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Abstract

Efficient query processing in sensor networks involves
identifying groups of nodes that coordinate to satisfy ap-
plications’ requests. In this paper, we propose a “query
domain” abstraction that allows an application to dynam-
ically specify the nodes best suited to answering a partic-
ular query. To self-organize into such a coalition, nodes
must satisfy a “proximity function”, a user-defined function
that constrains the relative relationship among the group of
nodes (e.g., based on a property of the network or physical
environment or a logical property of the nodes). The prox-
imity function removes the need to explicitly tag nodes with
context information, and it provides a convenient mecha-
nism for forming coalitions on-the-fly at query time. This
facilitates the deployment of general-purpose sensor net-
works, where multiple applications can be run in the same
network at the same time. In this paper, we model this ab-
straction, present a protocol to support the abstraction, and
evaluate their performance.

1 Introduction

Miniaturization has enabled the production of inexpen-
sive battery-operated sensors that contain one or more mod-
ules to sense various aspects of the physical environment,
such as temperature, humidity, etc. When sensors deployed
on a large scale, however, there is an explosion in the
amount of data to observe and analyze. Just as the plethora
of web data was largely human-unusable until the advent
of modern search engines, querying techniques will play a
pivotal role in comprehending sensor data.

Sensor networks have been deployed in a wide range of
applications such as habitat monitoring [8], intelligent con-
struction sites [3], and industrial sensing [5]. A common
theme that emerges from these applications is the need for

querying different types of data simultaneously to answer
a particular question. An illustrative example is in intel-
ligent farming. Fungi typically infect potato plants when
the temperature drops below 10◦ Celsius and the relative
humidity exceeds 0.90 [11]. A crop failure detection ap-
plication needs to simultaneously monitor data from both
temperature and humidity sensors, and when the conditions
become unfavorable for the crop, an alert must be raised.
As wireless sensors are deployed more regularly in such
environments, it becomes imperative that query processing
techniques efficiently handle heterogeneous data types.

With the sensors’ decreasing sizes and increasing inte-
gration into the environment, the individual capabilities of
each sensor are likely to become increasingly specialized.
Therefore, multiple sensing devices must cooperate in the
resolution of a single query. Practically, the sensors selected
to work together should satisfy some application-specific
constraints. Such relationships between sensors that con-
tain the desired sensing modules cannot be known a priori
and are unique for each application.

In this paper, we introduce a proximity function which
allows an application to specify the constraints between the
different sensors used to answer a single query. These con-
straints are injected into the network, and sensor nodes that
can satisfy the query data type requirements and the prox-
imity function’s relationship constraints self-organize into a
logical query domain. Only the small subset of sensors in
the query domain participate in replying to the query. Once
organized, the query domain becomes a convenient handle
to repeatedly communicate with question of the same coali-
tion of sensors minimizing energy consumption.

The novel contributions of this work are threefold. First,
we define two new abstractions, the query domain and the
proximity function, that allow an application developer to
identify the dynamic set of sensors that answer a query by
specifying constraints on the relationships between the re-
sponding sensors. The query domain is calculated in a dis-



tributed fashion using the proximity function and allows a
sensor network to be used for multiple applications, moving
away from current deployments where a sensor network is
tailored for a particular application. We devise a fully re-
active approach that calculates and constructs the query do-
main completely on-demand, enabling the networked sen-
sors to self-organize. Finally, we evaluate the effectiveness
of this approach through simulation.

2 Motivation and Problem Definition

In this section, we concisely state the research problem
we address and motivate the need for a solution by provid-
ing concrete examples where the stated issues materialize.

2.1 Problem Statement

This paper addresses the problem of dynamically defin-
ing a sensor coalition that collectively acts as a single entity
in responding to an application’s query. This must be done
without any a priori knowledge, and therefore nodes must
self-organize according to some application-specified rules
provided at run time.

2.2 Application Scenarios

Crop Failure Prevention. Phytophtora is a fungal dis-
ease in crops that affects potatoes. Typically, the fungi
sporulate when the temperature is low (less than 10◦C) and
the relative humidity is high (greater than 90%) [11]. While
it is possible that both temperature and humidity sensors are
available on the same device, it is also possible that that the
network contains devices with more limited capabilities. A
coalition of temperature and humidity sensors could pro-
vide the same functionality as the single more complex sen-
sor. The query for detecting deteriorating Phytophtora con-
ditions may be stated as: “Select temperature and relative
humidity readings from sensors that are within 10 meters of
one another.” In this example, the user wishes to query tem-
perature and relative humidity sensors, and the constraint he
designates is that the two sensors be near (within 10 m of)
one another.

Habitat Monitoring. Wireless sensor networks have
been deployed in a variety of habitat monitoring environ-
ments [8]. A field biologist may be interested in studying
the mating behavior of a species without human presence
using a combination of audio and video sensors deployed
in the field. The arrival of the animals may be detected
by the audio sensors, which in turn trigger the video sen-
sors to record and transmit images. It is critical that the
latency between the audio and video sensors be within a
stated threshold; a high latency can result in the reception
of video images after the animal has left the area, leading to
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Figure 1. Query Domain

wasted video feeds. Also, the distance between the sensors
must be small, or the audio sensors will detect the arrival
of the animal, while the video sensors will be recording and
transmitting images from a completely different location.

3 Abstraction

A query domain associates a query with a dedicated
neighborhood that satisfies a user-defined proximity func-
tion. In contrast to existing approaches that group nodes
based solely on their content, our approach groups nodes
based on relationships as well as content. Proximity func-
tions may include a variety of user-defined predicates like
hop count, displacement, latency, or bandwidth criteria. It
is important to note that the query domain and its associated
proximity function define a relationship that all responders
to the query must satisfy among themselves. Distributing
the proximity function to nodes in a sensor network allows
an application to dynamically impose an overlay structure
on the network, impacting how the network behaves in re-
sponse to the application’s queries.

Figure 1 gives a pictorial depiction of a query domain.
As shown, the members of the overlay are constrained by
the application-specified proximity function. This domain
is created by the application at query time and attached to
the query to allow for distributed computation. Because
a query carries with it the definition of its query domain,
nodes in the sensor network are not required to know a pri-
ori what types of query domains the application will re-
quest, alleviating the need to tailor a sensor network to a
particular application.

3.1 Formalization

There are two components required for formally specify-
ing the behavior of our abstraction. The first of these states



the form of an application’s query. The second formalizes
the semantics of the query domain supporting this query.
Section 4 describes the protocols we use to implement this
abstraction. A query can be written as:

Q : {t1, t2, . . . , tn}/Fp

Any query is defined first by the data types required (i.e.,
t1, t1, . . . , tn) and second by the proximity function Fp ap-
plied to constrain the query domain. Fp is an application-
specified Boolean function that takes any pair of nodes
and returns true if the pair satisfies the proximity func-
tion and false otherwise. When referring to components
of a query, we use the “dot” notation. That is, the set of
types a query requires (t1, t2, . . . , tn) can be retrieved using
Q.types, while the proximity function can be retrieved us-
ing Q.Fp. The set of types any one sensor in the network
can provide is referenced in a similar way, as s.types.

A query domain for a query, Q, is therefore any set, S,
of nodes that satisfies the following four conditions1:

〈∀s : s ∈ S :: s.types ∩Q.types 6= ∅〉∧
〈∀t : t ∈ Q.types :: 〈∃s ∈ S :: t ∈ s.types〉〉∧
〈∀s : s ∈ S :: |(S − {s}).types ∩Q.types| < |Q.types|〉∧
〈∀s1, s2 : s1, s2 ∈ S :: Q.Fp(s1, s2)〉

The first of these constraints requires that each sensor in the
query domain S have at least one of the query’s required
types. The second condition requires every type requested
in Q to be provided by at least one sensor in S. The third
constraint ensures that none of the sensors selected for the
query domain are redundant. That is, this condition guaran-
tees that, if any sensor s is removed from S, then the types
remaining in S are insufficient to satisfy Q. (In this con-
dition, the notation |S| refers to the cardinality of the set
S.) The fourth and final condition ensures that the proxim-
ity function Fp is true for every pair of sensors. This also
implicitly requires that Fp be reflexive, i.e. Fp(s, s) is true.

3.2 Application Examples

Given the formalization of queries above, we next show
how applications described in Section 2 can use our model
and the proximity function abstraction.

Crop Failure Prevention. This query has the form:

Q : {temperature,humidity}/distanceProximity10m

where the types within the braces are the two data
types the application must find in the network, while

1In the three-part notation: 〈op quantified variables : range :: expres-
sion〉, the variables from quantified variables take on all possible values
permitted by range. Each instantiation of the variables is substituted in
expression, producing a multi-set of values to which op is applied. If no
instantiation of the variables satisfies range, then the value of the three-part
expression is the identity element for op, e.g., true if op is ∀.

distanceProximity refers to a (built-in) proximity function
that requires all of the sensors in the query domain to be
within a given distance of each other. For proximity func-
tions that require such thresholds, the threshold (e.g., 10
meters) is given as a subscript. Formally, this indicates an
infinite number of distanceProximity functions, one for
each possible value of the threshold; this is implemented
as a parameterized function. It is also possible that a prox-
imity function requires more than one threshold; in such a
case, the subscripts are separated by commas and refer to
multiple parameters.

Habitat Monitoring. For the habitat monitoring appli-
cation example, we require audio and video sensors that are
connected by network paths that provide some maximum
latency (for example, 10 seconds):

Q : {video, audio}/latencyProximity10s

Applications may also require that the sensors in the query
domain be physically close together to provide some confi-
dence that the video sensor is capturing relevant video. To
augment the above to account for distance in addition to la-
tency, we simply apply a second cost function:

Q : {{video, audio}/latencyProximity10s}
/distanceProximity10m

Logically, these two proximity functions are combined into
one larger function with the cumulative constraints of each
function. Alternatively, the fourth condition from the previ-
ous section could be rewritten as:

〈∀s1, s2, i : s1, s2 ∈ S ∧ i < m :: Q.Fpi(s1, s2)〉

where m refers to the number of proximity functions ap-
plied to the query.

4 A Query Domain Assessment Protocol

In this section, we present a protocol that uses the prox-
imity function to dynamically create query domains. Ta-
ble 1 presents a summary of the abbreviations we will use
in describing this protocol, some of which were introduced
in Section 3.

The goal of a protocol for forming a query domain is to
locate a set of nodes, S, that can satisfy a query specified as
described in the previous section. The protocol should re-
turn to the query issuer a return path, P , that the querier can
subsequently use to contact the constructed query domain.

Our completely reactive protocol for query domain con-
struction sends an initial flood looking for a sensor that can
satisfy at least one of the data type requirements (i.e., a sen-
sor that supports one of the types in Q.types). When such
a sensor is found, this sensor initiates a secondary flood
looking for the remaining unsatisfied types from Q.types.



Table 1. Definitions
Query’s Type Set (Q.types) The set of sensor types required for this query
Proximity Function (Q.Fp) The user-defined constraint on membership in the query domain
Path (Pij) A series of links in the network that transitively connects nodes i and j
Return Path (P) A connected graph of nodes selected for a query domain

This first flood is constrained only by a network time to live
(TTL). The second flood can be constrained by the nature of
Fp if the proximity function operates on network properties
(e.g., hop count or latency). On the other hand, when the
proximity function is defined by physical properties (e.g.,
distance) or logical properties (e.g., the same crane), the
second flood is also constrained by the network’s TTL. This
allows our protocol to ensure the pairwise constraint de-
tailed in the previous section while potentially limiting the
overhead associated with constructing the query domain.

As these secondary floods are initiated, the query keeps
track of the path it has traversed so far. When all of the
types from Q.types have been satisfied, the final sensor in
the chain sends the return path P to the query initiator. This
return message contains the values for each of the sensors in
the query domain and the information for the query issuer
to issue subsequent queries to the same domain.

Figure 2 shows this process, focusing on three cases a
query domain resolution may encounter. In this analysis, we
consider a query that requests only two data types; queries
for more types of data incur subsequent constrained floods.
The first case (the path involving node j) is our base case.
In this case, node i was a hit for one of the data types in
Q.types. After this match, node i initiated a secondary
query, constrained by either the proximity function Fp or
the TTL, as described above. Node j matches the second
data type required by Q.types, and j sends the return path
j − i − p′ back to the query issuer, where p′ is the series of
hops the query had to traverse before reaching node i.

For the second case, consider the path shown to node m.
In this case, node i initially matched one of the data types
of the query. Again, i initiated a secondary query, but k
(and all the nodes between k and m) could not satisfy the
remainder of the query. These nodes continued to forward
the query until it landed at node m, which could provide the
second data type. Node m returns to the query issuer the
return path m−p′′−k−i−p′, giving the query issuer access
to the entire query domain, the set {i, m}. The return path
itself is not the query domain, but it enables the query issuer
to contact every device that is within the query domain.

In the final case, the path terminating at the node labeled
o, node i also satisfied one of the two required data types for
the query. However, in forwarding the query in search of the
second required data type, either the proximity function was
exceeded along the path (in the case that the proximity func-
tion is based on properties of the network topology) or the

ip′

j

k mp′′

l on

Fp threshold
or max TTL

Figure 2. Reactive protocol details

network’s TTL was exceeded. In this case, no return path is
sent back to the query issuer because no query domain was
formed along this search route.

5 Evaluation

In this section, we provide an evaluation of our protocol.
To perform this evaluation, we used the TOSSIM network
simulator [6], which allows direct simulation of TinyOS
code written for MICA2 motes.

5.1 Simulation Setup

We used a uniform random placement of sensor nodes
in a 100 x 100 foot area. We used TOSSIM’s disc model
with a radius of 10 feet to model radio transmissions. To
distribute sensor types, we took all of the possible types for
a particular simulation, created all possible combinations of
those types, and randomly dispersed the combinations in the
network. This is representative of real environments where
powerful nodes that can support all data types are likely to
be rarer than simpler devices that can provide partial sup-
port for a query. For example, when there are three possible
sensor types, there are seven possible combinations of sen-
sors (a node can have any one of the three available types,
any two of the three types, or all three types).

5.2 Simulation Results

In our simulations, we varied the number of nodes from
50 to 150 in increments of 25. To study the feasibility of
creating query domains using proximity functions, we im-
plemented two types of query domains. The first proximity
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function ensures that all nodes be within four hops of one
another. The second is a more sophisticated example where
the proximity function stipulates that the distance between
each member is no greater than 10 feet.

Figure 3 shows the number of messages transmitted by
the sensors to resolve a query. The graph compares our pro-
tocol to flooding. The flooding protocol broadcasts the nec-
essary sensor types to every node in range of the query is-
suer. Recipients of the broadcast reply if they have all the
required sensors. Otherwise, the message is re-broadcast
until the required sensors are found or the network’s TTL
is reached. The number of messages increases as the num-
ber of nodes increases because the node density increases,
causing the number of nodes in re-broadcasting range to in-
crease. We have simplified the flooding results to one line
because the flooding implementations based on distance
and hop count had very similar results. Regardless of the
particular proximity function, our protocol outperforms the
flooding-based protocol, especially as the number of nodes
in the network increases. This is due to the fact that our pro-
tocol can use its hierarchical flooding mechanism to more
carefully scope the query’s dissemination, thereby reducing
the overhead of discovery. In addition, the query domain
construction protocol need not search as widely for a match
since nodes can cooperate to resolve the query.

Figure 4 shows the percentage of queries that were suc-
cessfully resolved as the queries became increasingly com-
plex. This metric determines whether it is effective to rely
on collaborative behavior as opposed to simply searching
for powerful nodes. Henceforth, all our simulations will use
the distance-based proximity function. To increase com-
plexity, we varied the number of sensor types required by
the query from two to five, while holding the number of
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nodes in the network constant at 100. As can be seen from
Figure 4, as the number of sensing capabilities required for
a single query increases, the probability of finding a satis-
factory sensor or set of sensors drops substantially. In fact,
as the number of sensors increases to about four or greater,
the probability of finding one all-powerful node with all de-
sired functionality drops to near zero. The query domain
facilitates the collaboration of several less powerful nodes
on complex tasks.

These results show that the query domain abstraction
scales well as the number of nodes in the network increases.
The communication overhead is favorable when compared
to alternatives. As the complexity of sensor nodes increases,
the query domain abstraction offers a higher percentage of
successful query resolution.

6 Related work

Early work in grouping abstractions focused on creat-
ing groups in the physical neighborhood. Hood [14], Ab-
stract Regions [13], and EnviroTrack [1] provide neigh-
borhood abstractions with the goal of easily encapsulating
membership, data sharing, and messaging between group
members. These approaches define only physical neighbor-
hoods. Additionally, they require proactive exchanges of
attributes to form neighborhoods. In contrast, logical neigh-
borhoods [9], focuses on constructing overlay networks de-
fined by logical properties exported as tagged information.
Our approach is less restrictive because we form the query
domain reactively at query time. This reduces the amount
of information that needs to be programmed in the network
at deployment time, facilitating general-purpose sensor net-
work deployments. While our proximity function can be



used to group nodes that have tagged information, it is most
advantageous when it is used to create groups on the fly
based on arbitrary relationships imposed by the application.

In [4], the authors focus on grouping abstractions in a
pervasive environment. Here, a mobile device forms a scene
around itself which allows applications to specify the types
of information and aggregation operations on data within
the scene. Scenes specify the relation the nodes must have
to the user while our work focuses on the relationship nodes
have to one another.

Our work also overlaps with systems that try and make
complex query processing easier. ACQUIRE [12] provides
a mechanism to resolve complex queries into a sequence of
simple queries. Unlike our work, ACQUIRE does not form
a group while processing complex queries. For persistent
queries, our abstraction can be leveraged repeatedly, reduc-
ing energy usage in resource discovery, while ACQUIRE
must re-establish which sensors to use every time. An al-
ternate approach to query processing is to build high-level
systems like TinyDB [7] and Cougar [15], which make the
user completely oblivious to the underlying network. It is
viewed as a relational database which can be queried using
an SQL-style syntax. Our proximity function can be used
to specify arbitrary functions based on physical properties,
which is inconvenient to express in these systems.

The final category of related work includes systems that
simplify programming of entire sensor networks. Examples
of such macroprogramming systems include Kairos [2] and
Regiment [10]. The primary goal of these systems is to try
and automate the process of writing custom code for indi-
vidual sensor nodes. Our work is complementary and our
abstractions can be built into these systems.

7 Conclusions

We have described the query domain abstraction that en-
ables the best-suited coalition of sensor nodes to answer a
particular query. The specification of the proximity function
to form the query domain reduces the communication over-
head, since it does not require any communication a priori.
This also makes it suitable for supporting multipurpose sen-
sor networks. We have related the abstraction, its protocol
implementation, and performance evaluation demonstrating
the protocol’s scalability with increasing number of nodes.
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