
Swarm: Playground for Large-scale
Decentralized Learning Simulations

Sangsu Lee∗, Haoxiang Yu∗, Xi Zheng†, and Christine Julien∗
∗Department of Electrical and Computer Engineering, University of Texas at Austin

{sethlee, hxyu, c.julien}@utexas.edu
†Department of Computing, Macquarie University, james.zheng@mq.edu.au

Abstract—Decentralized learning is an emerging field of re-
search that opens doors for many novel pervasive computing
applications. In decentralized learning, model training is of-
floaded to devices in the edge, and in some approaches, functions
entirely without a central controller. SWARM is a tool for
fast and large-scale simulations to test the performance of the
practical implementations of decentralized learning algorithms
that underlie many pervasive computing applications. In SWARM,
developers can easily launch simulations for their algorithms by
simply writing code that defines the behavior of a device when
collaborating with others. The developer delegates to SWARM the
emulation of the devices’ encounters, given a pervasive computing
scenario. By decoupling the encounter emulation and the learning
algorithm execution, SWARM makes the configuration of diverse
application scenarios easy and their simulations repeatable.
Moreover, developers can evaluate the scalability of an algorithm
in diverse and large-scale application contexts as SWARM can
automatically deploy and manage multiple worker nodes. Finally,
the SWARM Dashboard provides a visualization of the simulation
progress and the algorithm performance.

Index Terms—mobile computing, distributed machine learning,
computer simulation

I. INTRODUCTION

Recent advances in processing power of mobile devices
enables machine learning tasks to be offloaded from central
servers to mobile devices. This is becoming an increasingly fa-
vorable choice for pervasive computing applications as smart-
phones, sensors, and IoT devices collect massive amount of
data. Rather than sending raw data to a centralized aggregator,
the data can be processed on-device to save communication
bandwidth. This can also be motivated by privacy-preserving
machine learning, where private data is used to train a model
locally, without directly sharing the data to a third party.

There has been significant recent attention to decentralized
learning. Federated learning (FL) [4] is a technique that
trains a model over decentralized data that resides in mobile
devices. While this still requires a central server, approaches
such as gossip learning [5], and fully decentralized federated
learning [1] do not require central control. Opportunistic col-
laborative learning (OppCL) [3] performs egocentric learning
to train a personalized model by selectively incorporating
decentralized data encountered on neighboring devices.

Most of the existing efforts related to decentralized learning
are theoretical, and the implementations associated with each
approach are written in ways that are specific to a given
approach. However, algorithm and application developers alike

desire to test and compare decentralized learning approaches
quickly, efficiently, and in a real world context, without the
complexities of implementing and deploying their solutions
on real-world devices. On the other hand, demands for large-
scale simulations require resources beyond those provided
by a single machine. This is especially true since training
machine learning models is computationally intensive, and
decentralized learning simulations could involve thousands
of devices that cannot fit in memory on a single machine.
Tensorflow Federated1 is a framework for testing a federated
learning algorithms. However, it does not support multi-
machine simulation nor fully decentralized algorithms.

This paper presents SWARM, a tool for large-scale testing
of decentralized deep learning algorithms. For algorithm de-
velopers, using SWARM is more favorable than implementing
experiments from scratch for the following reasons:

• Developers can easily deploy repeatable simulations with-
out dealing with complications associated with config-
uring the simulations. They can manage and monitor
multiple simulations at once with SWARM.

• Developers can evaluate algorithms at a larger scale in
a shorter time as SWARM scales the training task and
handles the deployment and management of worker nodes
by itself on behalf of the developer.

• SWARM is suitable for learning scenarios that involve
complex encounter and collaboration patterns by relying
on a configuration-time encounter trace to govern the
interactions among simulated SWARM nodes.

• Developers can use SWARM to emulate devices by assign-
ing the training task for each device to an isolated docker
container that can be configured to emulate a variety of
heterogeneous resource-constraints.

In short, SWARM is a highly configurable and removes the
burden of evaluating complex decentralized learning options.
It deals with deployment, provisioning, and management of
multiple worker nodes and distributes workloads to them
where stateless servers are running, which allows developers
to easily and efficiently test algorithms in a larger scale.

II. OVERVIEW OF SWARM

Configuring Simulations. Fig. 1 depicts a workflow be-
tween SWARM and an algorithm developer and how the

1 https://www.tensorflow.org/federated



Simulated Device Swarm Developer

Swarm
CLI Setup Swarm &

 Start Simulation

Launch 
worker nodes

Collaborate 
with other 
simulated 

devices
Swarm
Dash-
board

Provide simulation status & 
algorithm performance

Learning 
Algorithm

Encounter
Sequence

Simulation
Configurations

Fig. 1: Developers can deploy SWARM simulations via the CLI
and monitor its status and performance on the Dashboard.

SWARM controller and simulated devices on worker nodes
interact with each other. First, SWARM expects developers to
represent a decentralized learning scenario with three com-
ponents to configure a simulation; (i) the learning algorithm,
(ii) an encounter sequence, and (iii) simulation configurations.

The learning algorithm shared with SWARM defines a sim-
ulated device’s behavior when it is within collaboration range
of other devices. This includes (i) the logic that determines
whether the devices collaborate on a learning task and (ii) the
specific actions that each partner in the collaboration takes.
For instance, in a classic decentralized FL algorithm, two
devices that encounter one another may simply exchange their
model gradients, to be averaged into the locally constructed
model. In OppCL, one of the devices shares its personalized
model gradients, and the other performs a round of training
to generate an update for those gradients based on the private
local data. Algorithm developers construct a Python class that
extends a base Device class and implements the individual
device behavior. This functionality is then packaged as a
docker container and given to SWARM.

In decentralized learning, devices encounter one another
opportunistically, collaborate on a learning task, then move
apart. The performance of a decentralized learning algorithm
depends heavily on the order in which devices encounter one
another. For a device moving in a physical world, this order
is determined by its mobility trace. In SWARM, the order is
decoupled from the simulation of the learning task. Rather, it
is fed to SWARM as an encounter sequence – a time-stamped
sequence of device pairs that captures which devices meet
which other devices and for how long they are connected.
Every encounter is labeled with an encounter index, which is
a monotonically increasing integer from 0 that allows worker
nodes to track the progress of the simulation.

The additional simulation parameters include (i) training
settings, (ii) environment settings, and (iii) simulation settings.
Training settings refer to the configurations and hyperparam-
eters related to model training and learning algorithm, e.g.,
model, dataset, optimizer, and hyperparameters associated with
them. These parameters are used to seed the python implemen-
tations of the learning algorithms that are encapsulated in the
docker containers. Developers can also set parameters that are
related to the computational or communication capabilities of

gRPC
HTTP

Database

AWS DynamoDB

Swarm CLI

Python

Swarm Dashboard

Webapp

[Component Name]

[Implemented in/with]

Swarm State API

Flask/AWS EC2

Load Balancer

K8s Service

Simulated Devices

K8s Pods & Nodes

Swarm Controller

AWS EKS

Swarm Simulator

Object Storage

AWS S3

Training Tasks

Device States

Fig. 2: SWARM system design

devices. For instance, the latency of collaboration between de-
vices can be set. Third, examples of simulation settings include
a random seed for reproducing the simulation or the number of
worker nodes. These configurations are stored in json format
and can be used to reproduce previous experiments.

Running Simulations. Fig. 2 shows the system design of
SWARM. When a simulation is configured, the developer enters
a command on the SWARM CLI to start it. SWARM CLI asks
the SWARM controller to automatically start worker nodes.
The current implementation of SWARM relies on AWS Elastic
Kubernetes Service (EKS)2 and Kubernetes (K8s)3 to deploy
and manage worker nodes. A group of worker nodes assigned
to a simulation is deployed as a K8s ReplicaSet; K8s ensures
that a fixed number of Pods are running at any time. Each pod
has one docker container that runs a stateless server. Deploying
multiple pods yields faster running time for a simulation and
enables developers to deploy large-scale experiments.

Next, training tasks for the simulation are distributed to
the Pods through K8s load balancer, in a form of remote
procedure call implemented with gRPC. A training task is a
sequence of collaborations between two devices. While any
pod can simulate any training task, it is generally advantageous
to associate a pod with a simulated device.

SWARM maintains an AWS DynamoDB as a central ag-
gregator for all simulated devices’ training progress. SWARM
tracks training progress using the encounter index and stores
the history of model accuracy corresponding to previous
encounter indices. Moreover, the database keeps unique identi-
fiers of all training data items allocated as a device’s local data
and all other mutable parameters associated with the learning
algorithm. Because the state of a device changes over time, a
worker node fetches the current state of the simulated devices
by querying the database. In particular, they can fetch the state
of a simulated device at a specific point of the simulation by
looking at the encounter index. For example, when a worker
node is simulating an encounter between device 0 and 1 with
encounter index 10, it first checks whether all the encounters

2 https://aws.amazon.com/eks/ 3 https://kubernetes.io/

2



Fig. 3: SWARM Dashboard

prior to encounter index have been processed for devices 0
and 1. If not, the simulation on the worker node is blocked
until it is, and when it is, worker node gets the device states
for these two devices at encounter index 10 from the database
and proceeds with the simulation.

An object storage (AWS S3) is used to store large objects
such as model parameters and datasets. In simulations, model
parameters change frequently. Therefore, a simulated device
caches others’ models in local storage and only downloads
models from the object storage if there has been any update,
which can be checked by querying the database whenever the
device needs to run a training task.

SWARM Dashboard. The states of the simulated devices are
made available via the Swarm State API, which is hosted by a
web server. SWARM Dashboard is a web application that uses
the Swarm State API to display the progress of the simulation
in real time. Fig. 3 shows screenshot of the web application.
Developers can check the progress of any running simulations
on the dashboard. The table in the middle shows the progress
of simulated devices and which pod the training task of the
device is allocated to. In the screenshot, the first row of the
table shows that training tasks associated with the simulated
device 0 are currently running. Also, we can see that the last
encounter index processed was 1040, and the pod name in K8s
which has simulated the device. The dashboard also visualizes
the performance of the model (top right), and displays the
configuration of the simulation (bottom right).

III. CASE STUDY: OPPCL
In this section, we discuss a case study of SWARM running a

simulation for OppCL algorithms [3]. First, a developer down-
loads a docker image from docker hub, launches the image,
and writes a new Device class overriding the method that is
called when a neighbor device is encountered. In particular, in
OppCL, the developer writes the code that determines whether
asking a neighbor device to perform a round of training on its
local data would be useful. The developer also implements the
training round performed on the neighbor’s local data using the
device’s personalized model and the merging of the updated
gradients back into the personalized model. Once complete,
the developer repackages the resulting code in a new docker
image and pushes it to the docker hub. The URL to the docker
image is later specified in SWARM configurations.

Next, the developer creates a csv file specifying the en-
counter sequences. The source of the encounter sequences is

1 {
2 "dataset": "mnist",
3 "tag": "hyccups",
4 "swarm_config": { "number_of_devices": 10 },
5 "device_config": {
6 "encounter_config": { "computation_time":

0.24 },
7 "train_config": { "optimizer": "adam" },
8 },
9 }

Listing 1: Example configuration for OppCL simulation

up to the developer, for example, it could be created manually,
sampled from random a random walk, or generated from an
existing contact dataset. Each line in the encounter sequence
file contains (1) an encounter index; (2) the device ids of the
two devices; and (3) the duration of the encounter.

Finally, the developer sets the remaining parameters for the
SWARM configuration. Listing 1 shows an abbreviated exam-
ple for a simulation that trains using the MNIST [2] dataset
on 10 devices, tagged as “hyccups”. The developer sets the
computation time for a single round of OppCL, which affects
the execution of the learning algorithm in the simulation.
Finally, the developer starts the simulation using the SWARM
CLI and monitors its progress using the Dashboard.

IV. DEMONSTRATION AND TECHNICAL REQUIREMENTS

SWARM is a cloud-based service, and we will demonstrate
creation and deployment of simulations on SWARM CLI using
a laptop. Visitors may view the SWARM Dashboard page via
their own devices, including laptops and mobile devices with
an Internet connection. We will also have some introductory
tutorials that visitors can explore to create their own simu-
lations based on some templates. They will also be able to
navigate the webpage to check the status of simulations. We
will provide our own laptops for the demonstration and require
only access to power and Internet.

V. FUTURE WORK

We plan to release SWARM as an open source programming
environment that will be made available in advance of the
conference (with a link to the artifact within the camera ready
paper). Future planned enhancements to the tool include the
ability to use SWARM as a library, rather than having to
package algorithms manually to a docker container. Finally,
SWARM can be extended to emulate resource-constrained
devices by running docker containers with limited commu-
nication bandwidth and computational capabilities.

REFERENCES

[1] A. Lalitha et al. Fully decentralized federated learning. In 3rd Workshop
on Bayesian Deep Learning (NeurIPS), 2018.

[2] Y. LeCun et al. Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11):2278–2324, 1998.

[3] S. Lee et al. Opportunistic federated learning: An exploration of
egocentric collaboration for pervasive computing applications. In Proc.
of PerCom, pages 1–8, 2021.

[4] B. McMahan et al. Communication-efficient learning of deep networks
from decentralized data. In Proc. of AISTATS, 2017.

[5] R. Ormándi et al. Gossip learning with linear models on fully dis-
tributed data. Concurrency and Computation: Practice and Experience,
25(4):556–571, 2013.

3


