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Abstract

Pervasive computing deployments are increasingly using sensor networks to build
instrumented environments that provide local data to immersed mobile applications
immersed. These applications demand opportunistic and unpredictable interactions
with local devices. While this direct communication has the potential to reduce both
overhead and latency, it deviates significantly from existing uses of sensor networks
that funnel information to a static central collection point. This pervasive comput-
ing driven perspective demands new communication abstractions that enable the
required direct communication among mobile applications and embedded sensors.
This paper presents the scene abstraction, which allows immersed applications to
create dynamic distributed data structures over the immersive sensor network. A
scene is created based on application requirements, properties of the underlying net-
work, and properties of the physical environment. This paper details our work on
defining scenes, providing an abstract model, an implementation, and an evaluation.
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1 Introduction

Sensor networks, consisting of battery-powered devices that communicate wire-
lessly to collect information, have emerged as an integral component of perva-
sive environments. Much of the existing work focuses on application-specific
networks where the nodes are deployed for a particular task, and data is col-
lected at a central location to be processed and/or accessed via the Internet.
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We envision a scenario in which sensors are general-purpose and reusable in
support of pervasive computing. While the networks may remain domain-
specific, the deployed applications may not be known a priori and may in-
clude varying adaptive behaviors, for example in aware homes [1], intelligent
construction sites [2], and first responder deployments [3]. These applications
require on-demand access to local information, which is exactly the vision of
pervasive computing [4], in which sensor networks are integral [5].

In current pervasive applications, communication is accomplished using mo-
bile ad hoc routing protocols [6–8]. Because these protocols are tailored for
providing routes across networks that can grow very large, they do not favor
the local interactions common in pervasive computing. In addition, the proto-
cols require senders and receivers to have explicit knowledge of each other. In
pervasive computing, however, a client device often has no a priori knowledge
about network components with which it will interact. Instead, applications
rely on context-aware interactions, and the specific devices with which an ap-
plication interacts are likely to change as the application’s situation changes.

This paper introduces the scene abstraction and a protocol that provides the
abstraction for developers. The scene abstraction allows an application’s op-
erating environment to include a dynamic set of embedded devices. As the
device on which the application is running moves, the scene automatically
updates to reflect changing conditions, thereby enabling consistent access to
locally available data. We focus on supporting applications in which client
devices (e.g., laptops or PDAs) interact directly with networks of embedded
devices. While this is common in many application domains, we will refer to
applications from the first responder domain, which provides a unique and
heterogeneous mix of embedded and mobile devices. The former include fixed
sensors that are present in environments regardless of crises and ad hoc de-
ployments of sensors that responders may distribute when they arrive. Mobile
devices include those moving within vehicles, carried by responders, and even
autonomous robots for exploration and reconnaissance.

In this paper, Sections 2 and 3 motivate the problem and overview existing
approaches. Section 4 characterizes our abstraction, and Section 5 describes
our implementation. Section 6 provides an example definition and use of a
scene, and Section 7 evaluates the performance of our approach. Sections 8
and 9 provide discussions and conclusions.

2 Problem Definition and Motivation

In immersive sensor networks, applications need to interact directly with de-
vices embedded in the environment. This allows applications to operate over
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Fig. 1. Comparison of (a) existing environments with (b) the scene abstraction

information collected directly from the local area (as shown in Fig. 1(b)). This
is in contrast to existing deployments in which the networks are commonly ac-
cessed through a single collection point (as shown in Fig. 1(a)). The protocols
available to support communication and coordination in these networks are
tailored to application situations like those depicted in Fig. 1(a). While these
existing behaviors that sense, aggregate, and stream information to a central
collection point may be useful for other aspects of pervasive computing, this
paper undertakes the portion of the problem related to enabling applications’
direct, on-demand, and mobile interactions. This new style of interaction is
a direct motivation for a reexploration of protocol and coordination issues in
immersive pervasive computing environments and introduces several unique
challenges and heightens existing ones:

• Locality of interactions: An application on a client device interacts directly
with local embedded devices, which can minimize communication overhead
and latency. However, such a direct interaction approach can also be cum-
bersome with respect to enabling the application to precisely specify the
area from which it collects information.

• Mobility-induced dynamics: While embedded devices are likely stationary,
the application interacting with them runs on a device carried by a mobile
user. The device’s connections to particular sensors and the area from which
it draws information are subject to constant change.

• Unpredictability of coordination: Pervasive computing demands that net-
works be general-purpose. As such, few a priori assumptions can be made
about applications’ needs or intentions, requiring networks to adapt to un-
expected and changing situations.

• Complexity of programming: The desire for end-user applications (as op-
posed to database-oriented data collection) increases the demand for appli-
cations and the number of programmers that will need to construct them.

The confluence of these challenges necessitates the development of a new
paradigm of communication for pervasive computing applications that pays
careful attention to the design issues described above.
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3 Related Work

The previous section detailed a set of requirements for communication con-
structs necessary to support general-purpose pervasive computing applications
that rely on immersive sensor networks. In this section, we highlight some ex-
isting work for both sensor networks and pervasive computing and examine
how well each approach addresses the aforementioned requirements.

Network abstractions [9] allows applications to provide metrics over network
paths; nodes to which there exists a path satisfying the metric are included in
the network context. This approach is overly expressive for pervasive applica-
tions, making it difficult to specify simple metrics. In addition, the protocol
does not function on resource-constrained nodes. SpatialViews [10] abstracts
properties of mobile ad hoc networks to enable application development in
terms of virtual networks based on the underlying physical network. Spa-
tialViews focuses on distributed computations in the virtual networks, while
we focus first on defining such virtual networks and the underpinnings of com-
munication that hold them together. Collaboration groups, defined as part
of state-centric programming [11], abstract common patterns in application-
specific communication. However, the focus is in defining a programming
model, not in the communication model necessary to efficiently support it.

Several approaches also define neighborhoods in sensor networks. Hood [12]
allows sensor nodes to define neighborhoods around themselves based on net-
work properties. The implementation only allows neighborhoods that extend
a single hop, while multiple-hop neighborhoods are necessary for expressive
pervasive computing. Abstract Regions [13] define regions of coordination and
couple the abstraction with programming constructs that allow applications to
issue operations over the regions. Likewise, logical neighborhoods [14] provide a
communication infrastructure that logically groups similar nodes. These three
approaches do not directly consider the dynamics of mobility, and they require
proactive behavior by all sensors all the time.

A few constructs have also begun to address mobility. Mobicast [15] pushes
messages to nodes that fall in a dynamic region in front of a moving target.
MobiQuery [16] allows a query area to respond to a user’s announced motion
profile. These approaches require nodes to have a fine-grained knowledge of
their physical locations, which is not reasonable in future pervasive computing
networks where the sensor nodes and their deployments must be inexpensive
and require minimal setup and administration. In EnviroTrack [17–19], a dy-
namic group of sensors identify and label tracked objects so that they can be
addressed using more traditional communication. Communication again relies
on each node knowing its exact physical location. This is an acceptable as-
sumption in these systems, given that the goal is often to know the physical
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location of some tracked object. In pervasive computing, however, supporting
local interactions requires specifying only the relation the nodes must have to
the user and is not concerned with exact locations. For example, a particu-
lar first responder may be interested only in interacting with other responders
who are nearby. Obtaining GPS coordinates and resolving locations in a global
shared coordinate space would unnecessarily increase the computational tasks
and the cost of a pervasive computing application.

Creating a communication paradigm that supports pervasive computing ap-
plications requires an abstraction and implementing protocol that provide a
facility for enabling direct, opportunistic interactions among heterogeneous
devices and sensors. This protocol needs to support the mobility of this re-
gional abstraction without relying on knowledge of absolute locations.

4 Scenes: Declarative Local Interactions

The set of data sources near a user changes based on the user’s mobility. If the
network is well-connected, the user will be able to reach vast amounts of raw
information. The application must limit the scope of its interactions to only the
data that matches its needs. In our model, an application’s operating environ-
ment (i.e., the sensors with which it interacts) is encapsulated in a scene that
constrains which sensors influence the application. This abstraction defines
local, multihop neighborhoods surrounding a particular application, supports
mobility by dynamically updating the scene’s participants, and minimizes how
much the developer must know about the underlying implementation. The
constraints that define a scene may be on properties of hosts (e.g., battery
life), network links (e.g., bandwidth), and data (e.g., type).

4.1 Defining Scenes

The declarative specification defining a scene allows an application program-
mer to flexibly describe the type of scene he wants to create. Multiple con-
straints can be used to define a single scene. The programmer only needs to
specify three parameters to define a constraint:

• Metric: A property of the network or environment that defines the cost of
a connection (i.e., a property of hosts, links, or data).

• Path cost function: A function (such as sum, average, minimum, or maxi-
mum) that operates on a network path to calculate the cost of the path.

• Threshold : The value a path’s cost must satisfy for that sensor to be a
member of the scene.
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Thus, a scene, S, is specified by one or more constraints, C1, ... , Cn:

C1 = 〈M1, F1, T1〉, ... , Cn = 〈Mn, Fn, Tn〉

where M denotes a metric, F a path cost function, and T a threshold.

Fig. 2 demonstrates the relationships

ci=COST_FUNCTION (METRIC(pi, i))

0

i

k

ck > THRESHOLD
∧∀j<k cj ≤ THRESHOLD

Fig. 2. Distributed scene computation

between these components. This figure
shows only a one-constraint scene and a
single network path. The cost to a node
in the path (e.g., node i) is calculated
by applying the path cost function to
the metric using information about the
path so far (pi) and information about
this node. Nodes along a path continue
to be included in the scene until the path hits a node whose cost (e.g., ck) is
greater than the scene’s threshold. This functionality is implemented in a dy-
namic distributed algorithm that can calculate (and dynamically recalculate)
scene membership. The application’s messages carry the metric, path cost func-
tion, and threshold, which enable each node to independently determine its
scene membership. The selected network paths correspond to branches of a
routing tree created as part of scene construction. When a node needs to relay
a reply back to the user, the reverse of the path on the routing tree can be
used. If a node receives a scene message that it has already processed, and
the new metric value is not shorter, the new message is dropped. If the new
metric is shorter, this path is chose and the node forwards the information
again because it may enable new nodes to be included in the scene.

This scene definition can be formalized in the following way:

Given a client α, a metric M , and a positive threshold T , find the set of hosts Sα

such that all hosts in Sα are reachable from α and, for all hosts β in Sα, the cost
of applying M on some path from α to β is less than T :

Sα = 〈set β : M(α, β) < T :: β〉 1

The above formalization is a simplification of the scene abstraction; it is for a
scene that uses only one metric. If the scene is specified by multiple metrics,
the center expression must be true for all metric/threshold pairs.

1 In the three-part notation: 〈op quantified variables : range :: expression〉, the
variables from quantified variables take on all possible values permitted by range.
Each instantiation of the variables is substituted in expression, producing a multiset
of values to which op is applied, yielding the value of the three-part expression. If
no instantiation of the variables satisfies range, then the value of the three-part
expression is the identity element for op, e.g., ∅ if op is set.
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The scene concept conveys a notion of locality, and each application decides
how “local” its interactions need to be. A first responder leader may want
to have an aggregate view of the smoke conditions over the entire site, while
a particular responder may require only a scene that contains readings only
from nearby sensors. The scene for the leader would be “all smoke sensors
within the site boundaries”, while the scene for the responder might be “all
smoke sensors within 5m.” As a responder moves through the site, the scene

specification stays the same, but the data sources in the scene may change.

4.2 A Programming Interface for Scenes

To present the scene to the developer, we build a simple API that in-
cludes general-purpose metrics (e.g., hop count, distance, etc.) and provides
a straightforward mechanism for inserting new metrics. Applications spec-
ify scenes through a Java programming interface, and these specifications are
translated into low-level sensor code. Fig. 3 shows the Java API, which relies
on a Query that the application provides when interacting with a Scene. This
Query should be delivered to every member of the Scene. The ResultListener

interface used in the Scene API allows nodes who are members of the scene

to return responses to the client device. The Scene API intentionally does not
restrict what kind of application-level communication these query and reply
interactions can encode; this depends on the particular application layer run-
ning on both the client device and the sensor. The scene abstraction simply
provides expressive connectivity among these components. In Section 6, we
will explore a simple application layer for a first responder application exam-
ple.

class Scene{
public Scene(Constraints[] c);
public void send(Query q, ResultListener rl);
public void maintain(Query q, ResultListener rl, int frequency);

}

Fig. 3. The API for the Scene class

From the application’s perspective, a scene is a dynamic data structure con-
taining a set of qualified sensors which are determined by a list of constraints,
Constraints[], and accessed through the latter two methods: send() and
maintain(). The send() method poses a one-time query to scene members
to which each recipient sends at most one reply. This is similar to a multicast,
but the significant difference is that the receivers are dynamically determined
by the parameters defining the scene. The maintain() method sends a per-
sistent query to the scene, implicitly requesting that the scene structure be
maintained, even as the participants change. The frequency parameter in the
maintain method indicates how often the application expects responses.
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The Scene API is intentionally simple. It focuses on providing access to the
scene constructs and not on incorporating client functionality into the scene

communication components. We are motivated to keep the API as slim as
possible to ease the implementation on resource-constrained devices. By lim-
iting the functionality available to applications, we more closely match the
capabilities of this underlying constrained hardware. While only the one-time
query behavior is essential, the maintain operation enables a more efficient
implementation of persistent queries. This is especially important in resource-
constrained networks, where minimizing communication overhead is essential.

Fig. 4 shows examples
Battery Power Scene

Metric SCENE BATTERY POWER

Aggregator SCENE MIN

Metric Value min battery power

Threshold min permissible battery power

Distance Scene

Metric SCENE DISTANCE

Aggregator SCENE DISTANCE

Metric Value location of source

Threshold max physical distance

Latency Scene

Metric SCENE LATENCY

Aggregator SCENE SUM

Metric Value total latency on path so far

Threshold max permissible latency

Fig. 4. Example Scene Definitions

scene metrics. The sim-
plest metric (not shown),
SCENE HOP COUNT, as-
signs a value of one to each
network link. Using the
built-in SCENE SUM path
cost function, the applica-
tion can build a hop count
scene that sums the num-
ber of hops a message takes
and only includes nodes
that are within the number
of hops as specified by the
threshold. It is possible to
extend the number of con-
straints inductively (for ex-
ample, the hop count scene

above could be further re-
stricted using latency as
a second constraint), and
this combinatorial nature
provides significant flexibil-
ity to the programmer.

4.3 Maintaining Scenes

While a scene provides the appearance of a dynamic data structure, the im-
plementation behaves on demand; no proactive behavior occurs. Only when
the application uses a scene does the protocol communicate with other local
devices, reducing the overall communication overhead. At first glance, this ap-
proach may appear to incur an unpredictable latency for the first query posed
to a scene. However, queries traverse the same path as the scene construction
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messages, and the queries themselves carry the scene construction information.
Therefore, the on-demand construction incurs no additional latency.

For one-time queries, a scene is created, and the scene information is not stored
or updated in any way. On the other hand, if the scene is to be used for a
persistent query, it needs to be maintained. To maintain the scene for such
continuous queries, each member sends periodic beacons advertising its cur-
rent value for the metric. Each node also monitors beacons from its parent in
the routing tree, whose identity is provided as previous hop information in the
original scene message. If a node has not heard from its parent for three con-
secutive beacon intervals, it disqualifies itself from the scene. This corresponds
to the node falling outside of the span of the scene due to client mobility or
other dynamics. In addition, if the client’s motion necessitates a new node to
suddenly become a member of the scene, this new node becomes aware of this
condition through the beacon it receives from a current scene member.

Pervasive applications expect access to locally available resources. Consider an
application in an aware home. An application may connect to resources that
it can monitor and control within the room the user occupies. As the user
moves around the home, the scope of this control should change to match the
user’s changing rooms. Therefore, we provide the automatic maintenance de-
scribed above instead of calculating a static scene when the application initially
declares it. This style of maintenance is particularly well-suited to pervasive
computing applications which demand automated context-awareness.

4.4 Defining Scenes Based on Physical Characteristics

The metrics used to specify scenes can be divided 50m from A

A

B

Fig. 5. A C-network

into two categories: those that define scenes based on
properties of network paths or the devices on the net-
work paths (e.g., latency or battery power) and those
that define scenes based on physical characteristics
of the environment (e.g., location or temperature).
Using a physical characteristic to calculate network
paths is plagued by the C-shaped network problem.
Consider the network shown in Fig. 5. Nodes A and
B are within 50m of each other, yet a discovery from
A to B must leave the region of radius 50m surrounding A to find B. The only
way to guarantee that every device is discovered is to flood the entire network.

In pervasive computing networks, an application may not be in direct commu-
nication with the devices with which it needs to interact. In a first responder
situation, safety applications may dictate that each user has information about
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Fig. 6. Accuracy of location-based scene calculations

a region larger than a device’s communication radius, for example to moni-
tor the presence and movement of fire or gases. For this reason, we focus on
building the best multi-hop neighborhoods possible. For metrics that measure
physical characteristics, the question remains as to how to handle the ambi-
guity separating the natural specification (e.g., “all devices within 50m”) and
the ability of a protocol to efficiently satisfy that specification (i.e., without
flooding the network). We favor an approach with a simple programming in-
terface that allows scenes to be specified that may not be able to be exactly
built (due to the presence of configurations such as that shown in Fig. 5). In
such situations, our scene building protocol may not find some scene members
even though they are transitively connected.

Figs. 6(a) and (b) show the results of experiments that demonstrate the ram-
ifications of this design decision. In these experiments, we generated random
network topologies in a 1000m2 space with the following parameters. the num-
ber of nodes was randomly selected to be between 20 and 400, and each node
was randomly placed. We used a communication radius of 100m, i.e., any two
nodes within 100m of each other were considered “neighbors.” We constructed
scenes based on physical distances ranging from 100m to 500m. A 100m scene

includes only nodes within the requester’s communication range (i.e., within
one-hop). In each graph, the x-axis shows the average number of one-hop
neighbors per node. Each point corresponds to 500 samples, and 95% confi-
dence intervals are given. For each sample, one node was randomly selected
to request a scene of the specified size.

Fig. 6(a) shows the percentage of actual scene members discovered by our pro-
tocol. This includes every node within the specified physical distance radius,
even nodes to which no network connectivity exists. At low network density,
the quality of the scene construction was poor, especially as the physical size of
the scene increased. This is because the network was so sparsely connected that
it was unlikely that nodes were able communicate, especially when they de-
sired to find other nodes at large distances. However, with increasing density,
our protocol found more than 90% of the actual scene members.
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Fig. 6(b) demonstrates even stronger motivation for our best-effort approach
for scenes based on physical characteristics. This graph limits the error ex-
pressed to only those scene members that were not discovered but were con-
nected by a finite number of network hops (i.e., those nodes reachable by
flooding). The percentage of scene members that our method did not discover
is never more than 10% and is usually close to 0. The valley corresponds to
cases when the network was largely connected but connections were sparse.
In these situations, roundabout paths may exist when more direct routes do
not. To the left of the valley, the network was largely disconnected, so we do
not miss many connected scene members; to the right, the network was much
more connected, and the direct approach is quite successful.

The results demonstrate that our approach tends to find the vast majority of
the scene members under reasonable conditions. Therefore, we favor natural
scene specifications over complete accuracy of scene membership.

5 Realizing Scenes on Resource-Constrained Sensors

The model for both construction and maintenance of scenes described in the
previous section is tailored to the requirements of pervasive computing envi-
ronments. In creating applications for client devices, developers can leverage
the Java interface from Fig. 3, which allows them to use the scene commu-
nication abstraction to interface with embedded devices. Software on these
embedded devices must also support the scene abstraction. In this section, we
describe this implementation, showing how the code is structured to support
dynamic, opportunistic communication.

5.1 A Structured Implementation Strategy

Our implementation uses the

Scene

Application Programming Interface

Strategy Pattern Interface

SceneStrategy

BasicScene

SceneStrategy

TinyDBScene

javax.comm package

sensor network

Fig. 7. Simplified software architecture

strategy pattern [20], a software
design pattern in which algo-
rithms (such as strategies for
scene construction and mainte-
nance) can be chosen at runtime
depending on system conditions.
The strategy pattern provides a
means to define a family of al-
gorithms, encapsulate each one,
and make them interchangeable.
Such an approach allows the algorithms to vary independently from the clients
that use them. In the scene, the clients that employ the strategies are the
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queries, and the different strategies are SceneStrategy algorithms. Fig. 7 shows
the resulting architecture. We decouple the scene construction from the code
that implements it so that we can vary message dissemination without modi-
fying application-level query processing (and vice versa).

The remainder of this section describes one implementation of the
SceneStrategy, the BasicScene, which provides a prototype of the proto-
col’s functionality. Other communication styles can be swapped in for the
BasicScene (for example one built around TinyDB [21] or directed diffu-
sion [22]). By defining the SceneStrategy interface, we enable developers who
are experts in existing communication approaches to create simple plug-ins
that use different query communication protocols and yet still take advantage
of the scene abstraction and its simplified programming interface.

5.2 A Basic Instantiation

While the scene abstraction

SceneM

QueuedSend

GenericCommPromiscuous

Beacon BeaconTimer

Monitor MonitorTimer

SendMsg

StdControl

CommControl

Beacon

Monitor

Timer

Timer

ReceiveMsg

Receive

StdControl

Scene

ContextSource
ContextSource

ContextSource

ContextQuery

StdControl

StdControl
SendMsg

Fig. 8. Implementation of the scene on sensors

is independent of the partic-
ular hardware used to sup-
port it, in our initial im-
plementation, these software
components have been de-
veloped for Crossbow Mica2
motes [23] and are written
for TinyOS [24] in the nesC
language [25]. Our nesC im-
plementation of the scene ab-
straction (along with other
project information) is avail-
able at http://mpc.ece.utexas.edu/scenes/index.html. In nesC, an ap-
plication consists of modules wired together via shared interfaces to form con-
figurations. Fig. 8 depicts the components of the scene configuration and the
interfaces they share.

This implementation functions as a routing component on each node, receiv-
ing each incoming message and processing it as our protocol dictates. In this
picture, we show components as rounded rectangles and interfaces as arrows
connecting components. A component provides an interface if the correspond-
ing arrow points towards it and uses an interface if the corresponding arrow
points away it. If a component provides an interface, it must implement all of
the commands specified by the interface, and if a component uses an interface,
it can call any commands declared in the interface and must handle all events
generated by the interface.
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From the perspective of a message coming in from a neighboring node, The
Scene configuration uses the ReceiveMsg interface (provided in TinyOS) which
allows the component to receive incoming messages from the radio (by han-
dling the receive event). Specifically, within the Scene configuration, the
SceneM component handles this event. SceneM implements most of the logic
of the scene implementation on the sensor. The structure of the messages re-
ceived through this process is shown in Fig. 9.

While the model allows

typedef struct SceneMsg{
uint16 t seqNo

//message sequence number
uint8 t metric

//constant selector of metric
uint8 t costFunction

//constant selector of cost function
uint16 t metricValue

//current calculated value of metric
uint16 t threshold

//cutoff for metric calculation
uint16 t previousHop

//the parent of this node
uint8 t maintain

//whether the query is persistent
uint8 t data [(TOSH DATA LENGTH-11)]

//the query
}

Fig. 9. SceneMsg definition

a scene to be defined by
multiple constraints, a
single SceneMsg contains
only one constraint.
This is a limitation of
our proof-of-concept
implementation that will
be removed in a more
mature implementation.
The SceneMsg contains
a sequence number that
uniquely identifies the
message. The sequence
number is a combination
of the unique client de-
vice id and the device’s
sequence number. This
allows a receiving node
to differentiate between
scenes for different client applications. A message contains two constants
that instruct the SceneM component in processing the message: the metric
(e.g., SCENE DISTANCE or SCENE LATENCY) and the path cost function (e.g.,
SCENE DFORMULA or SCENE MAX). The use of constants to specify the metric
and cost function makes the implementation a little inflexible because the
set of metrics must be known a priori, but the approach prevents messages
from having to carry code. Future work will enable this automatic code
deployment. The metricValue in the SceneMsg carries the previous node’s
calculated value for the specified metric and is updated at the receiving node.
In the case of a scene based on location, the metricValue may be the location
of the source node, while in the case of a metric based on end-to-end latency,
the metricValue may be the aggregate total latency on the path the message
has traveled. The previousHop in the SceneMsg allows this node to know its
parent in the routing tree and enables scene maintenance. The maintain flag
indicates if the query is long-lived (and therefore whether or not the scene

should be maintained). Finally, data carries the application message (i.e., the
Query).
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Fig. 10 shows how a scene message is processed at a receiving node.

When SceneM receives a message

  

Message received

New msg?

1. Pass msg to     
    application
2. Forward to other 
    nodes

No

Ignore message
No

Yes

One-time query

Maintain 
set?

Yes

1. Send periodic    
    beacons 
2. Monitor beacons 
    from parent 

Persistent query

One-time query 
proc. complete

Disqualify from 
scene

No

Beacon 
received?

Yes

No

Scene 
condition

met?

Yes

Scene 
condition still 

met?

No

Yes

Fig. 10. Scene construction flowchart

it has not received before (based
on the message’s unique sequence
number), it determines whether the
node should be a member of the
sceneby calculating the node’s met-
ric value based on the metric and
path cost function. Because these
fields are constants, SceneM can
lookup their meanings in a table
and determine how to calculate the
new metric value. Depending on
the metric, this may require Con-
textSources, which provide relevant
data for calculating a node’s value.
For example, a hop-count based
scene requires no context source;
SCENE HOP COUNT indicates that the
local metric value is “1” and the
path cost function SCENE SUM in-
dicates that this value should be
added to the metricValue carried
in the message. On the other hand,
SCENE DISTANCE indicates the local
metric value is the node’s location,
which is implemented as a Con-
textSource that stores the node’s location. If necessary, context values are
retrieved from the designated ContextSource through the query command in
the ContextQuery interface. If the metric demands a context source that the
node does not provide (e.g., the local device has no location sensor), the device
is not considered a part of the scene. When the necessary context values have
been retrieved, the costFunction from the message is invoked. For example
SCENE DFORMULA calculates the distance between this node and the originating
node (whose location is carried in the metricValue). The newly calculated
value for the metric is compared against the value of the threshold in the
SceneMsg. If the new value does not satisfy the threshold, then this node is
not within the scene and the message is ignored.

If this node is within the scene, the message is forwarded to allow inclusion
of additional nodes. The node replaces the previousHop field with its node
id. The metricValue field is populated according to the type of the metric;
in the case of SCENE HOP COUNT, the metricValue is the total number of hops
traversed so far (as calculated by adding one to the previous metricValue),
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while in the case of SCENE DISTANCE, the metricValue is always the location of
the originating node. This new message is broadcast to all neighbors (using
TOS BROADCAST ADDR as the destination). The node also passes data to
the application (through the Receive interface shown in Fig. 8).

The scene also needs to be maintained in the case of a persistent query. If the
maintain flag is set, then SceneM must monitor changes that may impact the
node’s membership. For example, if the scene is defined by relative location and
the user is walking through the network, as he moves away from a sensor, the
sensor will need to be removed from the scene. The scene implementation on
the sensors uses a Beacon module to transmit periodically to other nodes. As
the Monitor component (described next) detects changes in the metric value,
the value is updated (through SceneM) and reflected in the beacons sent to
neighbors. In addition, SceneM must monitor incoming beacon messages from
the parent. Such messages are received in SceneM and passed to the Monitor.
The Monitor uses beacons from the parent, information about the scene (from
the initial message), and information from the context sources to monitor
whether the node remains in the scene. In addition, the MonitorTimer requires
that the node has heard a beacon from the parent at least once in the last
three beacon intervals. If either the parent has not been heard from or the
received beacon pushes the node out of the scene, the Monitor generates an
event for SceneM that ultimately ceases the node’s participation in the scene,
including signaling the application to cancel its interactions with the client
device.

6 An Example Scene

In this section, we tie the code that the ap-

  
Fig. 11. The scene

plication developer writes through the scene

communication protocol to what happens on
the sensors. We follow a query from the ap-
plication developer’s hands into the network
and back. Within this section, we use an ex-
ample application drawn from the first re-
sponder domain that assumes personnel de-
ployed on a dangerous site that may contain
smoke clouds. Specifically, we assume a first
responder would like to periodically receive
any reading within 5m that can be delivered
in less than 15ms in which the level of com-
bustion products in the air exceeds 3% obscuration per meter.
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Scene s = new Scene({new Constraint(Scene.SCENE DISTANCE,
Scene.SCENE DFORMULA,
new IntegerThreshold(5)},

{new Constraint(Scene.SCENE LATENCY,
Scene.SCENE MAX,
new IntegerThreshold(15)} ) ;

Fig. 12. First responder scene construction

Step 1: Declare a Scene. This first step uses the interface described in Sec-
tion 4 to declare a scene. For example, in a first responder deployment, the
code in Fig. 12 defines a scene that includes every sensor (not just those mea-
suring smoke conditions) within 5m of the declaring device and with response
latency less than 15ms. Figure 11 shows the nodes that will fall in the scene,
if a message is distributed to them.

Query q = new Query(new Constraint(‘‘Sensor’’, Query.EQUALS OPERATOR,
‘‘Smoke’’),

new Constraint(‘‘Measurement’’, Query.GT OPERATOR,
‘‘3’’)} );

Fig. 13. Example first responder query construction

Step 2: Create a query. The next step is

  
Fig. 14. The query dissemination
tree

performed by the application developer us-
ing the Query data type in conjunction with
the Scene instance just created. In our exam-
ple, the developer creates a Query with two
Constraints. For simplicity, we assume the
application-level processing uses constraints
similar to those used in scene definitions. In
actuality, the scene protocol can deliver ap-
plication messages of any form to all scene

members, including, for example, middleware
messages in a sensor network middleware [26].
In our example Query, the first of the con-
straints requires the sensor used to support
a smoke detector. The second constraint limits the sensors that respond to the
query to only those that measure a smoke condition of more than 3% obscu-
ration per meter. The code used to construct this Query is shown in Fig. 13.
Every sensor in the scene that has a smoke sensor periodically evaluates the
query, but a sensor will only send a response to the client if and when the
smoke condition sensed exceeds 3% obscuration per meter. After creating this
Query, the application developer dispatches it using the previously created
scene.

Step 3: Construct and Distribute Protocol Query. The scene implemen-
tation transforms the application’s request into a protocol data unit for the
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scene. The resulting message carries the information about scene membership
constraints and the data query. By its definition, the communication proto-
col ensures that the data query is delivered to only those sensor nodes that
satisfy the scene’s constraints. Thus, exactly the sensors within 5m and with
a latency less than 15ms will receive the query. The query propagation stops
once a node is reached whose distance from the user exceeds 5m or whose
latency exceeds 15ms. Fig. 14 shows the dissemination tree; nodes within the
dashed circle now know they are scene members.

Step 4: Scene Query Processed by Remote Sensor. When the commu-
nication protocol running on a remote sensor receives and processes a scene

message, if it determines that the node lies within the scene, it passes the
received message to the application. In our example first responder scenario,
our simple application layer sends periodic responses to the client if the value
exceeds 3% obscuration per meter. These responses propagate using basic
multihop routing.

In Fig. 15, the red arrows indicate the re-

  
Fig. 15. The responses from scene
members

turn paths these sensors use to return query
responses to the client device. Since the first
responder demands periodic results so he
can monitor changes in smoke density on a
site, the scene must be maintained in the face
of changes. If the smoke condition is not orig-
inally greater than the threshold, the node
only starts responding if the 3% obscuration
per meter level is reached. Fig. 16(a) shows
that this set of responding nodes may change
when the smoke cloud moves. When a node
is no longer in a scene, the scene communi-
cation implementation on that node creates
a null message that it sends to the application layer to ensure that it ceases
communication with the client device. Other changes in the network topology
or physical environment can also cause scene changes. In our example, if the
node’s distance from the user exceeds 5m due to client mobility (Fig. 16(b)),
or the latency to a node on the path exceeds 15ms (Figure 16(c)), the scene

membership may have to be recalculated. As demonstrated in the figures, this
may cause nodes to be removed from the scene or new nodes to be added to
the scene.

Step 5: Result Received by Client Device. After propagating through
the underlying communication substrate, query replies will arrive at the client
device’s sensor network interface. At the client device, the result is handled by
the scene implementation on the sensor and passed into the Java implemen-
tation. This implementation demultiplexes the request and hands it back to
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disqualifying 
these nodes 

from scene
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(c)

Fig. 16. Dynamics within a scene. (a) The smoke cloud moves, changing responses;
(b) The client moves, changing scene membership; (c) The latency increases on one
link, changing scene membership.

the appropriate application through the ResultListener that was provided as
part of dispatching the query to the scene. At this point, control for this query
reply transfers back to the client’s application and its ResultListener which
handles the query’s result (or queries’ results if multiple matches existed). For
persistent queries, as more results arrive, the same process occurs for each
received result.

As this example has demonstrated, the scene abstraction seamlessly supports
client mobility within an immersive sensor network. The abstraction auto-
matically adjusts the application’s view of data in response to changes in
the network or the physical environment. This context-awareness is essen-
tial to pervasive computing applications that rely on localized interactions in
large-scale networks. In the next section, we provide some performance charac-
terizations of the protocol implementing the scene abstraction to show that it
provides good scalability and overhead in such resource-constrained networks.

7 Evaluation and Analysis

In this section, we provide an evaluation of our implementation. Our protocol’s
intent and behavior differ significantly from other approaches, so direct com-
parison to existing protocols is not very meaningful. Instead, we measured
our protocol’s overhead in varying scenarios, by employing TOSSIM [27], a
simulator that allows direct simulation of code written for TinyOS. TOSSIM
therefore allows us to perform large-scale simulations (in this case, of 100
nodes); these simulations are of a scale that is unmanageable in real sensor
networks. However, the code executed in TOSSIM is the same code running
on the sensors, and small scale runs in the sensors themselves corroborate the
results reported here.
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7.1 Simulation Settings

In generating the following results, we used networks of 100 nodes, distributed
in a 200 x 200 foot area, with a single client device moving among them. We
used two types of topologies: 1) a regular grid pattern with 20 foot internode
spacing and 2) a uniform random placement. While the sensor nodes remained
stationary, the client moved among them according to the random waypoint
mobility model [7] with a fixed pause time of 0. To model radio connectivity
of the nodes, we used TOSSIM’s empirical radio model [13], a probabilistic
model based on measurements taken from real Mica motes. In all cases, as
the client moves, the scene it defines updates accordingly. In the different
simulations, the client either remains stationary or moves at 2mph, 4mph, or
8mph. While these speeds appear to be on the slow side, they are reasonable
for the pervasive computing scenarios we consider (e.g., 4mph is a very brisk
walk; 8mph is an expected speed of vehicles on construction sites, etc.). In
these examples, scenes are defined based on the number of hops relative to
the client device, ranging from one to three hops. Other metrics can be easily
exchanged for hop count; we selected it as an initial test due to its simplicity.

A final important parameter in these measurements is the beacon interval.
Recall that the beacon interval is the specified amount of time over which
each node monitors beacons from its parent in the routing tree to maintain
its own membership in the scene for continuous queries. If the node does not
hear from its parent during that beacon interval, it disqualifies itself from the
scene. We have currently set the beacon interval to be inversely proportional
to client speed. Because this approach relies on shared global knowledge, this
is not how beacon intervals will actually be assigned, and future work will
investigate better ways of assigning this value. For example, in the future,
clients can monitor their own speeds and embed this beacon interval in scene

building packets. Alternatively, individual sensors could monitor the change in
client connections over time (which can be correlated with mobility [28]) and
use this information to locally adapt the beacon interval. Both options allow
nodes to adapt the beacon interval depending on the particular situation; this
adaptation is critical to context.

7.2 Performance Metrics

We have chosen three performance metrics to evaluate our implementation:
(i) the average number of scene members, (ii) the number of messages sent
per scene member, and (iii) the number of messages sent per unit time. We
evaluate these metrics for both grid and random topologies.
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Fig. 17. Simulation results

The first metric measures how well our selected beacon intervals perform. The
latter two metrics measure the scalability of the scene abstraction, i.e., how
the protocol will function in scenes of increasing sizes and client mobility. The
number of messages sent per scene member measures a sensor node’s cost of
participation, which also estimates the potential battery dissipation for the
sensors that participate in the scene (since energy expended is proportional to
radio activity). The number of messages sent per unit time is a measure of
the network’s average activity. Since the scene protocol operates on demand,
activity takes place only within the scene.
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7.3 Simulation Results

Figs. 17(a) and (b) show the average number of scene members as a function
of client device mobility and scene size for grid and random topologies, respec-
tively. The number of scene members is almost independent of the client node’s
speed. This means that the device is able to accurately reach the nodes that
need to be members of its scene and shows that setting the beacon frequency
to be proportional to the client node’s speed accurately keeps track of the
moving client.

Figs. 17(c) and (d) show the number of messages sent per scene member as
a function of client mobility and scene size. Because we have set the beacon
frequency to be directly proportional to the speed of the client node (e.g., if
the client speed is 4 mph, beacons are sent every 0.5s, if the client speed is
8 mph, beacons are sent every 0.25s), beacons are sent more frequently as
speed increases, yielding the linear relationship. This shows how the battery
dissipation for each sensor that participates in the scene would scale with
increasing client mobility.

Figs. 17(e) and (f) show the number of messages sent per unit time as a
function of mobility and scene size. Beacons are sent more frequently as the
client node speed increases, causing more messages to be packed into a given
time interval. In addition, as the scene size increases, more nodes become
scene members, increasing the number of nodes that subsequently send beacon
messages per unit time.

These results demonstrate that even as the scene size increases, the overhead
of creating a local communication neighborhood is manageable and localized
to a particular region of interest. Since the scene protocol is an on-demand
communication protocol, the activity in the network takes place only within
the scene. The nodes that do not satisfy the scene constraints are inactive. The
average number of scene members stays constant over changing client mobility
for a specified scene size.

8 Discussions and Future Work

The evaluation reported in the previous section demonstrates the feasibil-
ity of placing a data communication abstraction for pervasive computing on
highly resource-constrained devices. This is an important step as such em-
bedded devices are an essential part of any immersive sensor network that
supports such applications. The quantitative evaluation in the previous sec-
tion, however, does not address the relationship of the scene abstraction to
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other neighborhood protocols. This is largely due to the fact that the client-
centered, device-agnostic form of the scene abstraction provides a completely
novel perspective on interactions in sensor networks. Here, we briefly provide
a further quantitative comparison to other reasonably similar abstractions.

Recent sensor network communication paradigms differ significantly from ap-
proaches for even mobile networks in that they include constructs to directly
address resource constraints and to enable cooperation among nodes. Directed
diffusion [22], for example provides a decentralized data-centric communica-
tion protocol that allows nodes in the network to cooperate to aggregate data
as it is funneled back to the requester. However, in directed diffusion, this
gradient setup is expensive, and the paths established should last a long time
to amortize this cost over their usage. This makes it difficult for directed dif-
fusion to cope with unpredictable resource availability and almost impossible
to handle the types of mobility and dynamics that pervasive computing envi-
ronments exhibit.

The regional abstractions [12–14] described in Section 3 provide a closer match
to the scene abstraction’s capabilities. However, these approaches still view sen-
sor networks as supporting facilities for remote distributed sensing. As such,
they make strong assumptions about the static parameters of the environ-
ment, especially of the sensor placement themselves, and they do not consider
embedded pervasive computing clients roving among the sensors. However,
all three of these approaches are reasonable points of comparison, and future
work will explore more quantitative comparisons to their behavior.

Another important point of evaluation not addressed in this paper is that
of the expressiveness of the scene abstraction. Specifically, future work will
investigate the question of how rich and usable the abstraction is with re-
spect to the requirements of a variety of applications. Our own work with
intelligent construction sites [29] has demonstrated applicability to a second
domain (other than the first responder domain used in this paper), but we
plan to perform additional user and application studies to further validate our
expressiveness claims. In addition, we have made our implementation available
at http://mpc.ece.utexas.edu/scenes/index.html for others to download
and try for their applications.

A final interesting point of discussion is that of the degree of adaptivity the
scene abstraction provides. We have motivated throughout the paper that
awareness of and adaptation to the surrounding environment are crucial to
enabling pervasive computing applications. The scene abstraction as described
in this paper already incorporates several points of adaptation, most specif-
ically allowing the participants in a scene to change over time in response
to client mobility or to changes in the network or physical environment. We
have already discussed such adaptation with respect to setting the scene’s bea-
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con frequency to be sensitive to the client mobility or a sensor node’s local
perception of mobility. Future work will explore additional adaptation points
that could make the abstraction even more responsive to pervasive computing
applications. For instance, one could imagine a scene’s threshold expanding
or contracting based on the environmental values sensed or the density of
available readings.

9 Conclusion

This paper presented the scene data communication abstraction, a new com-
munication paradigm tailored to immersive sensor networks that support per-
vasive computing. Specifically, the scene abstraction is the first to support
dynamic client devices roving among embedded sensors. The scene abstraction
and the protocol that implements it utilize a high degree of context-awareness
and adaptation. This allows an application’s scene to consistently reflect its in-
stantaneous operating environment. Using the scene abstraction and protocol,
an application has a direct view of the information sources available in the
immediate environment. In addition, our approach combines this local per-
spective with a communication protocol for disseminating client requests and
returning replies from the scene participants. We have presented the abstrac-
tion, its implementation, and an initial feasibility study of its performance.
Future work will include a more complete evaluation to include measurements
of the approach’s expressiveness through a larger-scale real-world deployment
on a mixture of embedded and client devices.
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