As can be seen from the top graph, the computed error increases
slightly as the rounds progress but remains well below the Tolerable Error. The bottom graph shows that the re-
transmission probability drops drastically from 50% to about 17% by the end of 12 rounds. This translates to only
about six nodes being involved in the query. Thus, the protocol has adaptively traded a slight loss in accuracy for
a large savings in communication overhead because the accuracy loss was well within application tolerable levels.

The data used in our experiments is not jointly Gaussian. In spite of that, confidence intervals have proven to be
a good point of adaptation. This suggests that gossip routing can be successfully parametrized for a large number
of data distributions. From these results it can be seen that there is a large benefit to be gained from dynamically
adapting the behavior of a persistent protocol based on results gathered in the previous rounds. Allowing the ap-
plication to specify accuracy constraints and using that as a benchmark to adapt a protocol’s behavior dynamically
can lead to an ideal number of nodes answering a query. This helps answer the query effectively within the bounds
of application tolerability and reduce communication overhead when possible at the same time.

7 Related Work

Our work is broadly related to three classes of systems that exist in the literature.
Approximate Query Processing: Since performing in-network aggregation [16] by distributing the computation

through out the network can be quite expensive, approximate querying techniques were designed to provide es-
timates of answers. Clustered Aggregation (CAG) [22] creates clusters where nodes with highly correlated data



form a group, and only the cluster head is involved in transmitting data. CAG’s emphasis is network structure
maintenance while ours is to adapt the approximation technique based on the dynamics of the network. Also, we
avoid the overhead associated with maintaining grouping mechanisms like trees or clusters. Other approximate
query processing algorithms [3, 7] create models of data at the base station, and the querier interacts only with the
base station to get his response. The base station maintains estimates of the data at the sensor nodes and employs
different techniques to keep its estimate accurate with the actual data. Our approach queries actual data at query
time and also does not require any elaborate state maintenance mechanism to compute the estimates. In addition,
we expose data quality metrics to add context to a query response. ACQUIRE [19] is a system designed to resolve
the complex queries. One method they use to forward the query is probabilistic forwarding similar to ours. Finally,
Backasting [21] is a technique where adaptive sampling is used to perform estimation of a spatial field and identify
interesting objects, e.g., the boundary of a physical space. Adaptation is used to determine if a region is of interest
by sampling a few nodes initially and then imposing a hierarchy. We focus on using adaptation over an extended
period of time for persistent queries and impose no hierarchy on the network.

Gossip Routing: We chose a gossip routing based protocol because it naturally lends itself to selectively sam-
pling data from nodes. There has been extensive research in using the concept of gossiping for a variety of tasks.
Several researchers have incorporated gossip routing in the sensor networks domain [2, 4]. Their focus is typically
on studying the coverage of gossip routing for different network topologies. In contrast, we focus on using gossip
routing as a mechanism to perform adaptive approximate query processing. One interesting variant is where nodes
update the probability of retransmission based on the relationship between nodes in the network hierarchy [13].
Nodes are inferred to be organized as parents, children or siblings and these relationships are used to tune the re-
transmission probabilities. This is complementary to our work and can be used in conjunction to adapt our protocol
to network topology and data distribution simultaneously. Gossip routing has also been used to perform distributed
aggregate computation [11] by making nodes gossip which leads to an eventual convergence on a common value.
The convergence rates of these algorithms is typically pretty slow.

Query Consistency: There has been some recent work in assessing the validity of a query response, for example
by providing examples of how network disruptions can render the answer to a query completely arbitrary [1]. A
consistency framework for one-shot queries in mobile ad hoc networks provides information to applications about
the quality of their query responses [18]. Prism [8] exposes arithmetic, temporal, and network imprecision metrics
to quantify query responses. Most of these systems use validity metrics to give an idea of the correctness of the
response in the presence of node failure. Our data quality metrics provide relatively cheap context along with a
query response and use this context directly for automatic adaptation in persistent queries.

8 Conclusion and Future Work

In this paper we presented a simple yet effective protocol to perform approximate query processing by leverag-
ing gossip routing. We exposed meta-data in the form of quality metrics and demonstrated how they add context to
a query response in both one-shot and persistent queries. Finally, we provided a protocol that uses the data quality
metrics to automatically adapt approximate query processing for persistent queries. Our results demonstrate that
we can effectively trade off user defined accuracy for overhead. In future, we plan to run our protocol on a real
sensor network deployments. We also plan to incorporate temporal approximation to our protocol.
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