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In wireless sensor network applications, the potential to use cooperation to resolve user queries

remains largely untapped. Efficiently answering a user’s questions requires identifying the correct

set of nodes that can answer the question and enabling coordination between them. In this paper,
we propose a query domain abstraction that allows an application to dynamically specify the

nodes best suited to answering a particular query. Selecting the ideal set of heterogeneous sensors

entails answering two fundamental questions — how are the selected sensors related to one another,
and where should the resulting sensor coalition be located. We introduce two abstractions, the

proximity function and the reference function, to precisely specify each of these concerns within

a query. All nodes in the query domain must satisfy any provided proximity function, a user-
defined function that constrains the relative relationship among the group of nodes (e.g., based

on a property of the network or physical environment or on logical properties of the nodes). The

selected set of nodes must also satisfy any provided reference function, a mechanism to scope the
location of the query domain to a specified area of interest (e.g., within a certain distance from a

specified reference point). In this paper, we model these abstractions and present a set of protocols
that accomplish this task with varying degrees of correctness. We evaluate their performance

through simulation and highlight the tradeoffs between protocol overhead and correctness.
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1. INTRODUCTION

Miniaturization has enabled the production of inexpensive battery-operated sensors
that contain at least one module to sense various aspects of the physical environ-
ment, such as temperature, humidity, etc. A sensor network consists of a connected
set of sensors, each of which can perform one or more specialized sensing tasks, dy-
namically form a multihop network, perform some general-purpose computation,
and store limited amounts of data. Sensor networks show great promise in mon-
itoring the physical world in real time. When sensor networks are deployed on a
large scale, however, there is an explosion in the amount of data to observe and
analyze. Just as the plethora of web data was largely human-unusable until the
advent of modern search engines, querying techniques will play a pivotal role in
comprehending sensor data.

Sensor networks have been deployed in a wide range of applications such as
habitat monitoring [Mainwaring et al. 2002], intelligent construction sites [Hammer
et al. 2006], and industrial sensing [Krishnamurthy et al. 2005]. A common theme
that emerges when studying these applications is the need to retrieve temporally
correlated but heterogeneous data to answer a particular question. Consider a
scenario where sensors are deployed on a crane on a construction site to ensure
that the crane has not exceeded its safe working capacity. Sensor data as diverse as
wind speed, load weight, and boom angle need to be accumulated and processed to
monitor safety [Neitzel et al. 2001]. The resulting aggregate information can give a
crane operator an indication of a potentially dangerous condition, which prevents
the crane from toppling and endangering workers on the site.

As wireless sensor network deployments increase in such environments, it be-
comes imperative that query processing techniques efficiently handle heterogeneous
data types. In a predeployed sensor network, nodes containing several sensor data
acquisition boards may be present, but the set of sensors that a particular applica-
tion query requires may be spread across multiple nodes in the network. Therefore,
multiple sensing devices must often cooperate in the resolution of a single query.
Practically, the sensors selected to work together should satisfy some application-
specific constraints. In the crane safety example, the selected sensors need to be
from the same crane, which is especially important when there are several cranes
located close to one another. Such relationships between sensors that contain the
desired sensing modules cannot be known a priori and are unique for each applica-
tion. In addition, it is sometimes beneficial to specify where the cooperating group
should be located relative to the client issuing the query or some other reference
point. For example, in the crane example, the construction site manager may be
interested in sensors that are all in a particular crane or sensors on a crane that is
next to a densely populated building.

Many queries cannot be satisfactorily answered by existing query systems.
TinyDB [Madden et al. 2005] is an example of a popular query processing sys-
tem for sensor networks. Its traditional “HAVING” and “GROUP-BY” clauses
allow grouping based on simple conjunctions over arithmetic comparison operators
(e.g., “HAVING node-id > 5”), but it is not possible to perform logical grouping
of nodes based on relative properties (e.g., forming a coalition of sensors where the
distance between any two sensors is less than 10 meters). Other querying systems
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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employ data centric routing (e.g., Directed Diffusion [Intanagonwiwat et al. 2000])
to satisfy requests that can be answered with homogeneous data types (e.g., the
average temperature from a certain region in the network). Since a vast number
of sensor network applications require the ability to deal with heterogeneous data
types, these systems must be augmented with the ability to form logical grouping
based on application properties.

In this paper, we introduce an abstraction called the query domain that allows
an application developer to logically group a subset of sensor nodes in the network.
To help the user precisely define such a subset, we introduce two abstractions —
the proximity function and the reference function. The proximity function specifies
how nodes in the chosen subset are related to one another. It accomplishes this by
allowing an application to specify the constraints between the sensors selected to
answer a single query. These constraints are injected into the network, and sensor
nodes that can satisfy the query’s data type requirements and the proximity func-
tion’s relationship constraints self-organize into a logical query domain. Specifying
the constraints can potentially create several query domains in the sensor network.
Often, the application developer is interested in choosing a particular query domain
of interest. To allow him to constrain where the query domain can be located, we
introduce the reference function. Reference functions can be based on the notion of
geographic displacement, such as the distance from a particular object, or logical
properties, such as association with a physical object.

One benefit of using dedicated query domains to answer queries is that we en-
able the same sensor network to be used for multiple applications. This diverges
from current deployments where a sensor network is tailored for a particular ap-
plication. Another benefit is that only the small subset of sensors in the query
domain participate in replying to the query. Once organized, the query domain can
be used as a handle to repeatedly ask the same question of the same coalition of
sensors. This eliminates the communication overhead associated with creating new
routing paths each time the query is issued, thus minimizing energy consumption.
We demonstrate this by extending our work to handle persistent queries where a
query domain, once created, provides periodic response to the query issuer.

The novel contributions of this work are as follows: First, we formally define
three new abstractions, the query domain, the proximity function, and the reference
function, that allow an application developer to identify the dynamic set of sensors
that answer a query. Second, we devise a fully reactive approach that calculates and
constructs the query domain completely on demand, enabling the networked sensors
to self-organize. This protocol provides a practical realization of our abstractions.
Third, we evaluate the effectiveness of our approach through simulation. Fourth,
we investigate the correctness limitations of our proposed protocol and provide a
variant that has stronger correctness guarantees, albeit at an increased overhead.

The remainder of the paper is organized as follows. Section 2 motivates the
problem with examples and provides a concrete problem description. Section 3
introduces our abstraction, and Section 4 presents its implementation. Section 5
discusses some instances where our implementation diverges from the formalization.
Section 6 evaluates the performance of the protocol. Section 7 discusses related
work, and Section 8 concludes.

ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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2. MOTIVATION AND PROBLEM DEFINITION

We posit that the ability to collaboratively resolve a query is essential for effective
query resolution. In this section, we provide concrete application examples where
the stated issues materialize.

Crop Failure Prevention. Frequent crop failures are a cause of large monetary
losses in modern farming. Most crop failures can be explained due to variations in
soil and climate [Mendelsohn 2007]. Monitoring and correlating temperature and
soil conditions provides one way to detect the onset of crop failure. To perform such
a task one needs heterogeneous devices such as temperature and capacitance sen-
sors [SoilSensors 2007]. While it is possible that both temperature and capacitance
sensors are available on the same device, it is also likely that the network contains
devices with more limited capabilities. In such situations, a coalition of sensors
can provide the same functionality as a single more complex sensor. The query for
detecting deteriorating farming conditions may be stated as: “Select temperature
and capacitance readings from sensors that are within 10 meters of one another.”
In this example, the user wishes to query temperature and capacitance sensors, and
the constraint he designates is that the two sensors be near (within 10m of) one
another. Note that this does not preclude the case that the two sensors are, in
fact, located on the same device. In a similar fashion, some vineyards are currently
experimenting with sensor networks to monitor grape crops [Millman 2004]. It may
also be useful to specify where the sensor coalition should be location for it to be
useful. The conditions to be monitored for each crop may depend on the nature
of the crop. In defining the sensors to monitor, the farmer may want to specify
that the sensor reading comes from a particular field of his farm or within a defined
range of his current location.

Habitat Monitoring. Wireless sensor networks have been deployed in a variety
of habitat monitoring environments [Mainwaring et al. 2002]. A field biologist may
be interested in studying the mating behavior of species using a combination of
audio and video sensors deployed in the field. The arrival of the animals may be
detected by the audio sensors, which in turn trigger the video sensors to record
and transmit images. It is critical that the latency between the audio and video
sensors be within a stated threshold; a high latency can result in the reception
of video images after the animal has left the area, leading to wasted video feeds.
Also, the distance between the sensors must be small, or the audio sensors will
detect the arrival of the animal, while the video sensors will record and transmit
images from a completely different location. A query that accomplishes this task
may take the form, “Select audio and video sensors such that they are within 20
feet of one another and the latency between the sensors is less than 1 second.”
In this case, knowledge about the animals’ habits may also allow such a query to
be restricted to a given region of the environment where the animals are known
to mate. This allows the distributed query processing to consumer fewer network
resources, boosting energy efficiency.

Intelligent Construction Site Safety. Finally, sensor networks can be de-
ployed to monitor safety conditions on a construction site [Neitzel et al. 2001]. As
one example, sensors on a crane can monitor its load and warn the site manager if a
crane is in danger of toppling. In addition to wind speed measurements, one needs
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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Fig. 1. An example query domain

to aggregate data such as the angle of the crane’s arm, the position of the boom
on the arm, and the weight of the load on the crane. In such a scenario, a useful
query can be of the form, “Select all sensor readings from the same crane.” While
disparate sensors must be queried to monitor safety violations, the query domain
construction must ensure that all readings are from the same crane and not from
sensors positioned on distinct cranes that happen to be close to one another. In
addition, the site manager may particularly be interested in the safety conditions
of a crane next to a particular building, or a crane with a specific identification
number.

This paper addresses the problem of dynamically defining a sensor coalition that
acts as a single entity in responding to an application’s query. Since this must be
done without any a priori knowledge, nodes must self-organize according to some
application-specified rules provided at run time. These rules help specify how the
sensors are related to one another and to a given reference point.

3. ABSTRACTION

In this paper, we propose the query domain abstraction to solve the problem out-
lined above. In contrast to existing approaches that group nodes based solely on
their content, our approach also groups nodes based on their relationships to each
other and one or more reference points. The query domain defines a relationship
that all responders to the query must satisfy among themselves. Distributing the
definition of this relationship to nodes in a sensor network allows an application
to dynamically impose an overlay structure on the network, impacting how the
network behaves in response to the application’s queries.

Fig. 1 gives a pictorial depiction of a query domain. The members of the overlay
(the gray area) are constrained by the application-specified proximity function.
The query domain in the figure also contains a reference function that requires the
resulting query domain (in this example) to be within 100m of the reference point
in the picture. These constraints that define the query domain are attached to
the query to allow for distributed computation. Because a query carries with it the
definition of its query domain, nodes in the sensor network are not required to know
a priori what types of query domains the application will request, alleviating the
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need to tailor a sensor network deployment to a particular application. Once set
up, the query does not have to deal with individual nodes in the network. Instead,
it can treat the entire overlay as a single node that can be queried repeatedly. In
the remainder of this section, we first formalize the query domain and its use of the
proximity and reference functions. We then show how our application examples
define query domains using these abstractions.

3.1 Formalization

Our abstraction can be formally specified using three components. The first compo-
nent states the form of an application’s query while the remaining two components
formalize the semantics of the query domain supporting this query. Section 4 de-
scribes the protocols we use to implement this abstraction. Any query is defined
first by the data types required (i.e., t1, t1, . . . , tn), second by the proximity func-
tion, Fp, applied to constrain the query domain, and lastly, by a reference function,
Fr, used to provide a frame of reference for the location of the query domain. A
query can be written as:

Q : {t1, t2, . . . , tn}/(Fp ∨ Fr)+

Fp is an application-specified Boolean function that takes any pair of nodes and re-
turns true if the pair satisfies the proximity function and false otherwise. Similarly,
Fr is an application-specified boolean function that takes one or more nodes and a
reference point and returns true if the given nodes satisfy the proximity function
and false otherwise. In addition to specifying the types, a valid query must specify
at least one proximity function or reference function. A reference function can be
of one of two types: an existential function or a complete function. For the former,
any member of the query domain must satisfy the reference function; for the latter,
every member of the query domain must satisfy the reference function. When refer-
ring to components of a query, we use the “dot” notation. That is, the set of types
a query requires (t1, t2, . . . , tn) can be retrieved using Q.types, while the proximity
function and reference functions can be retrieved using Q.Fp and Q.Fr respectively.
The set of types any one sensor in the network can provide is referenced in a similar
way, as s.types.

Formally, a query domain for a query, Q, is any set, S, of nodes that satisfies the
following four conditions1:

〈∀s : s ∈ S :: s.types ∩ Q.types 6= ∅〉∧
〈∀t : t ∈ Q.types :: 〈∃s ∈ S :: t ∈ s.types〉〉∧
〈∀s : s ∈ S :: |(S − {s}).types ∩ Q.types| < |Q.types|〉∧
〈∀s1, s2 : s1, s2 ∈ S :: Q.Fp(s1, s2)〉

The first of these constraints requires that each sensor in the query domain S
have at least one of the query’s required types. The second condition requires every
type requested in Q to be provided by at least one sensor in S. The third constraint

1In the three-part notation: 〈op quantified variables : range :: expression〉, the variables from

quantified variables take on all possible values permitted by range. Each instantiation of the

variables is substituted in expression, producing a multiset of values to which op is applied. If
no instantiation of the variables satisfies range, then the value of the three-part expression is the

identity element for op, e.g., true if op is ∀.

ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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ensures that none of the sensors selected for the query domain are redundant. That
is, this condition guarantees that if any sensor s is removed from S, then the types
remaining in S are insufficient to satisfy Q. (In this condition, the notation |S| refers
to the cardinality of the set S.) The fourth condition ensures that the proximity
function Fp is true for every pair of sensors. This also implicitly requires that Fp

be reflexive, i.e., Fp(s, s) is true.
The above conditions are sufficient if no reference function is provided. However,

if a reference function is specified, an additional condition must also be specified.
The nature of this condition depends on which of the two types of reference function
is applied. For existential reference functions, the following must be true:

〈∃s : s ∈ S :: Q.Fr(s)〉

Alternatively, a complete proximity function requires the following constraint:

〈∀s : s ∈ S :: Q.Fr(s)〉

The reference function also provides a convenient lever to scope the search space
over which a query executes. It can be used to express a network time to live (TTL)
that is commonly used to scope protocols:

hopCountReference∀,client,maxHops

A reference function of this form ensures that every node in the query domain
is within maxHops of the client issuing the query. Such a reference function can
be easily tagged to all queries so as to limit the overhead associated with query
execution. This is especially useful, when the proximity function is not a function
of network properties but relies instead on logical properties.

These definitions provide the necessary and sufficient conditions for membership
in a query domain. The definition does not necessarily reflect the ease or efficiency
with which a particular group of nodes can be connected from a network perspective.
We revisit this in greater detail in Section 5.

3.2 Application Examples

Given the formalization of queries above, we next show how the applications de-
scribed in Section 2 can use our model to easily specify their query requirements.

Crop Failure Prevention. Detecting and preventing crop failure requires mon-
itoring temperature and capacitance readings from sensors that are located physi-
cally close together. This query has the form:

Q : {temperature, capacitance}/distanceProximity10m

where the types within the braces are the two data types the application must find
in the network, while distanceProximity refers to a (built-in) proximity function
that requires all of the sensors in the query domain to be within a given distance
of each other. For proximity functions that require such thresholds, the threshold
(e.g., 10 meters) is given as a subscript. Formally, this indicates an infinite num-
ber of distanceProximity functions (one for each possible value of the threshold).
This is implemented as a parameterized function. It is also possible that a prox-
imity function requires more than one threshold; in such a case, the subscripts are
separated by commas and refer to multiple parameters.

ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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In some applications it may be necessary to specify where the query domain
should be constructed. For example, the farmer may wish to detect crop failure
only within a particular field as defined as a range around a given location. To
accomplish this, we augment the query above with a reference function:

Q : {{temperature,humidity}/distanceProximity10m}/distanceReference∀,(30,50),100

Similar to distanceProximity, the distanceReference is a built-in function that al-
lows the user to specify that the query domain should be within a certain distance
of a location of interest. In this example, the threshold (100) constrains the query
domain to be within 100m of the location coordinates (30,50) (a parameter). The
subscript ∀ designates the complete reference function, forcing the query domain
to ensure that every sensor in the query domain is within 100m of the coordinates
(30,50).

Habitat Monitoring. For the habitat monitoring application example, we
require audio and video sensors that are connected by network paths that provide
some maximum latency (for example, one second):

Q : {video, audio}/latencyProximity1s

Applications may also require that the sensors in the query domain be physically
close together to provide some confidence that the video sensor is capturing relevant
video. To augment the above to account for distance in addition to latency, we
simply apply a second cost function:

Q : {{video, audio}/latencyProximity1s}/distanceProximity10m

Logically, these two proximity functions are combined into one larger function
with the cumulative constraints of each function. Alternatively, the fourth condition
in our query domain formalization could be rewritten as:

〈∀s1, s2, i : s1, s2 ∈ S ∧ i < m :: Q.Fpi
(s1, s2)〉

where m refers to the number of proximity functions applied to the query.
The query can once again be augmented with a reference function to specify

where the desired query domain should reside in the network.
Intelligent Construction Site Safety. For the crane safety application exam-

ple, the query monitors crane data to ensure that safety conditions on the site are
satisfied. To do this, the application must collect information from a variety of sen-
sors on the crane, e.g., the wind speed, the boom angle, and load weight [Hammer
et al. 2006]:

Q : {speed,boom,weight}/contextProximitySameCrane

The proximity function applied in this case is significantly different from the prox-
imity functions used in the previous two examples. The contextProximity func-
tion used here designates a logical relationship between the sensors selected as
opposed to a physical constraint on the network or environment. In this case,
contextProximitySameCrane ensures that all sensors selected for the query domain
are from the same crane. While query domains, in general, do not require explicit
tagging, in this case, the application expects each sensor on a crane to be tagged
with the identity of the crane in question.
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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The query above will form a query domain where all the required sensors reside
on the same crane. More often than not, the user is interested in the safety con-
sideration of a particular crane. For example, the querier might be interested in a
query domain where all the sensors reside on the crane with identification number
six. In such a situation the query can be simply represented as follows:

Q : {speed,boom,weight}/contextReference∀,CraneSix

We are able to specify the query domain without a proximity function because
the reference function makes the proximity function redundant. If all the sensors
are on crane six, clearly they reside on the same crane.

3.3 Programming Query Domains

We now demonstrate how a user would employ our abstractions to specify query
domains. Listing API 1 demonstrates this API using the Java language. The
DataListener interface used in the query domain API is the mechanism through
which the query domain returns its members’ data values. The user can call the
issueQuery and issuePersistentQuery methods to instantiate one-shot and per-
sistent2 queries respectively. Listing Program 1 shows how a programmer could use
this API to create query domains from our application examples3. In the example
code, we have abbreviated QueryDomain to QD, ProximityFunction to PF
and ReferenceFunction to RF respectively.

API 1 Query Domain API
class QueryDomain {

//Constructor
public QueryDomain(String[] dataTypes, ProximityFunction[] pf,

ReferenceFunction[] rf);
//Methods
public void issueQuery(DataListener response);
public void issuePersistentQuery(int freq, DataListener response);

}
}

4. PROTOCOL

In this section, we present a protocol that uses our abstractions to dynamically
create query domains. Table I presents a summary of the abbreviations we will use
in describing this protocol, some of which were introduced in Section 3.

The goal of a protocol for forming a query domain is to locate a set of nodes, S,
that can satisfy a query specified as described in the previous section. The protocol
should return to the query issuer a return path, P , that the querier can subsequently

2Persistent queries are discussed in detail in Section 6.4
3These examples rely on the assumption of pre-defined proximity and reference functions available
as library components. The more sophisticated Java to nesC translator necessary for translation

of arbitrarily defined functions is outside the scope of this work
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Program 1 Example Code
// Crop Failure with no reference function
//Uses the built in distance proximity
//such that the total distance so far is less than 100
PF farmingPF = new PF(PF.PF_DISTANCE, PF.DFORMULA,

new IntegerThreshold(100));
QD farmingQD = new QD({temperature, capacitance}, {farmingPF}, NULL);
farmingQD.issueQuery(answerListener);

//Same query with an added reference function
//all nodes have to be within 100m of (30,50)
RF farmingRF = new RF(RF.RF_DISTANCE, RF.RF_ALL, new IntegerCoordX(30),

new IntegerCoordY(50), RF.RF_DFORMULA,
new IntegerThreshold(100));

QD farmingQD = new QD({temperature, capacitance},
{farmingPF}, {farmingRF});

farmingQD.issueQuery(answerListener);
----------------------------------------------------------------------
//Habitat monitoring query with two proximity functions
// latency has to be less than one second
//i.e., sum of latency on a path cannot exceed threshold
PF habitatPF1 = new PF(PF.PF_LATENCY, PF.PF_SUM,

new IntegerThreshold(1));
// distance has to be less than 10m
PF habitatPF2 = new PF(PF.PF_DISTANCE, PF.DFORMULA,

new IntegerThreshold(10));
QD habitatQD = new QD({audio, video}, {habitatPF1, habitatPF2}, NULL);
habitatQD.issueQuery(answerListener);
------------------------------------------------------------------------
//Intelligent Construction example using just a reference function
RF constructionRF = new RF(RF.RF_CONTEXT, RF.SAMETAG,new IntegerTag(6));
QD constructionQD = new QD({speed, boom, weight}, NULL,

{constructionRF});
//issuing a persistent query with frequency one query every minute
constructionQD.issuePersistentQuery(60, answerListener);

use to contact the constructed query domain. This path is not necessary in every
case, but if the application intends to use the same query domain again, having a
preconstructed path that it can use to contact the query domain in the future can
significantly decrease the overhead and latency. The benefits of this approach will
be evaluated in Section 6.

Our completely reactive protocol for query domain construction sends an initial
flood looking for a sensor that can satisfy at least one of the data type requirements
(i.e., a sensor node that supports any one of the types in Q.types). If a reference
function is provided, the protocol verifies that the first node satisfies the reference
function. After the first member of the query domain is found, this member itself
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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Table I. Definitions
Query’s Type Set (Q.types) The set of sensor types required for this query
Proximity Function (Q.Fp) The user-defined constraint on membership

in the query domain
Reference Function (Q.Fp) The user-defined constraint on location

of the query domain
Path (Pij) A series of links in the network that

transitively connects nodes i and j
Return Path (P) A connected graph of nodes selected

for a query domain

1
2

34

5

Fig. 2. High-level protocol. Solid arrows indicate the initial flood, while dashed arrows indicate

the secondary floods (which, for simplicity, were limited to a one-hop radius). Black nodes indicate
the first node in a query domain to match one of the data types; nodes with the double boundary

matched the second data type. Nodes 1 and 2 form one query domain, while nodes 3 and 4 form

another. Node 5 satisfied one of the requested data types, but could not find the other data type
within one hop.

initiates a secondary flood looking for the remaining unsatisfied types from Q.types.
The second flood is explicitly constrained by the proximity function, Fp. It is also
constrained by the reference function Fr if the specification of the reference function
used the rule stipulating that all the nodes in the query domain satisfy the reference
function (∀ rule).

As these secondary floods are initiated, the query keeps track of the path it
has traversed so far. When all of the types from Q.types have been satisfied, the
final sensor in the chain sends the return path P to the query initiator. This
return message contains the values for each of the sensors in the query domain and
the information needed for the query issuer to issue subsequent queries to the same
domain. As an example, the query in Fig. 2 receives two satisfactory query domains.
A third node matches one part of the query but fails to match the remainder, so

ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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ip′
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k mp′′
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Fp or Fr
threshold 
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Fig. 3. The three cases a query domain resolution can encounter

it does not return a query domain. We note that there may be multiple (possibly
overlapping) query domains that satisfy a single query. To specify any particular
one of interest, the user can leverage the reference function to constrain the query.
In our protocols, the query issuer selects the first response it receives (favoring query
domains with low latency) that satisfy both the proximity and reference functions.
In resource-constrained sensor networks, it is impractical to remember all other
responses. However, the protocol outlined can be easily augmented to remember a
few responses in case the selected query domain fails in subsequent queries.

Fig. 3 shows this process, focusing on three cases a query domain resolution may
encounter. In this analysis, we consider a query that requests only two data types;
queries for more types of data incur subsequent constrained floods. The first case
(the path involving node j) is our base case. In this case, node i was a hit for one
of the data types in Q.types. After this match, node i initiated a secondary query.
Node j matches the second data type required by Q.types, and j sends the return
path j− i− p′ back to the query issuer, where p′ is the series of hops the query had
to traverse before reaching node i.

For the second case, consider the path shown to node m. In this case, node i
initially matched one of the data types of the query. Again, i initiated a secondary
query, but k (and all the nodes between k and m) could not satisfy the remainder
of the query. These nodes continued to forward the query until it landed at node
m, which could provide the second data type. Node m returns to the query issuer
the return path m − p′′ − k − i − p′, giving the query issuer access to the entire
query domain, the set {i,m}. The return path itself is not the query domain, but
it enables the query issuer to contact every device that is within the query domain.

In the final case, the path terminating at the node labeled o, node i again satisfied
one of the two required data types for the query. However, in forwarding the query
in search of the second required data type, either the proximity function or the
reference function was violated along the path. In this case, no return path is sent
back to the query issuer because no query domain was formed along this search
route.

4.1 Worst Case Overhead

The overhead of the protocol depends on the number of types, and the nature of
the proximity and reference functions. In the worst case, our protocol can trigger
a new flood for every type requested in the query resulting in O(nk) messages
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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in the network, where n is the number of nodes and k is the number of types
requested. If the proximity function is a network property (e.g., hop-count) or
environmental property (e.g., distance), the proximity function naturally scopes
the successive floods ensuring that they are not network wide. In the case of logical
properties (e.g., sameCrane), the proximity function does not serve the dual purpose
of attesting membership and scoping the floods. However, as shown in the previous
section, the reference function can be used as an effective scoping mechanism to
restrict excessive flooding. Even if the user employs a simple reference function that
serves as a network TTL, the worst case overhead of the protocol can be changed
dramatically. It can be reduced to O(mk), where m is the number of nodes allowed
in the scoped region. The overhead associated with the protocol can be reduced
substantially by scoping the protocol in a way such that m � n.

4.2 Query Domain Failure

In some instances, it is possible for our protocol to locate a valid query domain
even if one exists. This is due to the fact that our protocol’s behavior is conserva-
tive. We discuss and evaluate this conservativeness in detail in Sections 5 and 6.5,
respectively.

Regardless of the cause, there are a few plausible alternatives that a user can
take in such a scenario.

—The user can do nothing.
—The user can re-issue the query with relaxed constraints on the proximity or

reference functions.
—If the query is critical enough to take a more expensive course of action, the user

can flood the network, retrieve all values, and perform a centralized grouping at
a powerful base station node.

In our implementation, the query framework accepts a parameter in the form of
a boolean flag that indicates whether a query domain failure should result in pro-
tracted flooding and centralized grouping. This flag can be set by the user depend-
ing on how much value he places on successfully forming a valid query domain.

The complete overhead associated with our protocol is a function of the scoping
mechanism used and the action undertaken when the protocol fails to detect a
valid query domain. In Section 6, we evaluate our protocol by employing the most
expensive fall back option and varying the scoping mechanism.

5. CONSERVATIVENESS OF QUERY DOMAINS

As we will demonstrate in the next section, the protocol in Section 4 is an efficient
protocol for finding and returning a large proportion of the available query domains.
However, it is more conservative than the formalization in Section 3 in that it does
not guarantee that it finds every satisfactory query domain. In this section, we
discuss limitations resulting from this design choice. In Section 6.5, we quantify
these limitations and show that our protocol has significant benefits that outweigh
these drawbacks.

One alternative to our protocol is to use a more sophisticated centralized protocol.
A complex centralized protocol can occasionally find more legal query domains that
our protocol overlooks. We use Fig. 4 and Fig. 5 to examine this further.
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Fig. 5. Conservativeness when the query domain is not constrained to a single nonbranching path

In Fig. 4, node A can provide sensor a, node B can provide sensor b, and node
C can provide sensor c. The dashed lines indicate connectivity between the nodes.
Consider a query where a user is interested in all three of these data types and
requires that all members of the query domain be within a single hop of each
other. The set of nodes {A, B, C} does, in fact, satisfy the proximity function
as defined by our formalization. The nodes are all within one hop of one another,
and collectively, they contain all of the desired sensor types. In the figure, the
distributed protocol first detects sensor a at node A. When node A initiates the
second constrained flood, it finds sensor b at node B and sensor c at node C along
two different paths. However, nodes B and C will not rebroadcast the message
to each other. The pairs A-B and A-C are each exactly one hop apart, and any
further broadcast to nodes C or B, respectively, will violate the proximity function
along the path through A. In this example, our protocol is unable to detect nodes
{A, B, C} as a valid query domain.

To generalize the statement of this conservativeness, we say that our protocol
is more conservative than the formalization in Section 3 when the query domain
is not constrained to a single nonbranching path. Fig. 5 shows another example.
Nodes A, B, C and D contain sensors a, b, c, and d respectively. Nodes X and
Y do not contain any of the desired sensors, but are in the connectivity path. The
user queries for sensors a, b, c and d with a proximity function that requires all
nodes to be within four hops of one another. The set of nodes {A, B, C, D} form
a perfectly valid query domain. In the figure, our protocol will first find sensor a
at node A and then sensor b at node B. Subsequently, there will be a fork and the
next node will be either X or Y. Since there can be one more node in the return
path without violating the proximity function, the next node to be added to the
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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Fig. 6. Conservativeness due to absence of redundancy removal

return path is either node C or node D. While C and D each contain one of the
desired types, neither {A, B, X, C} nor {A, B, Y, D} will be a valid query domain
as neither contains all four desired sensor types. In this example, our protocol will
not detect a query domain because the query domain topography does not conform
to a path-based structure.

In Section 6.5, we evaluate how often query domains result in topological for-
mations like trees or directed acyclic graphs instead of single network paths. We
also implement a protocol which makes use of a centralized coordinator that can
identify query domains mentioned in the examples above and compare it to our
reactive path-based protocol.

Another way our protocol is a more conservative than formalized is due to the
fact that sensors selected to form a query domain may be redundant. Our protocol
provides no facility for removing sensors if their capabilities prove to overlap those
of other sensors that must be in the query domain. We use Fig. 6 as a reference
to demonstrate this point. Consider a query that requires only two types: {a, b}.
If the query issuer discovers sensor a at node A, the protocol will start looking for
sensor b. Since our implementation removes a from the required sensor list, the
protocol will henceforth look for sensor b only. When the protocol discovers a node
(e.g., node B), that can provide the desired type b, the resulting query domain is
{A, B}. Node A is clearly redundant in this case, since node B contains every
sensor provided by node A. However, our protocol does not remove the redundant
node (node A) from the query domain returned to the user. This is largely an
implementation detail and can be easily overcome. However, doing so would entail
sending more information in every packet, increasing the protocol overhead. The
added complexity adds very little value in practice, as the redundant node is still
likely to remain in the return path to the user. Therefore, neither the overhead nor
the latency is reduced. As the added complexity does not result in any savings, we
do not investigate protocols to address this issue.

6. EVALUATION

In this section, we provide an evaluation of our protocol. Our protocol’s code
size is 16,990 bytes in ROM and 2,987 bytes in RAM memory. To thoroughly
evaluate our protocol, we used the OMNeT++ network simulator [Vargas 2008] and
its mobility framework [Loebbers et al. 2007]. We employed the NesCT language
translator [Kaya 2008] to translate TinyOS [Hill et al. 2000] code written for MICA2
motes4 into C++ code that can be run on OMNeT++ simulator. We have also
tested our code using the TOSSIM network simulator [Levis et al. 2003], which

4The source code used in our simulations is available at http://mpc.ece.utexas.edu/

QueryDomain/index.html
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allows direct simulation of TinyOS [Hill et al. 2000]. The results presented here
use the NesCT tool as it allows for more robust testing of dense sensor network
deployments.

6.1 Simulation Setup

We used a uniform random placement of sensor nodes in a 100 foot x 100 foot
area. We used the OMNeT++ radio model that accounts for packet collisions and
fading. To distribute sensor types, we took all of the possible types for a particular
simulation, created all possible combinations of those types, and randomly dispersed
the combinations in the network. For example, when there are three possible sensor
types, there are seven possible combinations of sensors (a node can have one of any
three of the types, two of any three of the types, or all three types). Consider a
network where the possible sensor types are {a, b, c}. In a simulation layout of 50
nodes, seven nodes would provide only data type a, seven would provide only type
b, seven would provide only type c, seven would provide types a and b, etc. The
last, leftover node randomly provides one of the seven combinations.

6.2 Performance Metrics

To evaluate our protocol, we use three performance metrics: (i) the number of
messages sent per query, (ii) the query response time, and (iii) and the percentage of
queries successfully resolved. Since wireless sensor networks are extremely resource-
constrained, it is essential for a protocol to minimize message overhead to save
energy. In addition, the usefulness of the protocol is at least partially dependent
on the latency associated with retrieving the results.

We have evaluated the power of our abstractions through several categories of
tests. The first set of simulations measures the overhead and latency associated with
our protocol. In the second set, we evaluate how our protocol performs in resolving
persistent queries. Finally, we compare our protocol against a more complex cen-
tralized protocol and evaluate the conservativeness issues raised in Section 5. The
error bars on the graphs indicate 95% confidence intervals.

6.3 Basic Protocol Performance

In these simulations, we compare our protocol to another protocol using the per-
formance metrics outlined above.

6.3.1 Choice of Comparison. In evaluating our protocol’s capabilities and per-
formance trade-offs, we selected a flooding-based protocol as a benchmark. This
protocol broadcasts the required sensor types to every node within communication
range of the query issuer. Recipients of the broadcast reply if they have all the
required sensors. Otherwise, the message is rebroadcast until the required sensors
are found or the network’s TTL is reached. Flooding provides a good benchmark
because existing implementations of the applications described in this paper typ-
ically use this technique to resolve their queries. However, simple flooding is too
inefficient from a message overhead perspective. Therefore, we compare our pro-
tocol against an intelligent flooding protocol that accomplishes the same task with
much lower overhead [Liang et al. 2007]. This protocol uses far fewer forwarding
nodes than a simple, näıve flooding implementation.
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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Table II. Relationship between node density and number of neighbors per node
Nodes Number of

Neighbors

50 0.98

100 2.16
200 5.23
300 8.26

400 11.41
500 15.34

6.3.2 Comparison Results. To evaluate our performance metrics, we varied the
number of nodes from 50 to 500. Table II shows that this results in the average
number of neighbors per node changing from approximately one to fifteen in our
simulation setup, thus demonstrating that we vary the network density from sparse
to dense in different experiments. To study the feasibility of creating query domains
using proximity functions, we implemented two types of query domains. While the
first uses a simple proximity function that requires that all nodes be within three
hops of one another, the majority of our reported results use the second, more
sophisticated query domain where the proximity function specifies that the distance
between each member is no greater than forty feet. In conjunction with these
proximity functions, we use a simple reference function that serves as a network
TTL (as described in Section 3). It forces all the nodes in the query domain to be
a within certain number of hops from the query issuer. We varied the number of
hops allowed by the reference function from three to seven.

Fig. 7 shows the number of messages transmitted by all nodes in the network to
resolve a query for our protocol and for the intelligent flooding protocol described
previously. The intelligent flooding algorithm requires proactive exchange of beacon
messages to determine the optimal set of nodes that should continue to propagate
the broadcast message. Our protocol is entirely reactive and does not require
such beacon messages. Fig. 7 does not include the overhead associated with beacon
exchange in the intelligent flooding protocol because we view this as a one time setup
cost and not the cost for operation. In the graphs shown in Fig. 7, both protocols
observed the same behavior if they failed to locate a valid query domain using
the standard discovery protocol; in response to failure, both protocols repeatedly
flooded the network for individual sensors and performed a centralized grouping.

In Fig. 7, the number of messages increases as the number of nodes increases
because with increasing density, the number of nodes in rebroadcasting range in-
creases. Regardless of the particular proximity or reference function used, our pro-
tocol outperforms the flooding based protocol, especially as the number of nodes
in the network increases because the overhead is greatly affected by how often each
protocol succeeds in resolving the query successfully. Our protocol accomplishes
this task far more frequently than the alternative flooding based protocol. As a
result, the number of times the protocol has to execute the expensive secondary
protocol that results in repeated flooding of the network is drastically reduced. This
is especially true for networks with lower node densities or when the TTL is set
to a low value because our protocol does not need to search as widely for a match
as nodes cooperate in resolving the query. Also, our protocol employs a hierarchi-

ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.



18 · V. Rajamani et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500 400 300 200 100 50

A
ve

ra
ge

 N
um

be
r 

of
 M

es
sa

ge
s 

S
en

t

Number of Nodes in Network

Flooding
Distance-Based QD

Hop Count-Based QD

(a) TTL=3

 0

 50

 100

 150

 200

 500 400 300 200 100 50

A
ve

ra
ge

 N
um

be
r 

of
 M

es
sa

ge
s 

S
en

t

Number of Nodes in Network

Flooding
Distance-Based QD

Hop Count-Based QD

(b) TTL=5

 0

 50

 100

 150

 200

 250

 500 400 300 200 100 50

A
ve

ra
ge

 N
um

be
r 

of
 M

es
sa

ge
s 

S
en

t

Number of Nodes in Network

Flooding
Distance-Based QD

Hop Count-Based QD

(c) TTL=7

Fig. 7. Average number of messages transmitted per query vs. the number of sensor nodes in the

network
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Fig. 8. Average query latency vs. number of sensor nodes in the network

cal flooding mechanism that scopes the query’s secondary dissemination, thereby
reducing the overhead of discovery. While not shown, our protocol marginally un-
derperforms flooding when the comparison is restricted to successful query domain
constructions. However, the flooding protocol finds far fewer query domains on its
first try, and therefore this occurrence is significantly less frequent. In addition,
even when the comparison is restricted to only successful query domains, the flood-
ing based protocol outperforms our protocol, only when the overhead associated
with flooding is not accounted for.

Fig. 8 shows the average query response time for the protocols. Our proto-
cols marginally outperforms flooding, but significantly increases in benefit as node
density increases. The added overhead of a complete flooding approach causes
contention in the network, resulting in delayed responses. In addition, the query
domain construction allows nodes to cooperate, enabling faster, more local results.
Consequently, the average path lengths of our protocols are smaller than those of
flooding-based protocol leading to faster response times. The average path lengths
for our protocols vary from 2.8 to 4.9 hops, while the average path length for flood-
ing varies from 3.6 to 6.4 hops.

Fig. 9 shows the percentage of queries successfully resolved as the queries become
increasingly complex. Every point in the graph represents 500 runs in the simula-
tion. This metric determines whether it is effective to rely on collaborative behavior
as opposed to simply searching for powerful nodes. To increase the complexity, we
varied the number of sensor types required by the query from two to five. Fig. 9
shows that as the number of sensing units required for a single query increases, the
probability of finding a satisfactory sensor or set of sensors drops substantially. In
the graph, we do not distinguish between the underlying causes that lead to the
failures to locate a valid query domain. Lack of valid query domains in the system
to begin with, collision related packet losses, and the conservativeness of the pro-
tocol can all result in failure to detect a valid domain. In practice it is difficult to
determine the exact cause of failure. However, by using simulator logs we were able
to eliminate those queries that did not have a valid domain in the network to begin
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with. When networks with only valid query domains are used, the success percent-
age of our protocol is significantly higher. For example, its success percentage for
a query with five sensors (the most complicated query in our tests), rises to 97.6%
when it is guaranteed that the underlying network had valid query domains. This
reaffirms that the query domain facilitates the collaboration of several less powerful
nodes for complex tasks.

6.4 Persistent Protocol Results

A common mode of querying sensor networks is to continuously request data. For
example, one might like to know the weather conditions periodically over an ex-
tended time interval. To accomplish this efficiently, our protocol allows persistent
queries. The first part of the persistent protocol is identical to the protocol above
and returns a path connecting the query issuer to the query domain. After the
query domain is established, each node in the return path keeps track of its parent
and its children. The query issuer has no parent, and the last node in the path has
no children. When the query issuer needs to use the query domain multiple times,
it simply sends the message only to its children, who in turn forward it to their
children. To maintain group consistency, nodes periodically send beacons to their
parents and children. The beacon frequency may vary depending on node mobility
and application requirements; a high beacon frequency allows the nodes to discover
changes in the query domain configuration faster. If a node does not hear from its
parent or one of its children for a specified time interval (three beacon intervals), it
disqualifies itself from the query domain, which eventually leads to the destruction
of the entire query domain. The query issuer must then reissue the original query,
constructing a new query domain.

Since we address pervasive computing environments where users typically move
through sensor networks, we tested our persistent protocol by simulating a moving
query issuer. The query issuer moves at a rate of 10 feet every 25 seconds in a
random fashion over a 100 second window. This corresponds to a relaxed walk.
The beacon frequency was set to a relatively low value of one every five seconds.
ACM Transactions on Sensor Networks, Vol. V, No. N, May 2008.
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We issued persistent queries with different frequencies in a static network, changing
the rate at which a query issuer makes a request from 10 to 50 times in a 100
second window. We compared this to issuing the same number of repeated one-
time queries.

Fig. 10 shows the behavior of the persistent query in comparison to repeated
uses of one-time queries as the query issuer moves. We compared the number of
responses that the querier gets for both the one-time and the persistent query and
ensured that they are similar. In both cases, at least 80% of the queries had re-
sponses regardless of mobility. Fig. 10 shows the total overhead for all nodes in
the network for persistent queries and the fraction that beaconing accounts for.
At low query frequencies (the left side of the figure), the query domain is set up
and maintained, even though the query issuer is likely to move before the query
domain is used a second time. Therefore, the expense of maintenance is not re-
couped over time. Using a series of repeated one-time queries, instead, leads to
lower overhead. However, as the frequency with which queries are issued over a
persistent query domain increases, the overhead per query decreases. This is be-
cause more queries can be successfully resolved before the query issuer moves and
the query domain breaks. Consequently, the cost of maintaining the query domain
is amortized over these queries. The use of persistent queries shows similar benefits
for static networks. In fact, for static networks, the beaconing frequency can be set
to a lower value because query domains are unlikely to break. Thus the benefit of
using persistent queries is even greater for less dynamic networks.

These results show that the query domain abstraction scales well as the number
of nodes in the network increases both when the network is static and when there is
some mobility. The communication overhead and latency are favorable compared
to alternatives. When there is a need for persistent queries, our persistent protocol
scales well.
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6.5 Query Domain Conservativeness Results

In Section 5, we detailed ways in which our protocol was conservative with respect
to the formalization stated earlier. Here, we evaluate how conservative it is in
practice. We determine how conservative our approach is by evaluating how well
our protocol performs with respect to what is ideally possible. There are two metrics
of relevance: the percentage of valid query domains that our protocol fails to detect
and the number of times it fails to identify a single query domain when there are
in fact valid query domains in the network. The former gives a measure of whether
our protocol can find the majority of the query domains. If the user is interested in
choosing a particular query domain from a selection, the number of query domains
available at his disposal may be important. The latter is a measure of how often
a user-defined relationship exists in the sensor network but goes undetected by
our protocol. This is important in scenarios like crop failure detection, where not
detecting a query domain may result in high monetary loss.

One aspect that impacts the success of our protocol is the proximity function
used during domain construction. Since the proximity function is an important
component of a query that the user is likely to vary, we varied its threshold and
studied its impact on the percentage of query domains identified by our protocol.
The distance proximity threshold was varied from 10 to 50 feet in a network where
the number of nodes was set to 100. A threshold of 10 feet represents a strict
proximity function, while a higher value like 50 feet indicates a far more relaxed
constraint. While the simulations below are specific to the nature of the proximity
function used, we tested them with other proximity functions and the insights
gained from these simulations hold true in general.

Fig. 11 shows how our protocol compares against an ideal protocol. We see that,
regardless of the threshold, at least 55% of all possible query domains are detected
by our protocol. When the distance threshold is very small (left side of the figure),
reflecting a very strict proximity function, the only possible domains are those that
can be satisfied by the same node or nodes very close to one another. For the most
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part, these would in fact be connected in a single path which our protocol is very
likely to detect. However, as the proximity function’s threshold is increased, the
success percentage decreases. This is because the nodes that are relatively far from
one another can now be a part of a valid domain, and the likelihood that these
nodes are connected through topologies other than single network paths increases.
As explained in Section 5, some of these query domains cannot be identified by our
protocol. As the figure demonstrates, no matter how relaxed the threshold of the
proximity function is, the query domain protocol detects a large subset of the query
domains in the network.

Another factor that can significantly impact the success of the query domain
protocol is the node density. We varied the number of nodes in the network from
50 to 300. The percentage of query domains detected shows a trend very similar
to the one obtained by varying the threshold in Fig. 11. As the network density
increases, the percentage of query domains detected decreases but the number of
query domains detected increases significantly. For example, when the number of
nodes in the network is set to 300, our protocol detects 49% of all possible query
domains in the network and the actual number of query domains detected is a large
value of 410. Most applications will not require more than the correct detection of a
few query domains. Since a very large number of valid query domains are detected,
one can confidently locate a particular query domain of interest by coupling this
proximity function with an appropriate reference function as demonstrated in the
previous experiments. The number of times our protocol failed to detect even a
single valid query domain is negligible. We counted the number of times in 1000
runs when there were valid query domains in the network but no query domain
was discovered by our protocol. When the network is very sparse, one or two of
the runs out of a thousand failed to generate a path that was a query domain.
For example, for a 50 node network, the number of such failures was just two. In
connected networks (more than 100 nodes), the number of such failures was always
zero.

While other protocol designs that are less conservative are possible, we deter-
mined that the simplicity and cost-effectiveness of our protocol outweighs the lim-
itations of these alternatives. Alternate protocols may detect more domains at the
expense of added complexity and cost. One alternative protocol that we considered
uses a central coordinator to alleviate the conservativeness of the query domain
protocol. Fig. 12 shows a pictorial representation of this protocol. Consider a sit-
uation where nodes i, j, k and l have one of the four desired sensors each, and
the proximity function constrains them to be within 10m of one another. In the
coordinator-based protocol, an initial flood is disseminated through the network
until a node containing at least one of the given sensors is located. This node,
henceforth deemed the coordinator, then proceeds to disseminate scoped floods to
all its neighbors. Node i is the coordinator in the Fig, 12. Nodes j, k, and l receive
the query from node i. Since they partially satisfy the query, they each send the
sensors they satisfy and their location to the coordinator. We call such information
partial aggregates. Upon receiving these messages, the coordinator checks to see
if, by using these nearby nodes, it can satisfy the proximity function. Nodes i, j
and k are clearly within 10m of the coordinator i. Otherwise, they would not have
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Fig. 13. Message overhead per query as a function of the distance threshold for the coordinator

protocol and query domain protocol

returned their partial aggregates. However, on receiving the locations of nodes j, k
and l, the coordinator checks if the distance between {j, k}, {k, l} and {j, l} are all
less than 10m. This is, in fact, the case in the figure, and the coordinator concludes
that the proximity function is satisfied. A query response is returned to the querier
by the coordinator. In this protocol, it is possible to receive messages from several
nodes that satisfy a query partially. More than one combination of these nodes may
completely satisfy the query. It is infeasible to perform a combinatorial proximity
satisfaction check for every combination of nodes. Thus, we restrict the coordinator
to return a query result the very first time the query is completely satisfied.

We implemented the coordinator protocol and compared it to the query domain
protocol provided earlier. We varied the proximity function’s threshold from 15 feet
to 40 feet in a 100-foot by 100-foot simulation. The goal was to see if there was any
significant benefit in using the coordinator-based protocol in terms of the number
of query responses received. There was no noticeable difference. The protocols
produced an almost identical number of query resolutions. This further reaffirms
that the query domain protocol almost always returns a valid query domain.

Fig. 13 shows the number of messages transmitted by the sensors to resolve
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a query for the two protocols. The message overhead associated with the query
domain protocol is slightly less than the coordinator protocol. This is because
the query is disseminated only along a few paths in the network, while it gets
disseminated along multiple paths using the coordinator-based protocol. While the
margin may vary depending on the threshold and the node density, we found that
the coordinator-based protocol is typically more expensive. There was very little
difference between the two protocols when latency is used as a comparison metric.
These results are omitted for brevity.

These simulations show that the query domain protocol detects a large percent-
age of all possible query domains. In most practical sensor network applications,
the user is interested in retrieving a small number of query domains. Since our pro-
tocol detects a large number of query domains, it lends itself easily to selecting an
appropriate one through the proper use of reference functions. The query domain
protocol is completely distributed, and variants like the persistent query domain
protocol can be easily created. For the few applications that may require finding
all possible query domains, the coordinator-based protocol may be used.

7. RELATED WORK

Our work is related to several different classes of systems that exist in the litera-
ture. First and foremost, the query domain is essentially a grouping mechanism.
Grouping mechanisms have been well studied in the sensor network community, and
can be broadly classified as neighborhood abstractions and grouping abstractions.
Second, since the purpose of our query domains is to query for data, we discuss how
it relates to existing query processing systems. Third, as we use data content to
form domains, our work overlaps to some of the work done on datacentric routing.
Finally, our work is somewhat related to new work on macroprogramming where
the emphasis is to program the network as a whole instead of individual sensors.

7.1 Neighborhood Abstraction

Neighborhood abstractions help define a group consisting of nodes and its physi-
cal neighbors. Hood [Whitehouse et al. 2004] provides a neighborhood abstraction
with the goal of easily encapsulating membership, data sharing, and messaging be-
tween neighboring nodes. Subsets of nodes within physical communication range
form a neighborhood. Nodes in the neighborhood exchange attributes with one
another, and each node applies a filter to determine if a particular attribute is to
be cached. In Abstract Regions [Welsh and Mainland 2004], the sensor network is
scoped into regions defined in terms of radio connectivity or geographic location,
and aggregation operations can be performed on these regions. In contrast, Logical
neighborhoods [Mottola and Picco 2006] focuses on overlay networks defined by log-
ical properties. Individual nodes export tagged information (such as sensor type,
sensor reading, etc.) which are then compared against a neighborhood template
that serves as a condition for group membership. Similarly, EnviroTrack [Abdelza-
her et al. 2004] groups nodes based on a detected event. All nodes that detect the
same event (e.g., identifying a car) form a group. Finally, a neighborhood abstrac-
tion system similar to ours is Scenes [Kabadayı and Julien 2007]. Here, a mobile
device forms a scene around itself which allows applications to specify the required
types and the conditions which limit the sensors that can participate in the scene.
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A common feature of all these systems is that they provide a mechanism to
form a group around the node issuing the query. In contrast, our system allows
a grouping structure to be imposed in any part of the network. Our system can
easily accomplish the functionality of neighborhood abstraction by simply setting
the reference node to the one issuing the query. However, it can also perform
grouping based on arbitrary application imposed constraints in any part of the
network. Also, these approaches typically require proactive exchanges of attributes
to form neighborhoods. Our approach is less restrictive because we form the query
domain reactively at query time. This reduces the amount of information that needs
to be programmed in the network at deployment time, facilitating general-purpose
sensor network deployments.

7.2 Grouping Abstractions

Grouping mechanisms tend to focus on forming coalitions that are more general
and typically contain membership criteria beyond just neighborhood constraints.
A popular technique in this category is clustering. Our work is most similar to
clustering algorithms that satisfy application level requirements. LEACH [Heinzel-
man et al. 2000], was one of the earliest cluster-based systems designed for mobile
adhoc and sensor networks that used application level communication requirements
as a grouping criterion. LEACH forms groups to conserve energy and assumes that
all nodes are with in communication range of the base station. By comparing the
signal strengths of different nodes, the node with the best signal strength is deemed
the cluster head. To prevent the cluster head from draining all its resources, the
role is rotated periodically among the nodes. The Cluster Aggregation Technique
(CAG) [Yoon and Shahabi 2007] also employs a clustering mechanism. CAG makes
use of the fact that most sensor data exhibits high spatial and temporal correlation.
The clusters are created based on the similarity of the data being transmitted. The
cluster head alone transmits aggregated data, thus reducing energy consumption
significantly. The primary goal of these two algorithms is to typically create a few
random clusters and then rotate the leader role to keep the clusters operational for
as long as possible. In contrast, we focus more on the cluster creation process. To
our knowledge, no other work forms clusters based on the capabilities of hetero-
geneous sensors and the data values extracted from those sensors simultaneously.
While our query domain can be considered a cluster of related nodes containing
various capabilities, its implementation leads to a flat hierarchy typically not found
in these cluster-based systems.

SpatialViews [Ni et al. 2005] is a system that allows grouping devices based on
the services they offer and their location information. It is a high level programming
language that allows operations to be performed on the chosen subset through code
migration. This system was designed for grouping powerful devices like cameras
and laptops. Its focus is on higher level constructs like language design and resource
tradeoff. We focus more on group formation and do not explicitly require location
information of the different devices in our group.

7.3 Query Processing Systems

TinyDB [Madden et al. 2005] and Cougar [Yao and Gehrke 2002] are two examples
of systems that attempt to make the user completely oblivious to the underlying
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network. They view the entire sensor network as a relational database which can be
queried using an SQL-style syntax. A user’s query is flooded to every node in the
network, and the response is sent back to the user by forming a spanning tree rooted
at the sink. While the “group-by” clause provides a way to perform groupings based
on symbolic information the sensors have been tagged with (in a manner similar
to logical neighborhoods, above), it is not possible to specify arbitrary functions
based on physical properties.

Another system that addresses a method to resolve complex queries is AC-
QUIRE [Sadagopan et al. 2005]. ACQUIRE provides a mechanism to resolve com-
plex queries into a sequence of simple queries. When a subquery can be evaluated
in the network, ACQUIRE invokes a d -hop look ahead to locate nodes that can
resolve the subsequent subqueries. It is close to our work in the sense that multiple
sensors are typically used to address each of the subqueries. However, unlike our
work, ACQUIRE does not form a group while processing complex queries. For per-
sistent queries, our abstraction can be leveraged repeatedly, reducing energy usage
in resource discovery, while ACQUIRE must reestablish which sensors to use every
time.

7.4 Datacentric Routing

Work in this area can be considered a subset of that done in query processing. The
key insight motivating such designs is that routing should take into account the
semantic information of the application data instead of relying on node or router
identification information. In Directed Diffusion [Intanagonwiwat et al. 2000], one
of the earliest systems in this area, the data generated at each sensor node is stored
in attribute-value pairs. The query issuer injects interests into the network. Nodes
that contain data satisfying the interest send their data back to querier. Directed
diffusion assumes that a single powerful node can resolve all the interests that a
user is interested in. As we have shown in this paper, it is impractical to assume
that a single node will be able to answer all the query’s interests. We extend the
power of data centric routing with the ability to form complex groups at run time
making use of the inherent heterogeneity available in the system.

7.5 Macroprogramming Abstractions

Finally, systems that simplify programming of sensor networks are related to our
work to some degree. Kairos [Gummadi et al. 2005] and Regiment [Newton and
Welsh 2004] employ a macroprogramming approach in which a user writes a sin-
gle program, which is then distributed across the sensor network. Kairos provides
abstractions to facilitate this task, while Regiment focuses on investigating the suit-
ability of functional programming to the sensor network domain. Kairos imposes a
graph structure on nodes that should be involved in the program (which is similar
to the path list generated for our query domain). These techniques focus on the
feasibility of automating mundane tasks like communication using routing trees, to
reduce the time and effort required to deploy sensor network applications. They
do not address the issues of querying and grouping mechanisms that are the main
focus of this work.
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8. CONCLUSIONS AND FUTURE WORK

We have described the query domain abstraction that enables the best-suited coali-
tion of sensor nodes to answer a particular query. Since the specification of the
proximity function to form the query domain does not require any broadcasts a
priori, it reduces the communication overhead and supports multipurpose sensor
networks. We have related the abstraction, its protocol implementation, and per-
formance evaluation demonstrating the scalability of the protocol with increasing
number of nodes and in the face of mobility. We have demonstrated the flexibility
of the abstraction by extending it to incorporate persistent queries. We also imple-
mented different protocols to account for different degrees of correctness that the
application may require. In general, the protocol presented in this paper should
help in the deployment of a large class of sensor network applications.

Future work will investigate the feasibility of injecting arbitrary code into a net-
work to enhance the expressiveness of the proximity function. Currently, we have
a series of library functions available to the protocol to calculate distance, latency,
check for tagged information, etc. While this covers a large subset of proximity
functions, we will investigate means to create arbitrary relationships more easily.
In addition, the proximity function as described here allows the application to in-
corporate the properties of its choosing but the protocol itself does not make any
assumptions about the underlying characteristics of the network that may ulti-
mately affect the performance of the application. Future work will look at building
some traffic engineering techniques critical to the efficiency of sensor networks (such
as overall battery power conservation, load balancing, etc.) into query domain con-
struction. We will also investigate how many query domains should be realistically
kept in the querier’s memory and how to deal with issues like group overlap if the
query issuer chooses to deal with multiple query domains simultaneously.
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