
Developing Collaborative 
Applications using Sliverware

TR-UTEDGE-2006-005

Seth Holloway
Christine Julien

© Copyright 2006
The University of Texas at Austin



Developing Collaborative Applications
using Sliverware

Seth Holloway and Christine Julien

Mobile and Pervasive Computing Group
The Center for Excellence in Distributed Global Engironments

The University of Texas at Austin
{sethh, c.julien}@mail.utexas.edu,

http://mpc.ece.utexas.edu

Abstract. Despite computers’ widespread use for personal applications,
very few programming frameworks exist for creating synchronous collab-
orative applications. Existing research in CSCW (computer supported
cooperative work), specifically approaches that attempt to make current
application implementations collaboration-aware, are difficult to imple-
ment for two reasons: the systems are focused too narrowly (e.g., on
Internet-only applications), or the systems are simply too complicated
to be adopted (e.g., they are hard to set up and adapt to concrete ap-
plications). Enabling real-time collaboration demands lightweight, mod-
ular middleware—sliverware—that enables the fine-grained interactions
required by collaborative applications. In this paper, we introduce sliv-
erware and give a specific example in the guise of a distributed keyboard
that multiplexes input from several users into a single stream that each
user receives just like input from a normal keyboard. The result is simple,
real-time collaboration based on a shared, distributed view of data that
enables rapid development of highly coupled coordinating applications.

1 Introduction

Even though computers worldwide are connected, the computer is still largely a
personal experience; CSCW (computer supported cooperative work) research has
focused on expanding the limitations of traditional computers to allow for more
collaboration amongst users. However, CSCW has mainly provided information
exchange rather than information sharing [6]. While both allow for collaboration,
information sharing provides real-time interaction with a consistent global view
of shared data. Despite the large volume of work that has been done in connecting
people, simultaneous collaboration and information sharing are still relegated to
face-to-face meetings and telephone or video conferences. Existing research into
enabling collaboration is too narrowly focused to be usable by everyone; for
example, available solutions may only work online or with a specific operating
system, or they may rely on a particular programming framework. Additionally,
the approaches often rely on heavyweight, unchangeable middleware systems
which provide excessive functionality; the vast amount of functions cannot be
easily understood and fully utilized yet they dominate the software size.



This paper introduces sliverware, which aims to simplify the development
of collaborative software. A sliverware component (a sliver) is a thin slice of
a modular middleware that provides a specific functionality appropriate to im-
plementing collaborative software. Each piece of sliverware includes not only
the programming abstractions a developer uses to create the particular interac-
tion, but also the protocol implementations required to realize that interaction.
By hiding the details of this implementation from the application programmer,
sliverware allows developers of collaborative software to focus on interactions
instead of low-level communication. An application requiring multiple modes
of interaction pulls together exactly the required sliverware components in a
modular fashion to create a tailored middleware layer that implements the in-
teractions’ underlying behavior. By providing full application stacks within one
sliver, collaborative programs can be constructed out of sliverware with very
little knowledge of distributed programming. Common components among sliv-
ers are automatically optimized at compile time to provide the smallest-possible
implementation. Traditional middleware provides a horizontal abstraction, but
sliverware introduces the notion of lightweight, cross-cutting, vertical abstrac-
tions.

This paper details the sliverware concept including an overview of the ap-
proach, details of each abstraction layer, and a description of how to program
using sliverware. We then show an example to demonstrate sliverware’s flex-
ibility. This example, the distributed keyboard, logically multiplexes multiple
users’ inputs into one input stream. By replacing the normal keyboard listener
with a distributed keyboard listener, an application developer can program real-
time text-based collaboration. There are numerous applications in which the dis-
tributed keyboard can play a critical role, including interactive presentations—
lectures in which the professor’s material is broadcast to students instantly while
students create annotations on the fly—and simultaneous text editors that al-
low multiple people to author a document simultaneously. These possibilities
make the abstraction ideally suited for educational software and software de-
velopment tools although many more potential applications exist. Results show
that the approach is easy to implement and scalable.

In Section 2 we motivate this research and define the problem that sliverware
solves; Section 3 details sliverware and its approach to program construction.
Section 4 covers the implementation details for one example of sliverware—the
distributed keyboard, and in Section 5 we discuss work related to sliverware and
collaborative software. Finally, we conclude with Section 6.

2 Motivation and Problem Definition

Real-time collaboration is long overdue in software; for nearly 40 years people
have only had access to single-user applications. With the advent of Internet-
based communication, many people saw the power of multi-user applications.
Today, almost everyone communicates via a chat program such as AOL Instant
Messenger [3]. However, while everyone is chatting with peers, they are work-



ing on single-user applications [13]. For increased collaboration, group mem-
bers often meet face-to-face rather than using their computers directly. This is
due largely to the fact that existing collaborative software provides only coarse-
grained interactive capabilities. The types of tasks we commonly cooperate on
demand varying levels of granularity and sharing of dynamic data in real time.

If such flexible interaction primitives are available, software could further
enhance collaboration. For example, real-time collaboration in a shared word
processor may improve productivity by allowing multiple authors to contribute
simultaneously: everyone editing the document would see exactly the same up-
to-date version. In a setting where collaboration is employed, contributors have
a shared goal and work towards producing higher quality work in less time than
is possible using only non-collaborative word processors. Another example is a
collaborative software development environment that utilizes simultaneous text
editing similar to the collaborative word processor. Agile development meth-
ods such as extreme programming (XP) [5] very nearly demand collaborative
software environments. Rather than waiting for code to be checked into a ver-
sion control system, programmers could view one another’s progress in real time.
The synchronous development environment may be an ideal collaboration target
because the developer is also the end user, thus the end user has a solid under-
standing of the capabilities of software which avoids many of the traditional
groupware pitfalls [8].

There is also great promise in enabling interactive lectures, particularly in an
educational or industrial meeting. A growing number of lectures currently utilize
computers through standard methods like slide shows and more diverse means
such as electronic whiteboards [1]. Many of these technological improvements
have removed several of the interactive qualities of traditional classroom environ-
ments. Enabling digital collaboration during lectures would foster an interactive
environment where students personally augment the lecture with relevant anno-
tations in real time. This method of note-taking gives students the opportunity
to absorb the lecture and clarify notes without having to focus solely on copying
the lecturer’s words. The synchronicity also allows the audience to review the
lecture and understand how different parts relate as opposed to seeing notes
scattered in the margin. Real-time feedback from students enables lecturers to
dynamically adapt the lecture’s content and pace. These combined effects would
allow for a truly interactive lecture with a room of active participants.

There are many CSCW ideas and applications related to this research, but
none have received widespread usage due to several fundamental problems. First
many collaborative approaches are complex and hard to use—the basic idea is
incomprehensible or the development method is ill-defined. In addition, there is
a general lack of programming tools tailored to enabling development of collabo-
rative applications—the granularity of programming constructs is too low-level,
focused on communication routines, and not tailored to the high-level interac-
tive qualities of collaborative applications. The CSCW approaches are also too
specific so they do not integrate with other systems easily. These combined chal-
lenges scare even seasoned programmers away.



In summary, existing programming constructs do not adequately address
collaborative software developers’ needs, including: expressive coordination and
group membership primitives, an extensible and easy to use programming frame-
work, and responsive communication-based interactions.

The work undertaken in this paper addresses the above challenges and presents
the following specific essential characteristics:

– Tailored collaborative abstractions: we introduce abstractions that make col-
laborative programs easier to write and deploy quickly by encapsulating
interactive capabilities within reusable programming constructs.

– Extensible programming framework: our approach allows the system to be
modified by collaborative application developers at various levels of com-
plexity.

– Lightweight software footprint: we provide a simple, efficient solution that
dynamically minimizes the resources required by applications.

The next section introduces sliverware, which stands to overcome barriers to
enabling collaboration in numerous ways. Sliverware supplies easy-to-understand
abstractions tailored to collaboration functions so application developers can
construct applications from existing components rather than having to program
applications from the bottom up. This also frees the programmer from writ-
ing complicated, low-level communication methods. Finally, sliverware can be
extended and used in three distinct ways, providing tailorable abstractions for
programmers of all skill levels.

3 Sliverware: A Constructive Programming Model

Sliverware is thin modular middleware that offers the functionality necessary for
writing collaborative software. Application developers do not need to know vast
amounts of distributed computing solutions before using sliverware; instead the
programming model provides a hierarchical collection of components that each
implement a specific functionality necessary to collaborative software. The sliv-
erware approach abstracts all aspects of collaborative programming into three
layers: collaborative services (the collaborative functionality and application pro-
gramming interface, or API), group membership, and network communication.
A specific sliver teams three components (one from each layer) to provide an ab-
straction that allows programmers to develop collaborative applications quickly
and effectively. Novice programmers can use particular slivers through the slivers’
high-level programming interfaces, while more advanced developers can combine
components in a different manner to create new slivers.

Sliverware provides all the functionality application developers have come
to expect from middleware while also allowing for execution on more resource-
constrained devices. The latter benefit stems from the fact that sliverware’s
modularity enables an application developer to incorporate only the middleware
components required for the particular application instance. The framework im-
plements many common collaboration tasks through the reuse of components.



The model is flexible because it can provide many varying potential solutions
from a vast library and ultimately trims the system at compile time. Sliverware
is also specifically collaborative-oriented which allows it to tailor the program-
ming interfaces and functionality underlying them to a specific set of tasks. This
simplifies the complexity of the development task while still enabling a large
number of similar applications as described in the previous section. Finally, sliv-
erware is component-based which provides developers the ability to mix and
match components at varying levels of abstraction.

Fig. 1 depicts the

Fig. 1. Sliverware-program interaction model.
Sliverware extends vertically through three lay-
ers: the network communication, group member-
ship, and cooperative services layers. The sliver-
ware hooks into the application via an API.

sliverware-program inter-
action model and shows
that sliverware interacts
with four layers in the
application stack: the
network, group, service,
and API levels. Fig. 2,
the sliverware component
model, shows the essential
components of a single
sliver. High level sliverware
functionality is decom-
posed into pieces for each
of the three layers. An
underlying network proto-
col is necessary to enable
coordinating partners to
exchange information; this
is handled by the network
communication layer. It plugs into the sliver via an adapter that provides the
communication interface, described in Section 3.3. Collaboration also requires
the coordinating partners to be organized into a group that contains all of the
distributed application components that must be kept consistent. The group
membership layer provides support for organizing and coordinating the group
itself, and may provide specialized logic for distributing information to all
group members. This group membership and the group interface for connecting
group policies to collaborative services is described in Section 3.2. Finally, we
think of the implementation and API layers as a single entity that encapsulates
the collaborative functionality which is separate from the coordination or
distribution method. This layer, described in Section 3.1, incorporates algo-
rithms that provide collaborative support for the local application such as the
methods to allow information sharing (e.g., creating periodic snapshots to build
a consistent global view or processing snapshots from other group members). In
the remainder of this section, we describe the responsibilities of each of these
component layers in more detail. We then describe how developers program



with slivers and how slivers can be combined automatically to optimize the
resultant, tailored sliverware.

3.1 Collaborative Services

The uppermost layer in the sliverware model

Fig. 2. Sliverware compo-
nent model. An individual
sliver combines one compo-
nent from each of the three
layers.

logically combines the collaborative functions
and an API that presents the programming
model to the developer to create a suite of col-
laborative services. This layer is founded on the
premise that programming collaborative appli-
cations can be made easier if the programming
primitives focus on functions integral to collab-
oration while hiding the necessary underlying
group cooperation and network communication
protocols. Implementations at this layer provide
discrete fine-grained services that enable differ-
ent pieces of functionality required for collabora-
tive applications. For example, collaborative ap-
plications may exchange input information (e.g.,
keyboard or mouse events) occurring across a
set of distributed devices, diffs of the same file
open concurrently on multiple machines, simple
idle/active status information of participants, or
even screen shots for each connected user. For
each such function, a collaborative service is de-
fined that implements exactly the behavior dic-
tated. A collaborative application can then be
defined by integrating one or more such col-
laborative functions and providing application-specific behavior on top. This
application-specific behavior is not part of the sliverware model, and includes
determining how shared information is displayed and how often information
should be exchanged. Some collaborative services may also automatically collect
context information from the user or device generating data and attach it as
part of the collaboration information.

Section 4 gives an example of a specific collaborative function, the distributed
keyboard. In this collaborative service, every participant in the collaboration
group has attached a keyboard listener to a component in the application. When
a keyboard event occurs in that component, the event is not only displayed ap-
propriately on the user’s local device (e.g., by displaying the letter typed), but
the event is also automatically distributed to all other group participants. The
distributed keyboard’s API is defined to interact with the application in both
directions (event generation and event reception). The information exchanged
when interacting with different collaborative services likely differs greatly (e.g.,
interacting with a distributed keyboard listener is clearly quite different from in-
teracting with a distributed mouse listener). In the sliverware model, we present



this service interaction through a common serviceListener that can be sub-
classed by a sliver component developer to be made to resemble local interfaces
with which the developer is familiar. All context collection and event distribution
is hidden from the application programmer and handled by the implementation
of the collaborative service, and, ultimately, by the underlying communication
and coordination protocols described next.

3.2 Group Membership

One of the most important aspects to supporting the collaborative services de-
scribed above is the ability to support collaborative groups. Without defining
the group that is collaborating (even if this group contains only two partici-
pants), then it is difficult to understand and specify the collaborative behavior
(in the layer above) or to implement the collaborative behavior (which relies
on the communication protocols described in the next section). For these rea-
sons, group membership specification and implementation is the second, middle
component, of any sliver in our model, and this component handles all steps
necessary to store, collect, and learn group identities. The group membership
policy that dictates how members are added to the group can present varying
levels of complexity depending on how restrictive, consistent, and/or private the
group should be. For example, the simplest group policy allows anyone who
hears a communication to be part of that group. This policy offers no consis-
tency guarantees however, because there is no information provided about which
parties have received the message. More complicated group policies may require
potential members to explicitly join, they may require members to periodically
update their status to remain active, or they may even require members to know
a shared password to participate.

Regardless of their semantics, groups are represented by well-defined data
structures that contain the following components, if applicable:

group , (groupName, groupAddress, members)

This group data structure is maintained independently by each member; unless
explicitly implemented by the group policy, no guarantee is provided that every
group member has the same view of the current group. The groupName is a
unique group identifier, groupAddress contains the group IP address for multicast
purposes, and finally members is a list of all group participants. Any of these
fields can be empty; though such null values make some sliver combinations
impossible (for example, if the multicast address is not set, but the underlying
communication is provided by a multicast protocol, there is no way to contact
the other group members). These subtleties, their implications, and how our
sliverware model and framework handles them are discussed in the next section.
The members portion of the group data structure is a list of individual members
each presented in the form:

members , (name, address, attributes)



where name is the group member’s identifier, address is the group member’s
IP address, and attributes contain any other information that the program may
track. As with the group data structure, none of these aspects are required; if the
underlying communication protocol is using a multicast address, it is possible
that an IP address for each individual member is superfluous. The attributes
are largely open-ended, and different group policies may use them for different
purposes. As one example, if the group policy requires periodic heartbeats from
each group member, the time to the next expected heartbeat would be included
as an attribute for each member. Context information about the node, such as
physical location, can also be included in the attributes.

The actual implementation of a group membership component depends on
the particular policy employed by the group membership protocol. In our pro-
totype, we present two widely applicable group membership policies: announce
and n-heartbeat. The first of these, announce, provides open access to the
group that allows anyone to join by simply announcing their intent. The policy
does not attempt to prune unproductive members and instead relies on explicit
departures from the group. To join the group, an application component’s group
membership component broadcasts a join request for the group. This is received
by every node in the network, and, if the node supports an application partic-
ipating in the specified group, the associated group data structure is updated
with information about the new member. At this point, when any member of
the group sends collaborative information, it is received by all other members
specified in the group data structure if they are still connected. When an appli-
cation component wishes to depart the group, it sends a depart message to all
nodes it knows to be part of the group.

While the announce policy is useful for supporting many applications that
are relatively static, more complex policies are necessary to support more so-
phisticated applications. For example, more stringent joining processes or more
rigorous exit criteria may be programmed to suit the application. This brings us
to our second prototype group membership policy, n-heartbeat, which requires
that all participants periodically broadcast heartbeat messages; if a member
does not communicate within n heartbeat periods, the member is assumed to
have disappeared and is removed from each member’s group data structure.
Each member performs this removal independently; there is no guarantee that
all members will have the exact same lists at all times, but if a node is no longer
sending heartbeat messages, every active group member will eventually remove
that node from the group data structure. To join a group, a new member sends
a join request as above, but in addition, the node must periodically send a
short message indicating it is still present and active. Still more sophisticated
group membership policies are possible, for example, based on relative physical
location and its implied notion of future connectivity [9].

Because of its modular design, the sliverware framework allows for more
group membership policies to be integrated quickly and easily. A group mem-
bership component developer simply needs to provide functionality for joining
the group and any constraints on the group interactions. The interface the



group membership layer presents to the collaborative service layer contains a
send(Message m) method (for calls coming from a collaborative service above)
and a GroupListener for delivering group events from other group members to
the collaborative service. Before invoking the collaborative service’s listener, the
group membership implementation is responsible for ensuring that the message
received is in fact destined for this group and that the sender is a part of the
group. The interface the group membership protocols use to interact with the
lower, network communication layer contains some additional methods and is
discussed in more detail next. In summary, to add a new group policy to the
framework, the policy developer is responsible for understanding how to use
the underlying communication interface, for providing an implementation of the
send method called by the collaborative service, and for invoking any registered
group listener to deliver messages to a registered collaborative service.

3.3 Network Communication for Collaboration

Communication is a necessary part of collaboration—without proper commu-
nication there is no collaboration. With real-time collaboration in mind, com-
munication should generally include every group member, be immediate, and
ensure that every contribution that is made is registered. However, many factors
influence the quality and cost of communication, including the degree of syn-
chronicity, priority requirements, timeliness, etc. Combinations of these factors
lead to numerous ways to provide communication for collaborative applications.
Complicating this is the fact that different applications have different perfor-
mance requirements and communication approaches perform differently when
faced with different operating constraints. Given these discrepancies, it becomes
apparent that there is no common communication approach that is the best
choice for all applications or even for a particular application in every scenario.
For this reason, the sliverware programming model simply defines a common in-
terface, or adapter [7], that communication approaches must adhere to in order
to be usable by the other, higher level, sliverware components. This is similar
to the requirement above that new group policies adhere to the specified in-
terface, but in this case we make the particular interface an explicit individual
component because we do not modify the communication protocols themselves.
Because a standard interface is used, an application developer can swap in dif-
ferent communication implementations without altering any of the higher level
implementation components.

The basic interface for collaborative communication in our sliverware model
allows both communication with a single member of the collaborative group and
simultaneous communication with the entire group. While reliable multicast [12]
appears at first glance to be an obvious widely applicable solution, it is difficult to
implement in the dynamic, lightweight, wireless systems we are targeting [11]. A
reliable multicast implementation may be the correct choice in some cases, but,
depending on the situation, a simpler flooding-based broadcast may be suffi-
cient. In other cases, more tailored protocols may be appropriate. For example a
cooperative text editor that will only involve a select group of individuals in the



same boardroom (such as in a meeting) could utilize simple flooding, while the
same application connecting a small group within in a large audience (such as a
conference) may use ad-hoc on-demand distance vector routing (AODV) [15] or
multicast ad-hoc on-demand distance vector routing (MAODV) [16]. In either
case, the application developer needs only to select the proper network commu-
nication component for the sliver and the common send interface (defined by the
adapter) will distribute the necessary data to the group.

Method Description

join(String name) called by the group membership layer on the
network communication layer to enter the callee
into the group with the specified name

depart(String name) called by the group membership layer on the
network communication layer to remove the callee
from the specified group

send(Address a, Message m) called by the group membership layer on the
network communication layer to send the specified
message to a single recipient: the node indicated
by the specified address

sendAll(Group g, Message m) called by the group membership layer on the
network communication layer to send the specified
message to all members of the specified group

receive(Message m) called by the network communication layer on the
group membership layer to deliver the specified
message; implemented within the
CommunicationListener

Fig. 3. The interface between group membership and network communication

The methods comprising the interface between group membership and net-
work communication are shown in Fig. 3. The join and depart methods were
discussed previously; they are used by some group membership protocols that
need to explicitly join and leave groups. At first glance, one might think these
methods ought to be implemented within the group membership layer itself and
not involve the network communication layer, but some join activities require
participation of the communication protocol (e.g., joining a multicast group)
while others do not (e.g., communication that relies on broadcast for every mes-
sage). Because our foremost goal is pushing all knowledge of communication
to the network layer, we require the group membership layer to know only the
name of a group in which it participates, and the protocol delegates knowledge
of how the communication protocol operates to whatever implementation resides
in the network communication layer of a particular sliver. In this manner, the
group membership protocol performs exactly the same behavior regardless of
the nature of the underlying communication protocol.



The remaining three methods allow data to be exchanged among group mem-
bers. The common element in these three methods, Message, includes the group
name, the source, and the data to be transmitted. The functionality required
to send a message to everyone in the group changes with the networking proto-
col, but the interface distances the application developer from low level details.
Overall multicast functionality is provided by the sendAll(group, message)
method; here, group refers to the data structure presented earlier that contains
the group name, group address, and members list. Recall, however, that the group
data structure does not have to contain each of these elements for the commu-
nication protocol to be able to function correctly. For example, AODV does not
support multicast, so the group address provides no useful information. How-
ever, if the elements of the members list are omitted, AODV cannot reach the
other group members since it relies on unicasting the message to each of them.
In this case, the method triggers a NoMulticast exception. On the other hand,
MAODV is a multicast protocol that automatically provides group-wide com-
munication. In this case we expect the group element to contain a group address,
and we trigger an exception if the element is undefined. It is important to note
that we do not alter the communication protocol implementations themselves
and instead implement these behaviors in the adapter interface. As an example,
the code implementing sendAll for an AODV adapter looks like the following:

void sendAll(Group g, Message m) throws NoMulticast, UnreachableHost {
if(g.members == null){

throw new NoMulticast();

return;

}
for(int index = 0, index < g.members.size(); index++){

if(g.members[index].address != null){
AODVSend(g.members[index].address, m);

}
else{

throw new UnreachableHost(g.members[index]);

}
}

}

The above is an example of the simple interfacing code that a sliver developer
must write to be able to include a new communication protocol as a component
in the network communication layer.

If the network communication is implemented by a brute-force broadcast pro-
tocol, the sendAll method will deliver the message to every connected node, even
those that do not support members of this particular group. As the group mem-
bership layer is communication agnostic, so the network communication layer is
group agnostic. When the network communication layer receives a message, it
delivers it to the group membership layer. It is then the group membership pro-
tocol’s responsibility to filter these messages and ensure only proper messages
are delivered to the collaborative service and ultimately the application.



There may also be a need for communication between single members of the
group; this may be used to implement join and depart, but it may also be
useful for sidebar coordination within the group. This unicast style of behavior
is achieved through the send method in Fig. 3. In AODV this method is the
base functionality, so little extra work is necessary. In the case of MAODV and
flooding we rely on the group membership layer at the receiving end to filter all
messages where the target address does not match the host address.

All incoming messages trigger the receive method in the
CommunicationListener interface. This method’s implementation is likely
quite simple in all cases; it is a basic pass-through of information from the
network to the group membership layer. If the message received was not sent by
a member of the group, or if the group identifier in the message does not match
a group id of the receiver, the group membership layer filters the information
rather than passing it to the application layer.

Our prototype contains an implementation for flooding, unicast, and multi-
cast based protocols; a sliver component programmer can easily insert another
protocol by creating an adapter for that protocol. In no cases is it necessary
for the programmer to modify the existing communication protocol implemen-
tation; the adapter simply changes the interface to conform to our framework.
Therefore, this system allows very low-impact changes to the network layer while
providing extreme flexibility and extensibility.

3.4 Programming with Sliverware

Sliverware is an extensible, modular model for enabling collaboration in applica-
tions. The abstractions provide collaborative services that are easy to understand
and use. Referring back to Fig. 2, each sliver provides a discrete collaborative
function and comprises the local implementation of that function, the imple-
mentation of a group membership policy that defines who participates in that
collaboration, and a network communication component that facilitates physical
message exchange. Programming collaborative applications with the sliverware
model is straightforward and simply requires a developer to select, use, and
combine slivers that provide the high-level collaborative functions the applica-
tion demands. This programming may result in a sophisticated application that
encompasses several collaborative functions and may even combine views of in-
formation from multiple different groups. For example, in a classroom support
application, a group may be defined for the entire class so the teacher can share
materials with every student, and there may be additional groups defined for a
team project. A single student’s display may simultaneously show information
from both of these collaborations side by side.

From the programmer’s perspective, each of these behaviors is programmed
independently as a single sliver. When the application is compiled, the sliverware
framework optimizes the resulting implementation by combining functionality
that is duplicated across slivers. Fig. 4 shows this process in a bit of detail. The
left of the figure pictorially represents an application that combines three sepa-
rate slivers: a distributed keyboard shared with all of the members of the class,



Group
Membership

Network
Communication

Collaborative
Services

Distributed 
Keyboard

Distributed 
Keyboard

Distributed 
Keyboard

Distributed 
Mouse

MAODV

Distributed 
Keyboard

Distributed 
Mouse

Class:
Announce

Team:
Three-

Heartbeat

Team:
Three-

Heartbeat

MAODV MAODV MAODV

Team:
Three-

Heartbeat
Class:

Announce

Fig. 4. A visualization of the sliverware simplification; components that are reused are
combined to create a minimal set of functionality that is lightweight yet functional.

a distributed keyboard shared with the team members, and a distributed mouse
shared with the team members. The classroom application may have a dedicated
window for keyboard events shared with the class and a separate window for key-
board and mouse events shared with the team. When a keyboard event occurs,
the collaborative application implementation (not shown) first determines which
window had the focus and then triggers the appropriate collaborative service.

When compiled, the actual middleware deployed in support of the applica-
tion is shown on the right of Fig. 4. The duplicate components (i.e., the MAODV
implementation used and the group membership policy implementation for the
team) have been combined for efficiency. When a message is received at a node,
the MAODV implementation passes it to both group implementations (because
it doesn’t know how to read or process group information). Each group processes
only the messages destined for its members (as indicated by the groupName car-
ried in the message). The team group implementation passes all group messages
to both collaborative services (i.e., both the distributed keyboard and the dis-
tributed mouse), but each of these services only passes along events whose data
portions match the type for that service. In general, duplicated network commu-
nication protocols are always combined. Ultimately, the compiler optimizes the
set of slivers to create a tailored lightweight middleware. This is in contrast to
traditional approaches where an entire middleware system must be deployed and
invariably contains functionality that will not be employed by every application.
Sliverware’s approach leads to a much leaner execution environment which can
translate into increased performance and greater support for heterogeneity.

The flexibility described above illustrates an important property of the sliv-
erware programming model: the ability to create new slivers by adding and ex-
changing components. Overall, sliverware can be programmed by three distinct
classes of developers with increasing levels of programming expertise. First are
the collaborative application developers who access suites of available preconfig-



ured slivers and combine them into applications as described above. Second are
the sliver developers who combine sliverware components from each of the three
layers to create new combinations presented as slivers. Finally, the most expe-
rienced class of programmers, sliverware component programmers can develop
new sliverware components that can be used in sliver combinations. For each
component level, we discussed previously the steps this developer must take to
create a new implementation that adheres to the well-defined sliverware model.

Sliverware allows users of all skill levels to use and extend the sliverware
system by the unique hierarchical structure of the sliverware approach. Multiple
layers of abstraction lead from the low-level implementation to useful high-level
functionality. By providing a complete framework based on multiple layers of
abstraction, sliverware is a flexible, extensible, and reusable model that provides
collaborative services.

4 An Example Sliver: the Distributed Keyboard

Sliverware enables collaborative applications to be developed quickly and re-
moves repetitive, burdensome communication and coordination methods. To aid
understanding of sliverware we present an example application, a chat program in
which a group of users shares keyboard inputs that occur within the application.
The collaboration is achieved using a distributed input device, the distributed
keyboard. The distributed keyboard listener replaces the traditional keyboard
listener and multiplexes all the users’ key-presses from within the application
into a stream similar to the input from a standard keyboard.

Fig. 5(a) demonstrates how the traditional keyboard listener connects in-
dividual users to their machines. Fig. 5(b) shows the simple approach taken
by the distributed keyboard listener; the individual inputs are joined into one
logical distributed input device which is fed to each machine. This approach
allows individuals to remain at their own computer while maintaining a consis-
tent global view. The distributed keyboard appears to function as a standard
client-server implementation, however, instead of routing all packets through a
server, the sliver automatically multicasts users’ input to the group. Bypassing
a central server speeds the implementation, allowing for more immediate inter-
actions. The result is a chat program that immediately broadcasts each group
member’s key-preses and displays the input in a text box which is consistent
across the group.

Fig. 6 shows the application stack underlying the Chat Application im-
plementation. The collaborative application programmer contributes only the
upper-most block of this stack. The programmer uses the ServiceListener
interface and the notify method to plug into the sliver used (in this case, a
distributed keyboard implementation). The distributed keyboard demultiplexes
events from other group members and delivers them to the application. It also
receives the local user’s events, packages them, and sends them to the group
implementation (in this case, an instance of the announce group). Through
the GroupListener interface, the announce group implementation distributes



Fig. 5. The traditional keyboard listener connects a single user to a computer (top).
The distributed keyboard listener connects multiple users while still allowing them to
use their local machine (bottom).

Fig. 6. The application stack for our Chat Application.

incoming events to the registered collaborative service (i.e., the distributed key-
board). The announce group implementation also passes the message from the
local collaborative service on to the communication implementation through the
sendAll method which delivers the key event to all other group members. The
interfaces between the layers in Fig. 6 are generic sliverware interfaces included
in the sliverware framework. Regardless of the type of component employed at
each layer, it is a given that the same interfaces are used. These generic interfaces
enable sliverware components to be exchanged for each other without impacting
other components in the sliver.



Fig. 7 shows a screen shot the sliverware chat application; the implemen-
tation can be found on our group webpage at http://mpc.ece.utexas.edu/
research/sliverware.html.. Each group member appears in the chat window;
as the user types, their key-presses are displayed in real-time on all connected
users’ screens. This particular application chooses to display distributed key
events from different users based on the events’ relative times of arrival. Other
application uses of the distributed keyboard may also use cursor position infor-
mation to allow users to edit a single, shared document.

Fig. 7. The distributed keyboard listener in action.

5 Related Work

Since the rise of CSCW, there has been a great deal of research devoted to en-
abling collaboration; however, current collaborative approaches are largely based
on asynchronous communication such as that provided by the Microsoft Suite’s
Track Changes function [4]. To collaborate on a document, a group member can
turn on Track Changes, then edit the document, save it, and distribute it to the
rest of the group. This edit, save, send cycle leads to an asynchronous commu-
nication that effectively locks the document while someone else edits. Another
common approach, simply emailing an individually edited document to another
team member, also provides only asynchronous collaboration based on informa-
tion exchange. Sliverware provides more synchronous communication that allows
all connected group members to make and share changes concurrently.

Similar to sliverware, many new products offer synchronous editing. For ex-
ample, Writely [18] provides an online collaborative word processor with the use
of AJAX. There are a raft of similar solutions as part of the WebOS revolu-
tion [2] including SynchroEdit [17] and JotSpot Live [10]. While these systems
are a great step forward in real-time cooperation, they have a reliance on an
external server which may not always be accessible or secure. Also, software
functionality can only be provided by the product team; users must trust the
content provider to protect the data and add necessary features in a timely man-
ner. Sliverware can be used to provide similar functionality for applications on



the Internet or the desktop with greater control of the application which allows
for greater security and extensibility.

The aforementioned applications are written with a specific collaborative
goal in mind, so while they may be useful, they are only useful for the tasks they
can already perform. Sliverware is an extensible framework and has broad goals
for enabling collaboration through diverse means. Sliverware shares goals with
existing CSCW frameworks such as DISCIPLE and BSCW which allow users
to simultaneously change documents. DISCIPLE [14] is a framework for shar-
ing JavaBeans applications in real-time through the use of CORBA to replicate
objects. BSCW provides information sharing across the world wide web with a
web server that is extended using CGI scripts. DISCIPLE and BSCW provide
limited usability due to the reliance on web programs; while the ideas may be ex-
tended to existing applications, the frameworks themselves cannot. Sliverware’s
collaborative abstractions work in desktop publishing applications as well as web
applications. Sliverware focuses on a broader abstraction to enable collaboration
on a larger scale.

While all the related work in collaboration is useful, the offerings do not
explicitly define a simple framework for adding synchronous collaboration to
existing systems across domains. Sliverware enables collaboration in a manner
that is comprehensible and easily extended. Collaborative application developers
have complete control of their product without spending valuable time on low
level programming.

6 Conclusions and Future Work

Sliverware is designed to enable collaboration in applications through an extensi-
ble, lightweight framework that is easy to understand and easy to use. Sliverware
provides the same benefits as traditional middleware, but unlike traditional mid-
dleware which provides a horizontal layer that pre-invents the wheel, sliverware
focuses on thin vertical pieces of the complete application stack—network com-
munication, group membership, and a collaborative service. Additionally, while
traditional middleware provides a great deal of functionality regardless of the ap-
plications’ needs, sliverware provides more focused pieces of functionality that
can be optimized to ensure that the system remains as lightweight as possible.

Sliverware’s extensible framework enables programmers at all levels to con-
tribute to and use the system. Sliverware provides a framework to quickly enable
collaboration in programs by furnishing a set of lightweight middleware modules;
application-developers can build a system by assembling sliverware and writing
minimal amounts of code to utilize the collaborative service through the API—
the developer is not bogged down with low-level details and can instead focus
on high-level programming.



Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the NSF, Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References

1. G. Abowd, C. Atkeson, A. Feinstein, C. Hmelo, R. Kooper, S. Long, N. Sawhney,
and M. Tani. Teaching and learning as multimedia authoring: The classroom 2000
project. In ACM Multimedia, pages 187–198, 1996.

2. S. Adler. WebOS: Say goodbye to desktop applications. netWorker, 9(4):18–26,
2005.

3. Aim. http://www.aim.com/, 2006.
4. B. Barrios. Tutorial microsoft office word 2003: Collaboration. http://getit.

rutgers.edu/tutorials/word_collaboration/media/collaborative.pdf, 2002.
5. K. Beck and C. Andres. Extreme Programming Explained : Embrace Change (2nd

Edition). Addison-Wesley Professional, 2004.
6. R. Bentley, T. Horstmann, J. Trevor, and K. Sikkel. Supporting collaborative in-

formation sharing with the world wide web: The BSCW shared workspace system.
4th International World Wide Web Conference, pages 63–74, 1995.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley Professional Computing Se-
ries). Addison-Wesley Professional, 1995.

8. J. Grudin. Groupware and social dynamics: Eight challenges for developers. Com-
munications of the ACM, 37(1):92–105, 1994.

9. Q. Huang, C. Julien, and G.-C. Roman. Relying on safe distance to achieve strong
partitionable group membership in ad hoc networks. IEEE Transactions on Mobile
Compututing, 3(2):192–205, 2004.

10. Jotspot live. http://www.jotlive.com/, 2006.
11. J. Kuri and S. K. Kasera. Reliable multicast in multi-access wireless LANs. Wire-

less Networks, 7(4):359–369, July 2001.
12. J. Lin and S. Paul. RMTP: A reliable multicast transport protocol. In INFOCOM,

pages 1414–1424, 1996.
13. T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM

Compututing Survey, 26(1):87–119, 1994.
14. I. Marsic. DISCIPLE: A framework for multimodal collaboration in heterogeneous

environments. ACM Computing Survey, 31(2es):4, 1999.
15. C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In

WMCSA ’99: Proceedings of the Second IEEE Workshop on Mobile Computer
Systems and Applications, page 90, Washington, DC, USA, 1999. IEEE Computer
Society.

16. E. M. Royer and C. E. Perkins. Multicast operation of the ad-hoc on-demand
distance vector routing protocol. In MobiCom ’99: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pages
207–218, New York, NY, USA, 1999. ACM Press.

17. Synchroedit. http://www.synchroedit.com/, 2006.
18. Writely. http://www.writely.com/, 2006.


