Fidelity-Based Continuous Query Introspection and Adaptation

Christine Julien!, Vasanth RajamaniQ, Jamie Payt0n3, and Gruia-Catalin Roman

4

!The University of Texas at Austin, c.julien@mail.utexas.edu
2Oracle Corporation, vasanth.rajamani @oracle.com
3The University of North Carolina at Charlotte, payton@uncc.edu
4Washington University in Saint Louis, roman@wustl.edu

Abstract—In this paper, we address the fidelity of informa-
tion collected from distributed, interactive, pervasive comput-
ing environments. Queries in these dynamic networks come in
two forms: snapshot queries and continuous queries. The former
executes through the network and returns values that satisfy
the query criteria at a particular instant in time. The latter
expects a result that is updated over time to reflect changes
in the system. The fidelity, or quality, of the results of these
queries can be significantly impacted by the unpredictability
of the dynamic network; as the query is distributed and
executed, changes that occur due to network and environmental
dynamics can cause the query to miss potential results or
to report inconsistent information. Our previous work has
shown how we can provide semantically meaningful statements
about the fidelity, or quality, of the result of a snapshot
query in a dynamic networked environment. In this paper,
we demonstrate how this fidelity can also be used to adapt a
continuous query’s processing to make its execution best match
the conditions in the underlying dynamic environment.

I. INTRODUCTION

Understanding the fidelity of information in dynamic
pervasive computing environments is an essential but largely
unexplored component in developing well-behaved appli-
cations. Emerging pervasive computing applications are
characterized by distributed networks of sensing devices
embedded into the physical environment. Mobile entities,
including humans and vehicles, are also an integral part of
these heterogeneous systems. To function in these spaces,
applications must be context-aware, where context defines
perceived situational awareness that stems from information
about the surrounding environment. Understanding the fi-
delity, or quality, of information collected about the environ-
ment enhances decision processes and generates more well-
informed, robust, and reliable applications that can more
expressively and reliably adapt their behavior (and thus their
performance) in response to a changing environment.

Building such applications is difficult since the system is
dynamic and processing is expensive. Applications’ queries
propagate through the network, generating results that may
or may not be correct, complete, or consistent, due to the
network and environmental changes during query process-
ing. We consider two forms of queries: snapshot queries
and continuous queries. The former executes through the

network and returns values that satisfy the query criteria
at a particular instant in time. For example, in supporting
a decision process on an automobile, an application may
query for nearby gas stations. A continuous query provides
a result that is updated over time to reflect changes in
the network of embedded nearby devices. For example,
an automobile’s application may continuously collect the
locations and velocities of nearby vehicles to monitor safety
conditions. Information about the fidelity of a continuous
query’s evaluation within the pervasive computing interac-
tion space can be used to assess tradeoffs between quality
and cost of execution, and to adapt the query’s execution.

We aim to develop a theory of the fidelity of queries
in a pervasive computing network to enhance the decision
processes of applications in these dynamic environments.
Our original work developed a grounding theory of snapshot
query fidelity in these environments [13], [14], which we
review in Section III. We have shown that defining a contin-
uous query as a sequence of snapshot queries can reduce the
cost of monitoring in dynamic environments [17]; Section II
details our model of the environment and both snapshot and
continuous queries. The contribution of this paper, reported
in Section IV explores how we can use reasoning about the
fidelity of the component snapshot queries of a continuous
query to adapt a continuous query’s processing to best reflect
both the environment and the application’s requirements and
expectations.

II. MODELING THE ENVIRONMENT AND QUERIES

Understanding the execution environment is fundamental
to modeling their fidelity. We model a dynamic pervasive
computing environment as a closed system of hosts in which
each host has a location and data value (though a single
data value may represent a collection of values) [13], [14].
A host is represented as a tuple (¢, (,), where ¢ is a unique
identifier, ¢ is the context (e.g., host location or network
information), and v is the host’s data value.

The global abstract state of such a network, a configura-
tion (C), is simply a set of host tuples. To capture network
connectivity, we define a binary logical connectivity relation,
IC, to express the ability of one host to communicate with
another. Using the values of a host triple, we can derive

O 0O 00O O O
N

query query

initiation active configurations termination

bound bound
Figure 1. Query bounds and active configurations

physical and logical connectivity relations. For example,
if the host’s context, (, includes the host’s location, we
can define a connectivity relation based on communication
range. C is not necessarily a symmetric relation; if it is
symmetric, /C specifies bi-directional communication links.
We model network evolution as a state transition sys-
tem where the state space contains possible configurations,
and transitions are configuration changes. A configuration
change consists of: 1) a neighbor change; 2) a value change;
or 3) a message exchange. To refer to the connectivity of a
given configuration, we give configurations subscripts (e.g.,
Cy, C1, etc.); K; is the connectivity for configuration i.
Consider the configurations shown in Figure 1. A single
snapshot query may span such a sequence starting with
the configuration in which the query is issued (the guery
initiation bound, Cy) and ending when the result is delivered
(the query termination bound, C,). Since there is processing
delay associated with issuing a query to and returning results
from the network, a snapshot query’s active configurations
are those within (Cy, Cy,...,C,) during which the query
actually interacted with the network. Every component of a
query’s result must be a part of some active configuration.
A snapshot query can be viewed as a function from a
sequence of active configurations to a set of host tuples
that comprise the result. Since a configuration is simply
a set of host tuples, this model lends itself directly to a
straightforward representation of a query’s result (p). In fact,
the result is itself a configuration and directly correlates the
result with the environment in which the query was executed,
simplifying the expression of the fidelity of query results.
The ground truth of a continuous query is equivalent to
a complete picture of the configurations (Cy,...,C;) over
which the query is active. Since accurate evaluation of such
a query is feasible only in relatively static networks, we
approximate the results of a continuous query by modeling
it as a sequence of non-overlapping snapshot queries, the
results of which are pg . .. p;. There is not necessarily a one-
to-one correspondence between Cy ... C; and pg . . . p; since
a single snapshot query may itself execute over multiple
configurations (see Figure 1). A continuous query’s inquiry
strategy includes the protocol used to implement the snap-
shot queries and the pattern of snapshot query invocations
(e.g., frequency). The result of a continuous query usually
requires integration over the sequence of snapshot query
results. The result of a continuous query at stage 7 (i.e.,
including the results of the "* component snapshot query)

is T = f(po...p:), where f is an integration function.

Integration defines how a sequence of results together
provide a result for the continuous query. An application
may be concerned about the quality with which the results
reflect the sensed phenomenon; given feedback on this qual-
ity, the application can adapt to network and environmental
dynamics by changing its inquiry strategy to provide better
results. Inquiry strategies that achieve a high fidelity often
do so at a high cost; applications may desire to weaken the
inquiry strategy to reduce the overhead of query processing.
We define an introspection strategy as a function over the
sequence of results from the continuous query that monitors
some aspect of the quality of the continuous query. An
introspection strategy can trigger an adaptation strategy that
governs changing the continuous query’s inquiry strategy. In
this paper, we investigate how a concrete measure of the
fidelity of the component snapshot queries can be used as
an introspection strategy for a continuous query.

III. FIDELITY OF SNAPSHOT QUERIES: A REVIEW

In this section, we overview the fidelity of snapshot
queries [13], [14], which lays the foundation for our use of
this fidelity as an introspection metric for continuous queries.

To express fidelity snapshot query fidelity, we formalize
the relationship between the state of the network and a
query’s result. We assign qualitative metrics (i.e., labels)
to results; two of these fidelities (ATOMIC and WEAK)
match the extremes currently available in mobile computing
protocols. The others show how a query’s fidelity can be
partially, but not completely, weakened to express the quality
of a query given the dynamics of the execution environment.

Using existing query processing protocols applications
can insist on very strong semantic guarantees; if a strong
semantic is not possible, the protocol aborts. In our model, a
query with a strong fidelity should return only results from
the same configuration. The ATOMIC fidelity requires that
the query was performed on a single configuration (A;(h))
and returned a snapshot of exactly that configuration:

atomic= 3 : 0<i<mAp= A;(h)

Setting p equal to the configuration signifies not that the
application uses all of the results but that they are all
available, which is this fidelity’s strength.

Network dynamics make it not possible to capture a
perfect snapshot. The ATOMIC SUBSET fidelity captures
cases when all of a query’s results come from the same
configuration, but the query cannot guarantee that the query
returned the entire configuration:

atomic subset = 3i: 0 <i <mAp C A;(h)

Here, p is a proper subset of some active configuration.

A slightly more complex semantic provides the query
issuer with a sense of what fraction of the results the query
possibly missed. If the returned result represents a large

sample of the possible results, the query issuer may have
more confidence in subsequent usage of the result. We refer
to this as QUALIFIED SUBSET because the result is qualified
with respect to the potential result. The formalization of
the QUALIFIED SUBSET fidelity specializes ATOMIC SUBSET
and requires that at least v percent of the results that were
available in all of the active configurations are returned.

Some existing protocols provide weak semantics with no
guarantees. For this weak fidelity, the only assurance is that
each result existed in at least one active configuration.

A slightly stronger version of WEAK fidelity is WEAK
QUALIFIED. The results collected may come from across all
active configurations (i.e., they may not have existed at the
same time), but the query issuer is guaranteed to receive at
least some specified fraction of the possible results:

weak qualified =

pC U A; A |hosts_in(p)| > « |hosts_m(U Ay
1=0 =0
hosts_in is a function that counts the number of unique hosts
in a set that may contain multiple results from each host.

IV. SNAPSHOT QUERY FIDELITY AS INTROSPECTION

Query introspection is the process of determining if a con-
tinuous query’s inquiry mode is suitable, given the current
network and environmental conditions. This decision is often
related to the tradeoff between the desired properties of the
result and the cost of query execution.

A. Defining Fidelity-Based Introspection

To support introspection, we apply adequacy metrics to
query results [16]. An adequacy metric, d, measures the
logical distance between a desired property of a continuous
query and properties of the query result. For each adequacy
metric, the application can define an associated threshold (9).
This simple construction supports arbitrary adequacy metrics
that can enrich decision-making processes. In this section,
we create such an adequacy metric based on the snapshot
query fidelity defined in the previous section.

Our snapshot query fidelities fit into two classes atomic
(or comparable) and non-atomic (or non-comparable). In
the first class, the stronger semantics, all of the elements
returned as part of the snapshot query are guaranteed to have
existed at the same time, i.e., in the same configuration. In
the weaker class, all of the results of the snapshot query
are guaranteed to have existed at some time during the
query execution, but nothing can be said about the temporal
relationships between individual items in the result.

Intuitively and empirically, inquiry strategies that can
achieve comparable fidelity semantics incur greater over-
head. The query protocols that provide this semantic require
increased interaction among the participants; exchanging
more messages incurs more resources. A continuous query
can also be labeled with a fidelity semantic. An intuitive way

to do this is to use the fidelities of the component snapshots,
e.g., an application can define the fidelity of a continuous
query to be the “minimum” fidelity over a recent window
of snapshot queries. This is a conservative definition; any
non-atomic snapshot query within the window makes the
continuous query non-atomic. This conservative definition
is based on the nature of integration; if one non-atomic
snapshot will be integrated with atomic ones, the resulting
continuous query is effectively non-atomic. In this situa-
tion, either the inquiry strategy should be “strengthened”
to generate more atomic snapshots that are integratable or
“weakened” to reduce overhead. These decisions depend on
application requirements; applications may need to specify
tolerance for non-atomic results and for acceptable inquiry
strategies (e.g., the frequency with which the continuous
query must be updated, regardless of fidelity). We use these
insights to define introspection based on the fidelity of
snapshot queries and an adaptation strategy that uses this
introspection to adapt a continuous query’s behavior.

S; is the fidelity of the continuous query’s i
snapshot, and A is the set of atomic fidelities (e.g.,
A = {atomic, atomic subset qualified subset}). We define
dfideity(w) based on the fidelity of the past w snapshots:

(sump: (k—w)<p<kAS,e A1)l
w

th

dﬁdelity (’LU) =

where k is the current snapshot. The value of dfigeiity (w) is

the percentage of the w previous snapshot query results that
had an atomic fidelity semantic. If the value of dfgeriry (w) is
one, then the integrated continuous query over the previous
w windows has an atomic semantic. An application can
associate a threshold with dgqesisy (w); if the percentage of
atomic snapshot queries in a window of size w falls below
the threshold, the continuous query’s inquiry strategy should
be adapted, either to increase the quality of the continuous
query or to reduce its overhead.

B. Defining Fidelity-Based Adaptation

Applications use introspection to assess the continuous
query’s quality. If the result does not meet the application’s
requirements, adaptation strategies can change the query. In
fidelity-based introspection, the application adapts its inquiry
strategy to achieve higher fidelity results or less overhead.
The following is a generic and simple structure for defining
adapation strategies: ((Z, freq),d, 5t/ =, (T*, freq*)), where
(Z, freq) is an inquiry strategy, d is the introspection strategy,
§ is the introspection threshold, and (Z*,freq”) is a new
inquiry strategy. Z is the protocol used to process the
snapshot query, while freq is the frequency of the snapshot

'In the three-part notation: {op quantified_variables : range :: expres-
sion), the variables from quantified_variables take on all possible values
permitted by range. Each instantiation of the variables is substituted in
expression, producing a multiset of values to which op is applied. If no
instantiation of the variables satisfies range, the value of the three-part
expression is the identity element for op, e.g., true if op is V.

queries. If the superscript of J is +, adaptation is triggered if
the value of d exceeds §; if the superscript is —, adaptation
is triggered if the value of d falls below 6.

Adaptation strategies are highly application dependent.
In using our fidelity-based introspection, some applications
may only be able to function if the continuous query
is atomic. Best effort applications may desire to focus
exclusively on saving overhead. We define a sample set
of adaptation strategies that straddles these tradeoffs. For
simplicity, we look only at adapting the snapshot query
frequency (i.e., Z will not change), though one could also
adapt the query protocol itself. Consider an application
that desires to achieve atomic fidelity if possible but is
not willing to incur more overhead than is associated with
issuing the snapshot queries every 100ms. If the application
cannot achieve atomic fidelity, even with a sampling rate of
100ms, it desires to reduce the sampling rate to 1s to reduce
overhead. The following two adaptation rules achieve this
tradeoff (Z designates the single available query processing
protocol and w is an application-provided window size):

<<I7 > 100m8>> dﬁdelity (’UJ), 1_5 <Iv freq - 100m3>>
((Z, <= 100ms), dfideiity (W), 17, ((Z, 1s))

These rules emphasize fidelity-based introspection; differ-
ent applications will need different functions, and applica-
tions’ actual adaptations are likely to be complex. There are
two limitations of the above rules. First, using a threshold
of 1 communicates that the window must be entirely atomic
or adaptation will be triggered. Given the pervasive comput-
ing environment dynamics, there will likely be intermittent
non-atomic queries, even when the environment is largely
amenable to atomicity. Therefore, applications that can tol-
erate a small degradation in fidelity can set J to be less than
one, e.g., for a window size of 10, setting ¢ to 0.8 allows two
snapshot queries in a window to be non-atomic, but three
non-atomic snapshots triggers adaptation.

The second limitation is that it will constantly attempt
to achieve atomic snapshots, even in environments that are
never amenable to them. If the adaptation process reaches a
query frequency of 100ms without satisfying the threshold
for atomicity, the query frequency adapts back to 1s, which
will begin triggering the first adaptation strategy again. Au-
tomatically detecting these cyclical dependencies in reactive
rules like our adaptation strategy is a research challenge in
itself [15]. A straightforward fix would add some hysteresis,
effectively disabling the first adaptation rule until some
number of snapshots after the second rule has been executed
(e.g., based on a multiplier of w); in fact, in general, it is
useful to place an intentional delay between adaptation steps
to minimize oscillations in competing adaptation rules.

C. Demonstrating the Utility of Fidelity-Based Introspection

In this section, we briefly benchmark the use of fidelity-
based introspection. An introspection is useful it if maps

qualities of the environment that are important to the
application to a tangible metric the application can use
for adaptation. That is, the fidelity metric should capture
dynamic aspects of the operating environment that have the
potential to impact application performance.

We used OMNeT++ [18], its mobility framework [10],
and an implementation of a two phase protocol for snapshot
queries that assesses its achieved fidelity [14]. The results
below are executed on varying numbers of nodes at varying
speeds within a 1000x900m? area. In each result, we specify
a maximum speed; node speeds are chosen uniformly ran-
domly between Om/s and the specified maximum. The nodes
move according to random waypoint mobility [4], in which
each node is initially placed randomly, chooses a random
destination, and moves in the direction of the destination at
its assigned speed. We used the 802.11 MAC protocol; when
possible we show 95% confidence intervals.

Figure 2 characterizes how a continuous query’s inquiry
strategy is related to fidelity-based introspection. Figure 2(a)
shows the percentage of atomic windows for varying query
frequencies, i.e., the y-axis plots dpgerity(w) for w =
{2,4,6,8,10}. Figure 2(b) shows the average overhead of
query processing. It is immediately obvious that using a
higher query frequency achieves much higher fidelity but
at a significantly increased cost. This is exactly the tradeoff
our adaptation strategies identified in the previous section.
In addition, even for very high continuous query frequencies
that are quite costly, our very strong two phase query
processing protocol cannot achieve perfect atomicity in this
dynamic environment. This motivates an adaptation strategy
that does not require a perfect result but can tolerate a weak
integration for the continuous query every once in a while.

Figure 3 explores a single aspect of the dynamic en-
vironment, namely the node speed. As expected, fidelity-
based introspection does provide a reflection of the degree of
dynamics in the environment. Specifically, it is more difficult
for our continuous query to provide an atomic measure of
the environment as that environment grows more dynamic.
We use this result next to demonstrate how using fidelity-
based adaptation dynamically adjusts the continuous query.

D. A Continuous Query Fidelity-Based Adaptation

We now show how fidelity-based introspection can be
used to adapt a continuous query to provide higher quality
results or reduce the overhead. Consider an application
on a car executing a continuous query to monitor other
nearby cars to maintain safety conditions. Initially, the car
is stationary. As the trip progresses (e.g., the car navigates
the parking lot, then a side street, then a busy street), the
car gradually picks up speed, triggering query adaptation.
We execute a continuous query that simply collects the
locations of nearby cars for 115 seconds (we chose the short
time scale simply to demonstrate adaptation). The maximum

=#=Window Size = 2
—#-Window Size = 8

—A—Window Size = 4 Window Size = 6

~Window Size = 10

Percentage Windows Atomic

Query Frequency (seconds)

(a) Percentage of atomic windows for varying query frequen-
cies

]
o\
\

2000
1500 \
1000

500 '\““‘*—o—o—ﬁ’w

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1

Overhead (thousands of bytes)

Query Frequency (seconds)

(b) Overhead of protocol execution (in bytes)

Figure 2. Impact of query frequency on fidelity (max node speed = 15
m/s, query ttl = 3 hops, number of hosts = 50)
=4—Window Size = 2 =A—=Window Size = 4 Window Size =6
~#-Window Size = 8 ~==Window Size = 10
1
§ 095
3
H
_g 0.9
£
H
g}n 0.85
8
c
§ 08
&
0.75
o 5 15 25 30
Speed (m/s)
Figure 3. Impact of node speed on fidelity-based introspection (query

frequency = 100ms, query ttl = 3 hops, number of hosts = 50)

speed of the nodes increases to Sm/s after 20 seconds; to
10m/s after 60 seconds, and to 15m/s after 100 seconds.
We use our definition of dfgeliry (w) with w = 5 and our
two adaptation rules from Section IV-B, with the threshold
0 set to 0.8. Figure 4 shows the adaptation of the query’s
frequency over time and the percentage of windows that are
atomic over time. For brevity, we omit a plot of the query’s
overhead; it exhibits the behavior expected given Figure 2.
As Figure 4 shows, the continuous query rapidly adapts its
query frequency to the changing conditions, which enables
the continuous query to maintain a high level of fidelity.
Our initial set of adaptation rules adjust the query fre-
quency to compensate for decreased atomicity. A more

=®=Query Frequency (seconds) =Percentage Windows Atomic
1 44

os \ A ~A\ _[T—
SR | Y A\ ZAA V|

08 L\ VY \/

(=]
o
4
*
*
L 3
L 3

/>

L 3

¢

®

Query Frequency (seconds)

0 20 40 60 80 100
Time (seconds)

Figure 4. Impact of continuous query adaptation (query ttl = 3 hops,
number of hosts = 50, max speed starts at Om/s, goes to 5 m/s at 20
seconds, to 10m/s at 60 seconds, to 15m/s at 100 seconds)

sophisticated set could weaken the continuous query to test
whether the network conditions have changed such that an
inquiry strategy with lower overhead may still achieve the
query’s atomicity goals. Our second scenario begins like the
first, but after 140 seconds, the maximum speed decreases
to 10m/s, after 180 seconds it decreases to Sm/s, and after
220 seconds, it decreases back to Om/s. We augmented
our adaptation rules to also periodically test a lower query
frequency to see if the atomicity threshold would be violated.
Specifically, after adequately maintaining the atomicity re-
quirement for 10 snapshot queries at a given frequency,
we decrease the query frequency by 100ms. This provides
a third adaptation rule to the set listed in Section IV-B.
The results for this scenario are shown in Figure 5, which
provides the adapted query frequency and the resulting
fidelities and overheads. This adaptation strategy still does
a good job of maintaining the atomicity requirement (with
a few blips that result from testing higher query frequencies
than were acceptable). More importantly, this continuous
query strategy maintains low overhead when possible, and
incurs high overhead only when necessary to maintain the
application’s desired atomicity.

V. RELATED WORK

Query processing should adapt to the application’s chang-
ing environment [9]. In adapting query processing, the focus
is typically to change the order of query operations to
optimize for dynamics. For example, Continuous Queries
(CACQ) [11] rely on eddies [1] to determine the order
in which partial query results are processed. StreaMon [2]
adapts a query plan to accommodate arbitrary changes
in the data stream. These approaches use system-defined
(instead of application-defined) adaptation. In model-driven
approaches [8], a local model of the environment is used to
answer queries. The model obtains data from the network
only when it cannot answer a query. Adaptive filters [12]
use a model of the network to adjust the rate of updates
that stream from each node in the network to a collector
as part of a continuous query; the adjustment is based on

Series3 =—Percentage Windows Atomic

= ! 1L
g oo ﬁ,\ t 0.9 g
g os \WA/ 1\/ wW 08 &
Q [’
) 0.7 W , Y 0.7 2
> 0.6 pos 8
2 os L\ o os S
sy AR
=R 4 o
o3 00— & 03
w r 8
> 02 [oz &
g o1 - Aad 0.1 E
o o : 0 a
0 50 100 150 200 250

Time (seconds)

(a) Atomicity given adaptation

=#—Query Frequency (seconds) =——Overhead (bytes) @
— 1 1600 @
7) >
B 09 A\ A F 100 2
g o2 X n | F 1200 2
g,i 07 |
i WA | ———
$ os U 800 3
g AUANI/AYAR LY Al ol 2
o 04 ’ Feoo X
e 03 _} L0 8
2 02 * Leg 2
2 01 L/ U' AA_ 200 5

. 46— wvv\, g
o 0 T T 0 o

0 50 100 150 200 250

Time (seconds)

(b) Overhead given adaptation

Figure 5. A smarter continuous query adaptation (query ttl = 3 hops,
number of hosts = 50, max speed starts at Om/s, goes to 5 m/s at 20
seconds, to 10m/s at 60 seconds, to 15m/s at 100 seconds)

acceptable tradeoffs between an application’s tolerance of
numerical imprecision and the current cost of sending up-
dates. Such model-based approaches are not well-suited for
dynamic environments because unpredictability counteracts
the temporal correlations that form the basis for the models.
None of these approaches to adaptive query process-
ing provide general support for dynamically adapting a
continuous query based on application-specified strategies,
which is important because the application is explicitly
trading fidelity for cost [17]. Such reflection is common in
mobile computing and middleware models [5], [6]; our work
recognizes the importance of reflection to the adaptivity of
mobile applications and provides a formal foundation for
exposing information about query results to applications
through a set of principled adaptation mechanisms. Other
related approaches have looked at query quality for web-
based queries. This work has largely focused on how to filter
query results into those that are likely to be of high-quality
to the user [3] or to allow users to specify control parameters
with web-based queries that dictate their resolution [7].

VI. CONCLUSIONS

The fidelity of query processing in dynamic pervasive
networks depends heavily on the stability of the executing
environment during query execution. In previous work, we
demonstrated how to associate semantic tags with snapshot

query results. Here, we extend that work and demonstrate
how functions defined on these semantic tags can be used
to adapt processing of continuous queries. With respect to
our goals, this adaptation allows a continuous query to learn
from its previous results and change its operation to, for
example, increase the fidelity (usually at a higher cost) or
reduce the cost (usually at a loss of fidelity).

REFERENCES

[1] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive
query processing. In Proc. of SIGMOD, 2000.

[2] S. Babu and J. Widom. StreaMon: An adaptive engine for
stream query processing. In Proc. of SIGMOD, pages 931—
932, 2004.

[3] C. Bizer and R. Cyganiak. Quality-driven information fil-
tering using the WIQA policy framework. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(1):1—
10, January 2008.

[4] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva.
A performance comparison of multi-hop wireless ad hoc
network routing protocols. In Proceedings of the 4" Annual
ACM/IEEE International Conference on Mobile Computing
and Networking, pages 85-97, October 1998.

[5] L. Capra, G. S. Blair, C. Mascolo, W. Emmerich, and
P. Grace. Exploiting reflection in mobile computing middle-
ware. ACM Mobile Computing and Communications Review,
6(4):34-44, October 2002.

[6] A. Chan and S.-N. Chuang. MobiPADS: A reflective mid-
dleware for context-aware mobile computing. [EEE TSE,
29(12):1072-1085, December 2003.

[7] Y. Chen, Q. Zhu, and N. Wang. Query processing with quality
control in the world wide web. World Wide Web, 1(4):241—
255, 1998.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellersetin, and
W. Hong. Model-driven data acquisition in sensor networks.
In Proc. of VLDB, 2004.

[9] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. and Trends in DB, 1(1):1-140, 2007.

[10] M. Loebbers, D. Willkomm, and A. Koepke. The Mobility
Framework for OMNeT++ Web Page. http://mobility-fw.
sourceforge.net, 2008.

[11] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Contin-
uously adaptive continuous queries over streams. In Proc. of
SIGMOD, 2002.

[12] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In Proc.
of SIGMOD, 2003.

[13] J. Payton, C. Julien, and G.-C. Roman. Automatic consistency
assessment for query results in dynamic environments. In
Proc. of FSE, pages 245-254, September 2007.

[14] J. Payton, C. Julien, G.-C. Roman, and V. Rajamani. Semantic
self-assessment of query results in dynamic environments.
ACM TOSEM, 19(4), April 2010.

[15] V. Rajamani and C. Julien. Sama: Static analysis for mobile
applications. In Proc. of HotMobile, 2010.

[16] V. Rajamani, C. Julien, J. Payton, and G.-C. Roman. Inquiry
and introspection for non-deterministic queries in mobile
networks. In Proc. of FASE, March 2009.

[17] V. Rajamani, C. Julien, J. Payton, and G.-C. Roman. PAQ:
Persistent query middleware for dynamic environments. In
Proc. of Middleware, 2009.

[18] A. Vargas. OMNeT++ Web Page. http://www.omnetpp.org,
2008.

