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This paper evaluates the accuracy of several RSSI-based localization techniques on a live jobsite and com-
pares them to results obtained in an operating building. RSSI-based localization algorithms were tested
due to their relative low cost and potential for accuracy. Four different localization algorithms (MinMax,
Maximum Likelihood, Ring Overlapping Circle RSSI and k-Nearest Neighbor) were evaluated at both loca-
tions. The results indicate that the tested localization algorithms performed less well on the construction
jobsite than they did in the operating building. The simple MinMax algorithm has better performance
than other algorithms, with average errors as low as 1.2 m with a beacon density of 0.186/m2. The Ring
Overlapping Circle RSSI algorithm was also shown to have good results and avoids implementation dif-
ficulties of other algorithms. k-Nearest Neighbor algorithms, previously explored by other construction
researchers, have good accuracy in some test cases but may be particularly sensitive to beacon
positioning.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction evaluate their performance, the authors set up two test beds, one
Knowing the location of people, equipment, and materials is
important information for various construction activities such as
safety management, material management, and production plan-
ning. Accurate and reliable location information can lead to better
decision making [1]. To address the demand for location awareness
in construction applications, many researchers have investigated
various localization techniques, such as global positioning systems
(GPS), radio frequency identification (RFID), and laser scanning
[2–4]. Much of this research pertains to location in outdoor envi-
ronments. To obtain location information for construction manage-
ment tasks in indoor working environments an accurate and fast
location estimation process is required. Although different tech-
niques for indoor localization in construction have been proposed
[1,5], few of them have been tested and validated in live construc-
tion environments. Such a test is important as the jobsite and oper-
ating building present different environmental conditions. In
particular, an operating building may have relatively more elec-
tronic interference from operating computers and wireless emit-
ters, whereas a jobsite may have more exposed metals such as
ductwork for reflectivity.

The research introduced in this paper aims to evaluate the tech-
nical performance of several relatively low-cost and easily expand-
able RF-based localization techniques on a live construction site. To
ll rights reserved.
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Comparative evaluation of Rece
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in a live construction jobsite and the other with similar character-
istics in an operating building for comparison. In both test beds,
several beacon nodes were suspended from the ceiling, and a tablet
equipped with mounted receiver was placed in preselected
positions on the floor to collect Received Signal-Strength Index
(RSSI) values from beacons. With the collected data, the authors
conducted the location estimation by using four RSSI-based
localization algorithms and comparing their accuracy in both envi-
ronments. This research expands previous results which have pri-
marily investigated one algorithm (kNN) and have limited
exploration to operating buildings rather than live jobsites.

2. Literature review

Localization techniques have been deployed in other industries
and military applications [2,6]. More recently, these techniques
have been evaluated and developed for use in the construction
industry. An early construction application is the use of GPS for
on-site material tracking [7]. However, GPS is not yet widely
adopted by construction practitioners due to the following limita-
tions: first, although GPS receivers are relatively inexpensive,
deploying GPS devices on all equipment, tools, laborers and
batches of material that require location information on site can
still sum up to a large investment. Second, the accuracy of existing
handheld GPS devices is not satisfactory for many construction
applications. General-purpose GPS has an accuracy of about 10-
to 20-m, while other more expensive and advanced GPS systems
ived Signal-Strength Index (RSSI) based indoor localization techniques for
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(e.g., Nationwide Differential GPS) might have accuracy of 1 to 2-m
[8,9]. Third, the primary drawback of GPS is that it does not work
indoors. Despite the aforementioned shortcomings, GPS is still use-
ful for onsite material tracking and other applications, where appli-
cations are mostly outdoors and do not have a strict requirement
for accuracy.

To overcome the limitations of GPS, technologies such as laser
scanning and RFID have been evaluated for use in outdoor con-
struction. Laser scanners are deployed on vehicles to detect the
location information of surrounding objects to prevent collisions
[10]. However, there are two major disadvantages of laser scan-
ning: high resource utilization (time, CPU and memory) in real
time applications, and, more generally, requirement for line-of-
sight imaging. Another device commonly seen on construction job-
sites is RFID tags, used for material management [4,11]. RFID tags
are attached to material stacks, so as to collect radio signal data to
estimate the target’s location when the RFID reader moves around
the jobsite. Several localization techniques have been proposed
using RFID tags, and some have achieved accuracy of as little as
3.2 m [11].

While outdoor localization techniques have been developed and
deployed, indoor methods remain a research challenge [12]. There
are five technical approaches that may be applied to indoor local-
ization: indoor GPS, ultrasonic localization, infrared, computer vi-
sion, and radio frequency (RF) based technologies, including
time-of-arrival (TOA) and received signal-strength index (RSSI)
[13–16]. We briefly describe each technology with a more thor-
ough review of the RF methods evaluated in this paper.

Indoor GPS is similar to outdoor methods, although satellites
are augmented with local equipment. Several signal transmission
base stations are mounted in known locations and emit signals
at a preset frequency. Usually when the GPS receiver gets signals
from two or more transmitters, it can determine its location
through triangulation. Although the indoor GPS can achieve high
localization accuracy, it is costly and requires line-of-sight [15,17].

Ultrasonic systems, such as the Cricket localization system, use
a combination of RF and ultrasonic techniques to estimate the loca-
tion information of the host device [18]. In this system, an ultra-
sonic pulse is transmitted by the beacon concurrently with a RF
signal. The host device can estimate the distance by using the
speed difference between RF and ultrasonic waves. Using the dis-
tance between the host device and multiple transmitters, the loca-
tion of the host device can be determined by localization
algorithms such as trilateration. However, because the system’s
performance is sensitive to temperature variance and multipath
signals [16], it is not suitable for most construction jobsite indoor
applications since jobsite temperature varies during the day. En-
closed jobsites with environmental controls may be candidates
for ultrasound and further investigation for these specialized appli-
cations is warranted.

Infrared systems are common in commercial applications for
inventory tracking. An early application is described by Want and
his colleagues who used an ‘Active Badge’ that emitted an infrared
signal that was read by fixed sensors with known locations [19].
The location of the mobile badge is tied to the sensor that reads
it. Such systems are utilized for inventory management in rooms
where the degree of accuracy needed is at the room level.

In the past two decades, various vision-based localization sys-
tems were developed and applied, for example, in mobile robotics
[20]. The robot software uses onboard cameras to capture real time
images, extracts several features from the images and estimates
location by using matching models. An alternate approach is to
mount multiple cameras at different viewpoints to get images con-
taining the target object and to estimate its location using various
image processing algorithms [21,22]. However, the localization
performance of these algorithms is very sensitive to the camera
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
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characteristics such as blur, noise and frame rate. The multiple-
camera tracking system was introduced for construction equip-
ment and workforce tracking on site [14,23], although several chal-
lenges remain before functional deployment – not least of them is
overcoming line-of-sight requirements in indoor environments.

Of techniques that use radio-frequency to measure location,
time-of-arrival (TOA) techniques have shown great promise. In
particular, ultra-wideband (UWB) TOA algorithms have shown to
have indoor performance with precision of tens of centimeters
[12,24]. However, this performance requires a direct path between
sensors, giving a limitation similar to line-of-sight requirements.
Recent advances have allowed the direct path constraint to be re-
laxed, although performance degrades [13]. More broadly, UWB-
based systems have a higher deployment cost than other RF tech-
niques due to the need for high sampling rates and precise inter-
node time synchronization; such systems are also less robust due
to problems with interference and need for high signal reliability
[24,25].

Due to limitation of the previously described approaches, recent
construction research has investigated the use of RF technologies
that measure the strength of the received signal [11,26]. Such RF-
based technologies assume that there are some transmitting nodes
with known spatial location and act as beacon points to localize
other nodes with unknown location. There are two primary fami-
lies of RF based algorithms: range-free and range-based. Range-
free assumes no prior knowledge about RSSI signal strength
whereas range-based utilizes an initial calibration for beacon sig-
nal strength and location. Range-based algorithms are further di-
vided into several categories, the principal ones being RSSI map-
based and path-loss model-based algorithms. These are described
below in more detail.
2.1. Range-free algorithm: Ring Overlapping Circle RSSI (ROCRSSI)

This algorithm uses the concept of relative signal strength loss
with distance to estimate location of a target node [27]. Suppose
there are a set of beacon nodes with known location and, for sim-
plicity, one target node. Each beacon node reads the signal strength
from the other beacon nodes and from the target node. For a given
beacon node, there will be a set of signals from the target node and
the other beacon nodes. These are ordered by signal strength and
the beacon node readings are divided into two groups: group 1
with RSSI values not greater than the RSSI value read from the tar-
get node and group 2 with all other RSSI values greater than the
target node. Because the algorithm presumes that distance is a
function of signal strength, the maximum RSSI value in group 1
is presumed to give a distance that is close to the target node,
defining an inner ring of radius R1. R1 is the distance between
the beacon nodes. Similarly, the minimum RSSI value in group 2
is presumed to give a distance close to the target node, defining
an outer ring of radius R2. R2 is the distance between the corre-
sponding beacon nodes. The rings defined by R1 and R2 provide
and upper and lower bound for distance from the beacon node. Re-
peated for all the beacon nodes, a set of overlapping ring pairs are
created. The target node is located as the center of gravity of these
overlapping ring pairs.

Fig. 1 gives an example to illustrate the method. Beacon A reads
the RSSI values from T, B, C as RSSTAT RSSTAB and RSSTAC. The read-
ings show that RSSTAB < RSSTAT < RSSTAC. B and C can be divided
into two groups: group 1 with B and group 2 with C. Since group
1 only has one beacon node, the maximum RSSI value is RSSTAB

and the distance between A and B is R1 shown in the figure. Sim-
ilarly, R2 is the distance between A and C. Then T is assumed to
sit in the ring area between two circles centered at A with radius
of R1 and R2. Repeating the same procedure for B and C, we can
ived Signal-Strength Index (RSSI) based indoor localization techniques for
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Fig. 1. ROCRSSI algorithm.
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Fig. 2. MinMax algorithm.
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intersect the rings of circles and conclude that the target node sits
in the gravity center of the shadow area in Fig. 1.

2.2. Path-loss model-based algorithms

The foundation of these algorithms is path loss regression mod-
el. It is calibrated using a set of RSSI values collected at various
known sampled points to determine the relationship between RSSI
values and the distance from the transmitting node to the receiving
node. A regression equation model of this relationship is con-
structed and used to estimate the distances based on RSSI values
and the target’s location. Based on the path loss, there are many
algorithms for location estimation based on the RSSI value or cal-
culated distances. We present three commonly used algorithms:

� Trilateration: the principle of trilateration is that knowing the
distances between the target node and three nodes with known
location information, the target node’s 2D location can be deter-
mined; knowing the distance between the target node and four
nodes with known location information, the target node’s 3D
location can be determined. An application of this algorithm is
SpotON [28]. A significant disadvantage of this algorithm is that
it is resource intensive to implement [29].
� MinMax: in the MinMax algorithm, each beacon node measures

the RSSI value from the target node and calculates its distance d
to target node using the RSSI value based on the path-loss model.
Then a square with width of 2d is drawn around the beacon node
[30]. The target node lies within the overlapping area of all of the
squares drawn around all beacon nodes (Fig. 2). This algorithm is
very easy to implement but may have some increase in error as
the algorithm uses a bounding box rather than circle, giving a
wider area measured from each beacon [30].
� Maximum Likelihood: this algorithm is based on classical statis-

tical inference theory [31]. Given the location of each beacon
node and the distance from it to the target node, the maximum
likelihood algorithm maximizes the probability of the target
node’s calculated location by minimizing the variance of esti-
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
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mated error. However, the performance is sensitive to the num-
ber of beacon nodes [32].

2.3. RSSI map-based algorithms

In RSSI map-based algorithms, a target node matches sampled
points on the RSSI map, which records the RSSI values of beacons
at different sampled points with the closest RSSI values to the tar-
get. A typical method using RSSI mapping is the k-nearest neighbor
(kNN) training based algorithm [33]. In the kNN algorithm, a data
set of beacon node RSSI values at different sample points is used
to train the algorithm and to get the RSSI signature map. The train-
ing data set with n beacon nodes is stored in an n-dimension space.
Given a target position’s RSSI values read from the beacons, the
system searches the training data set to find the k nearest match-
ing data records, so as to determine the target position’s location
information using the k data records. Closeness (or proximity) is
defined in Euclidian distance which is calculated by using the fol-
lowing equation (Eq. (1)):

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼0

ðRSSItj � RSSItest point�jÞ2
vuut ð1Þ

In Eq. (1), RSSItj is the RSSI value read from beacon j at location t
and RSSItest point�j is the RSSI value read from beacon j at the target
position. The unit of Dt is dbm, which is the decibels (dB) of the
measured power referenced to one milliwatt (mW). There are sev-
eral existing indoor localization systems using the kNN algorithm:
RADAR based on 802.11 Wifi Technology [33], LANDMARC [34] as
well as Ekahau real time location system (RTLS) tested in indoor
construction [35]. The best accuracy of Ekahau RTLS in an indoor
building is 1.5–2 m [17].

2.4. Research objectives and methodology

RF based methods show promise for construction utilization as
they are relatively inexpensive to deploy and are less subject to the
line-of-sight limitations that affect many other methods. Some
research has been done evaluating the use of RF methods in con-
struction, but these have primarily focused on evaluations within
existing buildings. This research investigates performance of
RF-based localization techniques in a live indoor construction
jobsite as well as in an operating building. By comparing perfor-
ived Signal-Strength Index (RSSI) based indoor localization techniques for
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Fig. 3. Test bed #1.

Fig. 4. Receiver mounted on tripod.
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mance on a construction jobsite to that in an operating indoor
environment, the authors hope to offer other researchers a better
understanding of the potential for applying existing indoor locali-
zation algorithms in construction as well as provide guidance for
future research in localization and associated efforts such as route
planning. As there are many factors that influence performance,
the goal of this research is not to conduct an exhaustive evaluation
but rather to add to the existing literature by evaluating algorithms
other than kNN and also to evaluate performance on a live jobsite.
The limited, specific research objectives are twofold: first, evaluate
the comparative performance of selected algorithms against the
kNN map based algorithm. Second, investigate performance varia-
tions between deployment on a live jobsite and an operating build-
ing to help assess potential issues with using operating buildings
as surrogates for construction jobsites.

The four methods (MinMax, Maximum Likelihood, ROCRSSI and
kNN) discussed in the last section are the primary ones in RF based
method category. Trilateration is not considered here because it
has an accuracy performance comparable to the one of MinMax
but it is more costly than MinMax regarding ease of implementa-
tion, running time and storage space requirements [29]. Past re-
search uses the cumulative distribution function (CDF) of
localization error as well as basic statistical metrics (mean value,
average value and standard deviation) of localization error to mea-
sure the localization performance [36–38]. The CDF F(e) of localiza-
tion error e is defined in term of a probability density function f(e)
as follows (Eq. (2)):

FðeÞ ¼
Z e

0
f ðxÞdx ðx P 0Þ ð2Þ

From the CDF of localization error, we can tell the localization
error at a given confidence level (e.g., 50%, 97%). Computing
performance is not covered in our research since the setting does
not affect algorithmic complexity and other research addresses
performance [24,32].

The equipment used for the readings were Crossbow Technolo-
gies Mote 2 (mote) devices. Each mote, equipped with an inte-
grated sensor board, is programmed to broadcast a short data
package with a unique ID to other mote nodes within 1 hop dis-
tance. The standard frequency is 900 MHz, which is typical of other
tests [39]. Another mote (as receiver) on the programming board
(MIB520) is attached to a tablet computer and programmed to
catch the available data packages sent by transmitter nodes. When
the receiver gets a data package, it decrypts the message and
writes the RSSI value with corresponding sender’s ID into the data
log.

Previous research indicates that beacon node density affects
localization error [31,36,38]. To validate this on the construction
jobsite, we chose two areas with comparable sizes, one in a live
jobsite and the other one in an operating building. Both test beds
are located near the corner of the floor and have an area compara-
ble in size and beacon density to that performed in previous stud-
ies [31,37,38] to facilitate comparison. To avoid the potential for
strong reflection and multipath effects from the floor and ceiling,
we kept the beacons and target sensors away from hard surfaces
(see details below). This setup is representative of the use of RF
to track people and pallets of materials, although it is not true
for installed materials. Our efforts made these two test beds com-
parable by having them similar in all factors but the characteristic
difference between a live jobsite and an operating building.

The first test bed was located in a classroom (Fig. 3) of 7.0 m in
width and 6.4 m in length on the 5th floor of a major building on
the University of Texas at Austin campus. This area is comparable
to the live construction site test bed (described below). On the floor
four motes were deployed as beacon nodes in the grid and sus-
pended at a distance of 0.61 m away from the ceiling. The closest
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
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distance between any two beacons was 3.0 m and the furthest dis-
tance was 4.8 m. The average beacon density was 0.089 beacon
nodes per square meter. Twenty-one sampled locations were
marked on the floor with their location information recorded. RSSI
values from beacons were collected at each sampled location while
the receiver was mounted on a tripod at a height of 1.04 m away
from the floor (Fig. 4). The authors collected over 2000 readings
at each sampled location.

The second test bed was located in a corner of the 40th floor in a
high rise residential building under construction in downtown
Austin, Texas. The floor was enclosed with a combination of exte-
rior glass walls and concrete walls and had no interior walls or
frames erected. Data collection was concurrent with active con-
struction on the floor, including HVAC installation and piping.
We note that active construction limited the area available to the
researchers for evaluation. Within constraints, a target area of
6.3 m by 5.1 m on the floor was chosen as the test bed. Six motes
were deployed as beacon nodes in the grid (Fig. 5) and suspended
ived Signal-Strength Index (RSSI) based indoor localization techniques for
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at a distance of 0.6 m away from the ceiling. The closest distance
between any two beacons was 1.03 m and the furthest distance
was 3.43 m. The average beacon density was 0.186 beacon nodes
per square meter, twice as much as that in test bed 1. Eighteen
sampled locations were marked on the floor for collection of RSSI
values. Table 1 summarized the characteristics of the two test beds.

Since test bed #2’s beacon density is twice as much as test bed
#1’s, we extended test bed #2 to test bed #3 by using only 3 bea-
cons out of the 6 deployed on test bed #2 and making test bed #3’s
beacon density roughly the same as test bed #1. This allows com-
parison at different beacon densities within the same test bed as
well as improving comparison with the operating building testbed
(#1).

3. Findings

This section describes the research findings for the path-loss
models and map-based algorithms.
Table 1
Comparison of two test beds.

# Type Test point # Area/m2 Beac

1 Building 21 44.87 4
2 Jobsite 18 32.26 6
3 Jobsite 18 32.26 3

Table 2
Performance comparison of three localization algorithms (error in meters).

Testbed MinMax ROCRSSI

Average Median SD Average

#1 1.55 1.38 0.73 2.18
#2 1.22 1.26 0.39 1.69
#3 2.58 2.06 1.15 2.76

Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
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3.1. Range-free and path-loss model-based analysis

MinMax and ML models require a path loss function. For an ini-
tial calibration, using the log-linear regression model, the parame-
ters in the path-loss model were calculated as (Eqs. (3) and (4)):

Test bed#1 : RSSI ¼ �5:93105 lnðdÞ � 42:9329 ð3Þ
Test beds#2 & #3 : RSSI ¼ �8:39668 lnðdÞ � 29:6844 ð4Þ

where RSSI was measured in power ratio dBm. The distance, d, be-
tween the beacon node and the receiver node was measured in
inches.

For each entry of the collected data at target position, the ML,
MinMax and ROCRSSI algorithms were used to estimate the loca-
tion and compare it with its true value for error assessment. Table
2 summarizes the performance of the three localization algo-
rithms. In all three test beds, the MinMax algorithm had better per-
formance (Average Error, Median Error and Standard Deviation)
than the ROCRSSI and ML algorithms. Table 2 shows values for
all readings in the testbed; there are differences in average error
across different nodes, but these differences do not follow a stable
or geometric pattern (e.g., a pattern that shows better readings in-
side a ring of beacon nodes as opposed to the edge of the testbed).

To obtain a better sense of the consistency of localization read-
ings, Fig. 6a and c show the cumulative probability function (CPF)
of the three different algorithms’ estimation error on test beds #1,
#2 and #3, respectively. All three figures show that the MinMax
algorithm outperforms Maximum Likelihood and ROCRSSI algo-
rithms. More specifically, the estimation error of MinMax algorithm
is less than those of ROCRSSI and Maximum Likelihood algorithms at
both 50% and 90% confidence levels. In Fig. 6c, it shows that the Min-
Max algorithm’s estimation error is less than those of Maximum
likelihood and ROCRSSI at 50% confidence level while it is slightly
larger than that of ROCRSSI algorithm at 90% confidence level.

Comparing Fig. 6b and c, the performance of each of these three
algorithms decrease while the beacon density decreases (no
change to other environmental parameters). This result is also
shown in the data from Table 2. While only two beacon densities
were evaluated at this location, these results are consistent with
other literature showing an increase in accuracy with density
[36,40].

Fig. 7a and c compares estimation error on the construction job-
site and in the operating building for each of the algorithms, using
comparable area size and beacon density (testbeds #1 and #3). The
figure shows that the performances of these algorithms are better
in an operating building than those on a construction jobsite
regarding the median estimation error. When we examine the esti-
mation error at 90% confidence level, the path-loss based algo-
on # Dmin/m Dmax/m Beacon Density(#/m2)

3.04 4.76 0.089
1.04 3.43 0.186
1.54 3.10 0.093

Maximum Likelihood

Median SD Average Median SD

2.05 1.31 3.11 3.18 1.56
1.52 0.83 2.52 2.66 0.92
3.13 1.11 3.79 3.68 1.57

ived Signal-Strength Index (RSSI) based indoor localization techniques for
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Fig. 6. CPF of: (a) test bed #1; (b) test bed #2; (c) test bed #3.
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rithms (Maximum likelihood and MinMax) perform better in oper-
ating building than on construction jobsite, while ROCRSSI per-
forms better on construction jobsite than in operating building
(the errors converge). Further experimentation is necessary to
investigate this inconsistent result.

3.2. RSSI map based analysis

Two sets of data collected in each test bed were prepared for
kNN analysis. One data set was used as training data to create
the RSSI map while the other data set was used as testing data to
evaluate the algorithm’s accuracy. The median RSSI value instead
of average value was used at each sample point to generate the
RSSI map. The authors conducted the analysis using various k val-
ues (k = 1, 2, 3, 4, 5, 6) while limiting the k value to not exceed the
number of beacons in the test bed. Table 3 summarizes the accu-
racy of kNN algorithm with different k values in all three test beds.
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
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In both test beds, the accuracy increases as k value increases,
although accuracy appears to level off quickly. This is consistent
with prior literature [33,40,41]. The jobsite testbed has a better
accuracy than operating building testbed does; this contradicts
the findings for the other algorithms. MinMax performance is bet-
ter than that of kNN in testbeds #1 and #2 across all k values. For
testbed #3, kNN performs better than MinMax. This result might
indicate that kNN could be preferred at a sparser beacon density;
however, the results for testbed #1, which has a similar beacon
density to testbed #3, are considerably worse. Some literature indi-
cates that kNN is sensitive to absolute position of the beacons[40],
and our findings may be confirming this.

4. Discussion

The research indicates that the MinMax algorithm has the best
accuracy among the four localization algorithms tested on test
ived Signal-Strength Index (RSSI) based indoor localization techniques for

http://dx.doi.org/10.1016/j.aei.2010.09.003


0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

ML's Estimation Error/Meter

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Testbed #1
Testbed #3

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Minmax's Estimation Error/Meter

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Testbed #1
Testbed #3

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ROCRSSI's Estimation Error/Meter

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Testbed #1
Testbed #3

Fig. 7. Comparison of three algorithms’ performance in test bed #1 and #3.
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beds #1 and #2. kNN performs best in testbed #3, although it is
better than MinMax by a median accuracy of only 0.5 m for its best
result. The MinMax algorithm has other advantages over the other
three algorithms: it is easier to implement and running time and
data storage is linear with the number of beacons. This produces
more possibilities to deploy the MinMax algorithm on resource
constrained smart sensors and mobile networks (e.g., those with
limited storage space, CPU speed and battery life), especially when
there is a need to estimate the locations in a real time or near real
time manner.

Although the ROCRSSI algorithm’s performance is not as good as
MinMax, it still has great potential for application on the construc-
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
construction jobsites, Adv. Eng. Informat. (2010), doi:10.1016/j.aei.2010.09.003
tion jobsite since it does not require a predetermined path-loss
model or map training as with kNN. Therefore, it can dynamically
reflect the changes (e.g., workers moving and progress on the
equipment installation) in the environment in real time without
calibration. ROCRSSI performance is better than kNN for testbeds
#1 and #2; as with MinMax, kNN performs better only in testbed
#3.

Results for all four algorithms indicate that accuracy improves
with beacon density. This is consistent with previous research
[36]. What is less clear are the reasons behind the wide difference
in accuracy between locations. For the MinMax, ROCRSSI, and ML
algorithms, testbed #1 (operating building) has better performance
ived Signal-Strength Index (RSSI) based indoor localization techniques for
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Table 3
kNN accuracy performance (error in meters) for different k values.

k Value

1 2 3 4 5 6

#1 Operating Bldg Average 2.93 2.69 2.6 2.61 NA NA
Median 3.05 2.46 2.37 2.54 NA NA
SD 1.52 1.14 1.09 0.98 NA NA

#2 Jobsite (6 beacons) Average 1.65 1.6 1.45 1.45 1.45 1.49
Median 1.42 1.63 1.48 1.41 1.47 1.49
SD 1.15 0.82 0.69 0.69 0.6 0.57

#3 Jobsite (3 beacons) Average 2.07 1.72 1.7 NA NA NA
Median 2.00 1.76 1.54 NA NA NA
SD 1.25 0.84 0.78 NA NA NA
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than testbed #3 (construction jobsite) for a similar beacon density.
The opposite is true for kNN. There is evidence that the choice of
beacon position may be affecting kNN [40], although this may be
true for other algorithms as well. Certainly the construction jobsite
has exposed ductwork, which may have caused some reflectivity-
related issues. Further research is needed that specifically investi-
gates the effects of reflectivity and interference with operating
equipment and radios at jobsites to better understand the impact
of these conditions.

From our results, it does appear that ML does not perform as
well as the other algorithms and is not likely a candidate for fur-
ther development in construction applications. Both MinMax and
ROCRSSI appear to have very good results that compare favorably
to kNN and have accuracy comparable to other techniques such
as indoor GPS, which in one study was found to have an accuracy
of 1.5–2.0 m [17]. All algorithms have a location accuracy that
compares well to results obtained with RFID localization outdoors
(with results of 3+ m [11]), suggesting that all RSSI algorithms may
give adequate performance for materials management applica-
tions. Of course, for construction outdoors, simple RFID localization
and GPS is generally much easier and cheaper to implement due to
ease of line-of-sight readings. The advantages of RSSI algorithms
are indoors where other techniques are constrained. It is unclear
how much the accuracy would need to be increased in indoor
applications – it is reasonable that greater accuracy would be re-
quired as spaces are generally tighter – but several algorithms have
accuracy of 2 m or less. This is likely adequate for many materials
management and safety applications.

Certain applications such as fall prevention may require greater
accuracy than even the best results obtained above. It is possible to
selectively increase beacon density in high risk areas. The tested
beacon densities of 0.08–0.18 beacons/m2 equate to 8–18 beacons
per 100 m2; a denser mesh is not difficult to set up in a limited
area. Much of the setup time is calibration via learning or develop-
ment of the path loss equation. If using an algorithm such as ROC-
RSSI that does not require prior calibration, the time to deploy a
dense mesh is limited. This leads to an observation that the likely
distribution of sensors on the jobsite will vary by area and need.
Areas on jobsites where safety is a concern – such as near edges
– could purposely have a denser distribution of devices. Other
areas where safety concerns are less serious, or deployments
where devices are attached to materials (such as pallets) that
move, could have a much lower and likely irregular density of de-
vices. Such areas may have lower precision requirements. In gen-
eral, it is likely active jobsites will have an uneven beacon
density across areas, and future research is needed to evaluate
the reliability of localization algorithms in such conditions. More
broadly, autonomous localization will need to be opportunistic to
take advantage of a variety of data sources. This suggests the need
for hybrid approaches to localization that mix input from a variety
of sources such as RF and GPS and may also uses cues from the
environment or data sources such as BIM models to determine
Please cite this article in press as: X. Luo et al., Comparative evaluation of Rece
construction jobsites, Adv. Eng. Informat. (2010), doi:10.1016/j.aei.2010.09.003
location. At the same time, there will likely be an engineering de-
sign component to deployment of RF and related localization de-
vices that considers desired accuracy for choice of deployment.
5. Conclusions

This research adds to the prior literature in construction by
bringing evaluation to a live jobsite as well as evaluating path loss
and range-free algorithms in addition to previously investigated
kNN algorithms. Four algorithms were evaluated: MinMax, ML,
ROCRSSI, and kNN. To evaluate the algorithms, over 50,000 read-
ings were collected from two physical test beds: a live construction
jobsite in downtown Austin, Texas and an operating building on
the campus of the University of Texas. The live jobsite was used
to create two testbeds of different beacon densities. Results show
that both the MinMax and ROCRSSI algorithms have potential for
future adoption, with results better than kNN in two testbed and
nearly as good in the third testbed. Both MinMax and ROCRSSI
have attractive properties that make them suitable for construction
applications. MinMax is particularly suitable for real time applica-
tions as its resource needs are linear with the number of beacons.
ROCRSSI is range-free and hence does not need prior calibration
that is needed for path-loss and map-based algorithms. As such,
ROCRSSI may be particularly useful for dynamic jobsites even
though its accuracy is found to be somewhat worse than the Min-
Max algorithm.

Overall, the algorithms provide results that are comparable or
better than accuracy obtained with outdoor localization using RFID
tags, which is now in commercial application for construction job-
sites. As such, the relatively low cost of radio frequency applica-
tions and strength in overcoming limitations of other techniques
(principally, line-of-sight requirements) suggests that RSSI algo-
rithms and equipment is likely well suited for indoor construction
applications in materials management. Safety requirements may
be more stringent and future research and development is needed,
perhaps via mixed method and hybrid localization approaches. At
the same time, results of this paper are limited to a single jobsite,
and future research is needed to explore results on a range of
jobsites.
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