
Adaptive Preference Specifications
for Application Sessions

TR-UTEDGE-2006-006

Christine Julien

© Copyright 2006
The University of Texas at Austin

Adaptive Preference Specifications
for Application Sessions

Christine Julien

Mobile and Pervasive Computing Group
The Center for Excellence in Distributed Global Environments

The University of Texas at Austin
c.julien@mail.utexas.edu

Abstract. In ubiquitous computing applications, mobile participants
must be empowered to opportunistically connect to services available in
their local environments. Our previous work has elucidated a model for
allowing applications to specify the functional properties of the services
to which they need to connect. Our framework then connects applica-
tions to dynamic resources through the use of a novel suite of application
sessions. In this paper, we revisit this framework to devise a mecha-
nism for applications to specify preferences for one service provider over
another. In this investigation, we argue that these preferences are actu-
ally provided by a set of session participants: the application itself, the
service provider, and, more surprisingly, the network that connects the
application and the provider. We develop a framework for each of these
parties to specify preferences among various allowable connections. We
demonstrate not only what kinds of properties can be expressed in our
framework but also implementation paths for integrating them into the
communication and application support infrastructure.

1 Introduction

In ubiquitous computing, software and hardware resources are available embed-
ded in a user’s environment. The service concept provides an intuitive abstrac-
tion through which applications can gain access to remote resources. In dynamic
ubiquitous computing environments such as aware homes [1] or first responder
situations [2], applications opportunistically connect to a set of locally available
resources that change due to the application’s (or user’s) mobility. Such environ-
ments commonly rely on mobile ad hoc networks to provide network connectivity.
In mobile ad hoc networks, devices are disconnected from any wired infrastruc-
ture and instead communicate directly with one another using wireless radio
signals. Such networks employ multihop routing protocols that use intermediate
devices as routers for communicating partners that are not directly connected.

Application sessions [3] enable applications to select resources from the im-
mediate environment based on their functional properties. The approach is sim-
ple in that it uses non-deterministic selection to connect the service requester
to any available resource that matches the request. However, it only accounts
for the static properties that define the capabilities of a particular resource; it

2

does not allow applications to express the fact that a resource with particular
non-functional properties is preferable to another resource.

In this paper, we create an expressive preference function that we incorpo-
rate into the application sessions framework. The function allows all parties that
participate in the service interaction to express their non-functional require-
ments regarding a particular service binding. This includes the resource user,
the resource provider, and the devices that support the connection between the
provider and user. Characteristics that are likely to have an impact on the se-
lection of a particular resource include: the relative mobility of the user and the
resource, the proximity of the user to the resource, the reliability of a resource,
the battery power of the devices involved, etc.

This work differs from previous work because connections and the preferences
associated with them are determined dynamically in a changing environment.
In addition, all policy evaluations must be accomplished in a distributed and ad
hoc fashion because no infrastructure exists to facilitate service selection. The
specific novel contributions of this work fall in two categories. First, we define a
framework for preference specification. Second, we provide implementation paths
for incorporating these preferences into the application sessions framework.

This paper is organized as follows. First we overview the original applica-
tion sessions model. We then extend the model to include preference functions.
Section 4 describes related work, and Section 5 concludes.

2 The Application Sessions Model

The application sessions model [3] defined a set of interactions between ubiqui-
tous computing applications and services available in the applications’ immediate
surroundings. Our model explicitly separates the user program (i.e, the appli-
cation) from the session management infrastructure that manages coordination
with available providers. The only knowledge shared between the two are a spec-
ification (spec) that describes the desired service, and a provider handle (p) that
allows the application to access the provider the infrastructure connects it to.

Services and requests are described using semi-structured data [4], an ap-
proach common among description languages [5] and tuple based systems [6].
We use eLights [7], a flexible, lightweight tuple space implementation. Each
device maintains a local tuple space where it stores information in tuples. Ser-
vice providers describe service properties using tuples; a location service that
provides readings once a second may be described as:

〈(service, location), (frequency , 1 sec)〉

A service description may include additional tuple fields, e.g., format of infor-
mation, error rate, etc. Service requests are encoded as templates (or patterns)
over the description tuples. Content-based matching determines whether a de-
scription tuple matches a request template. An example template is:

〈(service, = location), (frequency , < 30 sec)〉

3

This request matches location services that have a frequency of less than 30 sec-
onds. A communication protocol underlying the application session framework
delivers request templates to providers [8], where matches are evaluated against
tuples in the provider’s local tuple space. No intermediate lookup service aids in
this process; providers respond directly to requests they receive. This autonomy
afforded by mobile ad hoc networks allows the framework to apply to dynamic
ubiquitous computing environments.

We focus on three specific session types from our model: the query session,
provider session, and type session. Detailed application examples that motivate
each session type can be found in [3]; they are omitted here for brevity. Each
session is represented as an assignment to a local handle that the requestor sub-
sequently uses as a proxy for the discovered service. Throughout our description,
the entails (|=) relation indicates that a resource satisfies a specification, i.e., in
p |= spec, service p satisfies spec. The selection of a matching provider uses
non-deterministic assignment [9] to indicate that a provider is selected from any
that satisfy the specification. A statement x := x′.Q assigns to x a value x′

nondeterministically selected from among the values satisfying the predicate Q.
If an assignment is not possible, the statement aborts; we assume this results in
assigning ε (a null value) to x.

A query session is a simple, one-time request for data from some remote
service. The application should be connected to a single matching service for the
duration of this interaction. The session provides no long-lived interaction with
the selected provider. We write the semantics of a query session as:

p = spec

, p = p′.(p′ |= spec ∧ p′.reachable)

The expression in the box denotes the particular session semantic. In this case,
the query semantic is expressed by assigning the specification to the handle p.
The value assigned is nondeterministically selected from all services that satisfy
the specification and are reachable. The reachable relationship models the re-
quirement that the two devices can communicate with each other, perhaps using
a multihop path in the ad hoc network.

The provider session supports applications that connect to a remote service
and perform several operations with that specific provider. This is useful, for
example, when an interaction produces state at both endpoints that is necessary
for subsequent interactions. The operational semantics can be written as:

p J← spec

, p = p′.(p′ |= spec ∧ p′.reachable)
if p 6= ε then
〈await ¬p.reachable→ p = ε〉1

fi

1 The 〈await B → S〉 construct [10] allows a program to delay execution until the
condition B holds. When B is true, the statements in S are executed in order.

4

In a provider session, the infrastructure maintains the connection to a particular
resource given network dynamics. As long as the infrastructure can maintain a
connection to the initial provider, the provider session is maintained. When the
connection fails, the handle is assigned ε, which effectively notifies the application
that the requested resource is no longer available.

In contrast to the previous sessions, the particular service provider supplying
the resource in a type session can change during the session, as long as the new
provider also satisfies the request specification. An example is a connection to a
location server; the particular provider servicing a mobile device’s requests for
location readings is likely to change over time, but programming the application
is simplified if this dynamic binding is transparent to the application. We express
the type session formally as:

p⇐ spec

, p = p′.(p′ |= spec ∧ p′.reachable)
while p 6= ε do
〈await ¬p.reachable→ p = p′.(p′ |= spec ∧ p′.reachable)〉

od

If an attached provider becomes unreachable, the infrastructure attempts to lo-
cate a new provider that is reachable and matches the specification. As long as
such a provider is available, the application remains connected to one, nonde-
terministically chosen from those that meet the requirements.

These session types do not completely address the needs of ubiquitous com-
puting applications. What an application truly wants is the ability to request
that it is connected to the best available provider for some measure of “best” (for
example, the closest provider). We rectify this problem by introducing an expres-
sive preference function as an extension to the existing framework that continues
to hide the complexity of creating highly interactive ubiquitous applications.

3 Specifying Preference

The framework described above assumes that each provider that matches the
functional specification is equally well suited. In this work, we introduce a func-
tion (f) that evaluates properties of a potential matching service and its hosting
device, properties of the application and its hosting device, and properties of the
network that connects the two. The latter is important because our framework
supports dynamic connections between applications and services in mobile ad
hoc networks where ordinary devices must serve as routers for communication
among other hosts in the network. As such, the cost of supporting communica-
tion between two peers in the network (i.e., the application host and the service
provider) has impact on other devices in a manner that is not commonly cap-
tured by end-to-end quality of service approaches such as [11, 12].

The angle brackets enclosing the construct indicate that the statement is executed
atomically, i.e., no state internal to S is visible outside the execution of S.

5

Our general framework for defining the preference function f relies on three
partial cost functions: fa(p), which defines the cost to application a of selecting
a particular provider p; fp(a), which defines the cost to provider p of servicing
application a; and fn(a, p), which defines the cost of a network path between
the devices hosting the application (a) and the potential provider (p). In com-
bination, the overall “global” preference function can be defined as:

f(a, p) = αfa(p) + ρfp(a) + νfn(a, p)

where α, ρ, and ν are system-specified constants that can place varying empha-
sis on the three different components under different operating conditions. The
provider that best satisfies this function at any given instant has a cost of:

coptimal = 〈min a, p : p |= spec :: f(a, p)〉2.

All of the partial cost functions (fa(p), fp(a), and fn(a, p)) return values
between 0 and 1, as described below, and α + ρ + ν = 1, so that the result of
evaluating the global preference function for any application/provider pair is a
value between 0 and 1. Each of the partial cost functions is also allowed to return
∞, which effectively vetoes that party’s participation in the session.

In the remainder of this section, we first revisit the model to show the revised
semantics of sessions with preferences. We then explore each of the partial cost
functions in more detail, describing how its behavior is implemented within our
tuple-based model. This is especially important in the case of network costs,
where our approach allows fn(a, p) to be computed as part of the underlying
communication protocol, thereby incurring minimal additional overhead.

3.1 Preference Based Application Sessions

Incorporating preferences into the application sessions model requires augment-
ing the operational semantics listed in Section 2 to ensure that the “best”
provider is chosen based on the global cost function. In this section, we express
the semantics in terms of the global cost function; in the subsequent sections we
show how these global semantics are implemented using the partial cost func-
tions described above. We abuse our own notation slightly here by writing f(p)
to indicate the global preference function f(a, p) because these definitions are
written from the application’s perspective (i.e., a is fixed in all cases). If p is
not reachable from a in the mobile ad hoc network, then the cost function has
a value of ∞, that is, ¬p.reachable ⇒ f(p) = ∞. How this is implemented is
described in Section 3.4.

The preference-aware query session simply selects the service provider to
connect based on minimizing the preference function:
2 In the three-part notation: 〈op quantified variables : range :: expression〉, the

variables from quantified variables take on all possible values permitted by range.
Each instantiation of the variables is substituted in expression, producing a multiset
of values to which op is applied, yielding the value of the three-part expression.
If no instantiation of the variables satisfies range, then the value of the three part
expression is the identity element for op, e.g., true if op is ∀ or 0 when op is min.

6

p = spec/f

, p = p′.(p′ |= spec ∧ p′.reachable ∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)

The provider session is similar; the best provider is selected, and no subse-
quent reselection is performed:

p J← spec/f

, p = p′.(p′ |= spec ∧ p′.reachable ∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)
if p 6= ε then
〈await ¬p.reachable→ p = ε〉

fi

The preference-aware type session is more complicated because not only must
it ensure that it initially selects the best match, but it has to constantly monitor
the available providers to ensure that this match remains the best one available:

p⇐ spec/f

, p = p′.(p′ |= spec ∧ p′.reachable ∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)
while p 6= ε do
〈await ¬p.reachable ∨ 〈∃π : π.reachable ∧ π |= spec ∧ f(π) < f(p)〉 →

p = p′.(p′ |= spec ∧ p′.reachable ∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)
od

The statement inside the loop ensures that the application is reconnected if a
better provider is available. As above, this assignment ultimately sets the handle
to ε if no satisfactory provider is available.

3.2 Implementing Application Preferences

The most obvious of the three components of the preference function is the ap-
plication requesting access to the service. Factors that influence the application
include aspects such as:

– service fidelity (i.e., the error rate in responses from the provider)
– service availability (i.e., the percentage of time the provider is responsive)
– proximity of the provider (i.e., location-dependent interactions tend to favor

closer providers)
– relative mobility (i.e., if both the application’s host and the provider’s host

can move, stable connections will involve low relative mobility)

The portion of the global preference function related to application prefer-
ences is αfa(p). Effectively, the application provides a function that takes as a
parameter a provider (or more specifically, attributes of a provider) and generates
a cost value. This is done for every potential provider, enabling the application
to select the lowest cost provider. Service providers generate attribute tuples in

7

their local tuple spaces that provide up-to-date information about the attributes
described above. As an example, a provider may output a velocity tuple:

〈(speed , my speed), (direction, my direction)〉

As the provider’s velocity changes, it removes this tuple and inserts a new tuple
representing the updated velocity. Service requests evaluating the cost for this
provider can access this information asynchronously to generate values for the
cost to this provider. The provider may not have a tuple for every attribute; if a
client request requires information about an attribute but the provider does not
provide it, the connection cannot be made.

The application’s cost function is provided as an active tuple as was in-
troduced in the Linda model [6]. An active tuple differs from the previously
described passive tuples in that it can contain uncompleted computation. In
our case, the active tuple encapsulates the computation that calculates the cost
function’s value for a particular provider:

〈(source, requester id), (costa, costa(. . .))〉

where the source field’s value indicates the unique id of the requesting device,
and the costa field’s value actually calculates the cost for the application to use
a particular provider. The communication protocol broadcasts this active tuple
to every host reachable in the network. This is excessive, since the network could
be very large; Section 3.4 shows how this broadcast is restricted to only provider
devices that are in a reasonable range to service the request.

The code implementing costa(. . .) for our example based on the relative
mobility between the service requester and the service provider has the form:

costa(my velocity)
rd([spec])

v = rdp(〈(speed , ?), (direction ?)〉)
if(v == null)

return ∞
else

return relative velocity(v, my velocity)

The first line is a blocking tuple space operation, a rd, which waits until it
encounters a tuple matching its argument (in this case the template representing
the service request). When the active tuple encounters such a match, the blocking
rd operation returns, allowing the cost function to continue. At this point, the
active tuple knows that it is at a location hosting a service provider that matches
the request. The second line is a probing (non-blocking) rdp operation that looks
for a tuple matching the provided template; in this case, a tuple containing speed
and direction information (where the values for the fields are unrestricted, as
indicated by the “?”). It no matching tuple exists, the operation returns null,
and the cost cannot be computed. If a matching tuple does exist, the result
is used to compute the relative velocity of the two devices (normalized to be
between 0 and 1). This example uses only one attribute of the provider, but

8

more attributes can be incorporated by looking for additional attribute tuples.
When the function returns, it automatically replaces the function portion of the
active tuple (the second field) with the returned value, resulting in a passive
tuple:

〈(source, requester id), (costa , relative velocity)〉

The underlying communication protocol responds to the presence of this tu-
ple and returns it to the requester. Each device within the network receives a
copy of the original active tuple; each device that supports a matching service
executes the active tuple, generating a cost for that service. Therefore, the re-
quester receives a cost tuple for each potential provider, allowing the application
to select the best option.

3.3 Implementing Provider Preferences

The second participant in the session that desires to to influence service selec-
tion is the service provider itself. Factors that might influence whether or not a
provider wants to participate in a session include:

– current provider load
– current battery level of provider device
– announced intended length of usage by the application requesting access (or

duration of session)
– periodicity of requests from the application

The portion of the global preference function related to the provider specified
preferences is ρfp(a). When a provider makes a service remotely available, it also
specifies a preference function that takes as a parameter an application (or more
specifically, attributes of a particular application and its request) and generates
a cost value for servicing that request.

The implementation of the provider preference adds to the process elucidated
in the previous section. Instead of the communication protocol responding to a
two-field passive tuple (the tuple containing the requester’s id and the application
cost value), the protocol responds only to a three-field active tuple:

〈(source, requester id), (costa , cost value), (costp , costp(. . .))〉

Before the communication protocol responds to this tuple, the provider device
removes the two-field tuple generated by evaluating the application’s cost func-
tion and replaces it with the above three-field tuple by inserting its own cost
function. This cost function is partially evaluated with respect to having values
filled in for needed provider attributes (e.g., current load), and when it arrives
at the requester, it reads attributes about the application requesting the service
(e.g., the frequency of requests). Once the communication protocol transports
this three-field tuple back to the requester (using the tuple’s first field, which
uniquely identifies the requester), the provider’s cost function completes its ex-
ecution using tuples read from the requester’s local tuple space.

9

3.4 Implementing Network Preferences

While the first two stakeholders (the application and the service provider) are
obvious, a third, often overlooked component is the network. Ubiquitous com-
puting applications like those mentioned in Section 1 are supported by mobile
ad hoc networks in which the nodes themselves serve as routers for connections
between devices that are not directly connected. These intermediate nodes have
a vested interest in ensuring the connections selected ensure the longevity of the
network as a whole. Factors that play into network preferences include:

– aggregate bandwidth available on potential transmission path
– number of network hops
– battery power available on intermediate nodes
– latency of the network connection

The portion of the global preference function related to the network is
νfn(a, p). This function has a static definition applicable across the entire net-
work and known to all applications, but the values that influence the cost calcu-
lated for a path are themselves dynamic. We have so far assumed a broadcast-
based communication protocol in which every request is delivered to every other
device in the network. Our communication protocol that incorporates the net-
work cost function embodies additional intelligence. A mobile ad hoc network
is made up of a set of devices connected by a graph in which vertices in the
graph are wireless devices and edges in the graph are direct connections between
devices that are physically close enough to be within communication range. A
mobile ad hoc network routing protocol can dynamically impose a tree on this
graph where the root of the tree is the requesting device and paths to other de-
vices emanate out from the root. Our resource requests move along these paths,
recalculating the network cost at every hop. If the network cost ever exceeds its
allowable threshold (provided statically by the network deployer to each node),
the message kills itself. Our network cost function allows more sophisticated
definitions, though the simple definitions can still be used to halt propagation.

When using all three cost functions in conjunction, the process changes
slightly again from the previous section. The static network cost function is pro-
vided to every device, and any requesting device must place this cost function
in its request tuple:

〈(source, requester id), (costn , costn(costa(. . .), . . .)〉

where the network cost function (costn(. . .)) is the active portion of the tuple,
and the application’s cost function is invoked when a match is encountered. The
first line of the application’s cost function defined above is no longer necessary;
this matching of the application’s specification against the provider’s description
is performed within the network cost function.

The implementation of the network cost function has the following structure:

10

costn(costa(...), ...)

current cost = 0

max net cost = threshold

while(true)

if rdp([spec]) != null

out(〈(source, requester id), (costn , current cost), (costa , costa(. . .))〉
update cost(current cost)

if current cost < max net cost

forward self

else

out([garbage collecting active tuple])
return ∞

The rdp operation checks to see if the current device has a service that matches
the application’s request. If so, the function generates a dedicated tuple for re-
sponding from this provider and places it in the provider’s local tuple space. Pro-
cessing of this tuple proceeds as described above; the application’s cost function
is evaluated first. When it finishes, the provider removes the tuple and replaces
it with a tuple containing its unevaluated cost function. The result tuple now
contains four fields, including a value for the network cost function.

Whether the current provider matched or not, the network cost function
continues by updating the network cost stored within the active tuple. The sin-
gle statement update cost(current cost) encodes a more complicated process
that may involve carrying some state from one node to another and/or reading
values stored in local tuples (e.g., local available bandwidth information or re-
maining battery power). When the network cost function generates a cost value
that exceeds a specified threshold, it performs a sequence of steps that ensure
that the request no longer propagates and that it leaves no residue on the cur-
rent provider. This process suffices completely for query and provider sessions;
type sessions require the active tuple to remain resident and send updates back
to the requester if any of the cost values change. This allows the requester to
reconnect to a better provider as soon as one becomes available.

4 Related Work

Research projects have increasingly focused on providing applications dynamic
access to a changing set of resources. We highlight the most relevant projects,
especially with respect to how applications specify constraints or preferences on
selected resources. Many projects have focused on mediating quality of service
requirements by leveraging object mobility [13, 14] to enhance application re-
sponsiveness and network-wide performance metrics. These approaches focus on
bringing objects closer to clients instead of on the notion that the clients them-
selves are mobile and resource usage may be inherently location-dependent.

Network sensitive service selection [15] observed the differences between per-
forming user-side resource selection (where the user collects necessary informa-
tion about available providers) and provider-side resource selection (where a

11

provider collects information about potential users). Work founded on these
observations introduced the ability for applications to include network parame-
ters/requirements in resource requests.

In moving from network-sensitivity to awareness of quality of service (QoS),
service efficiency has been defined as a tradeoff between service coverage and
cost [16]. This work is extended in [17] which provides guaranteed availability
of a multimedia service in dynamic ad hoc networks using a combination of
algorithms that includes predicting network partitions. This work focuses on op-
timal creation and placement of service instances in dynamic ad hoc networks,
and therefore is sufficient only for non-location-dependent software services. Our
approach addresses the discovery of resources (both physical and software re-
sources) that are available in a local environment.

Work more closely related to our approach [11] differentiates QoS parame-
ters into metrics and policies, and considers both constraints on the user of a
resource and constraints on the provider of that resource. This work does not
naturally accommodate dynamically changing QoS measurements and is limited
to traditional performance-style measurements (like bandwidth, reliability, load,
etc.). Our approach handles application-level requirements (e.g., location, mobil-
ity, etc.) and defines three categories of constraints (application-, network-, and
resource-specific constraints) instead of just two. This allows us to consider the
impact that a peer-to-peer interaction has on the rest of the network, not just its
impact on the direct participants. Other work [18] introduces formal modeling
tools that enable optimal service compositions to be selected given a static set
of QoS requirements. Our approach focuses on the ability of an infrastructure
to dynamically adapt such selections in response to changes in the underlying
network and service infrastructure.

A final important component of the work that was described in this paper
is its ambition to simplify the development of adaptive ubiquitous computing
applications. Along that same vein, previous work has created middleware so-
lutions to enable developers to easily specify the relationships between their
applications and QoS metrics [12]. In a similar manner, DySOA [19] enables
service compositions to dynamically evaluate the network status and adapt the
system at runtime to maintain a set of specified QoS parameters.

5 Conclusions

Our approach explicitly separates preferences into three categories, allowing the
application, the resource provider, and the network to each specify preferences
with regard to a potential resource interaction. At runtime, these preferences
are dynamically evaluated, and connections between applications and resource
providers are automatically maintained to ensure that these preference functions
are maximized and that no constraints are violated. This style of interaction is
essential to applications which function in long-lived ubiquitous computing envi-
ronments where applications’ interactions are inherently location, environment,
and task-dependent.

12

Acknowledgments

The author would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the NSF, Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References

1. Kidd, C., Orr, R., Abowd, G., Atkeson, C., Essa, I., MacIntyre, B., Mynatt, E.,
Starner, T., Newstetter, W.: The aware home: A living laboratory for ubiquitous
computing research. In: Proc. of CoBuild. (1999)

2. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An ad hoc sensor
network infrastructure for emergency medical care. In: Proc. of BSN. (2004)

3. Julien, C., Stovall, D.: Enabling ubiquitous coordination using application sessions.
In: Proc. of Coordination. (2006)

4. Abiteboul, S.: Querying semi-structured data. In: Proc. of ICDT. (1997) 1–18
5. Christensen, E., Gubera, F., Meredith, G., Weerawarana, S.: Web services descrip-

tion language (WSDL) 1.1 (2001) Current as of 2005.
6. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4)

(1989) 444–458
7. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile

environments. In: Proc. of FSE. (2002) 21–30
8. Julien, C., Venkataraman, M.: Resource-directed discovery and routing in mobile

ad hoc networks. Technical Report TR-UTEDGE-2005-01, Univ. of Texas (2005)
9. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Science of Computer

Prog. 13(2-3) (1990) 133–180
10. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison Wesley (1999)
11. Liu, J., Issarny, V.: QoS-aware service location in mobile ad hoc networks. In:

Proc. of MDM. (2004) 224–235
12. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: Qos-aware middleware for ubiqui-

tous and heterogeneous environments. IEEE Comm. Magazine (2001) 140–148
13. Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., Ber-

shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Trans. on Computer Systems 22(4) (2004) 421–486

14. Holder, O., Ben-Shaul, I., Gazit, H.: Dynamic layout of distributed applications
in FarGo. In: Proc. of ICSE. (1999) 163–173

15. Huang, A.C., Steenkiste, P.: Network-sensitive service discovery. Journal of Grid
Comput. 1(3) (2003) 309–326

16. Li, B.: QoS-aware adaptive services in mobile networks. In: Proc. of IWQoS.
Volume 2092 of LNCS. (2001) 251–268

17. Li, B., Wang, K.: Nonstop: Continuous multimedia streaming in wireless ad hoc
networks with node mobility. IEEE Journal on Selected Areas in Comm. 21(10)
(2003) 1627–1641

18. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple QoS constraints. In: Proc. of ICSOC. (2005) 130–143

19. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making service systems
self-adaptive. In: Proc. of ICSOC. (2005) 255–268

