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Abstract—It is widely held that debugging cyber-physical
systems (CPS) is challenging; many strongly held beliefs exist
regarding how CPS are currently debugged and tested and the
suitability of various techniques. For instance, dissenting opinions
exist as to whether formal methods (including static analysis,
theorem proving, and model checking) are appropriate in CPS
verification and validation. Simulation tools and simulation-based
testing are also often considered insufficient for cyber-physical
systems. Many “experts” posit that high-level programming
languages (e.g., Java or C#) are not applicable to CPS due to
their inability to address (significant) resource constraints at a
high level of abstraction. To date, empirical studies investigating
these questions have not been done. In this paper, we qualitatively
and quantitatively analyze why debugging cyber-physical systems
remains challenging and either dispel or confirm these strongly
held beliefs along the way. Specifically, we report on a structured
on- line survey of 25 CPS researchers (10 participants classified
themselves as CPS developers), semi-structured interviews with 9
practitioners across four continents, and a qualitative literature
review. We report these results and discuss several implications
for research and practice related to cyber-physical systems.

Index Terms—Networked Control Systems, Computer Simula-
tion, Software Testing, Formal Verification, Software Engineer-
ing, Formal Specifications, Computational Modeling

I. INTROCUTION

Cyber-Physical Systems (CPS) feature a tight coupling
between physical processes and software components [67] and
execute in varying spatial and temporal contexts exhibiting
diverse behaviors across runs [107]. CPS are widely used
in biomedical and healthcare systems, autonomous vehicles,
smart grids, and many industrial applications [67], [90],
[107]. Over the years, systems and control engineers have
made significant progress in developing system science and
engineering methods and tools (e.g., time and frequency
domain methods, state space analysis, filtering, prediction,
optimization, robust control, and stochastic control) [6]. At
the same time, computer science and software engineering
researchers have made breakthroughs in software verification
and validation. Validation assures that a system meets the
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needs of the customers while verification assesses whether a
system complies with the specification. Software verification
and validation include but are not limited to systematic testing
and formal methods. While there are existing well-grounded
testing methodologies for other domains of software, and while
formal methods have been used for verification of mission-
critical systems in practice, verifying and validating CPS
are complicated because of the physical aspects and external
environment. For instance, there are insufficient methods for
investigating the impact of the environment, or context, on
a CPS [97]. External conditions, which are often hard to
predict, can invalidate estimates (even worst-case ones) of
the safety and reliability of a system. Modeling any CPS
is further hampered by the complexity of modeling both the
cyber (e.g., software, network, and computing hardware) and
the physical (physical processes and their interactions) [71].
Simplified models that do not anticipate that the physical and
logical components fail dependently are easily invalidated.

In a 2007 DARPA Urban Challenge Vehicle, a bug unde-
tected by more than 300 miles of test-driving resulted in a near
collision. An analysis of the incident found that, to protect
the steering system, the interface to the physical hardware
limited the steering rate to low speeds [79]. When the path
planner produced a sharp turn at higher speeds, the vehicle
physically could not follow. The analysis also concluded that,
although simulation-centric tools are indispensable for rapid
prototyping, design, and debugging, they are limited in provid-
ing correctness guarantees. In some mission-critical industries
(e.g., medical devices), correctness is currently satisfied by the
documentation for code inspections, static analysis, module-
level testing, and integration testing [56]. These tests do not
consider the context of the patient [56]. Such a lack of true
correctness guarantees could easily cause something like the
Therac-25 disaster [70] to reoccur.

We seek to address the dearth of empirical information
available about CPS development, specifically in debugging
and testing. While limited studies of CPS verification and
validation exist [66], [29], [94], there is no study that systemat-
ically addresses the entire range of existing approaches. In the
past decade, as research on CPS has exploded, many strongly
held beliefs have emerged related to developing, debugging,
and testing these systems. We conduct a broad literature
review, a quantitative survey, and qualitative interviews with
CPS experts to uncover the state of the art and practice in CPS
verification and validation. Our surveys and interviews start
with basic questions, identifying the technical backgrounds
of actual CPS experts. We then move into specifics related
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to tools and techniques used on a daily basis. We take a
broad view, encompassing simulation, formal methods, model-
driven development, and more ad hoc approaches. We also
attempt to ascertain what aspects of CPS development remain
unaddressed in practice, with the aim of eliciting a targeted
research agenda for software engineers desiring to support the
ever-growing domain of CPS development.

To the best of our knowledge, our study is the first to
quantitatively assess the state of the art in this area. We start
by identifying strongly held beliefs about CPS debugging
(Section II) and then review the relevant available literature
(Section III). We follow this with detailed results from an on-
line survey (Section IV) and one-on-one interviews with CPS
experts (Section V). We conclude with some future research
directions for CPS verification and validation elicited from our
investigation (Section VI).

II. METHODOLOGY

Cyber-physical systems are increasingly prevalent, and they
pervade many other emerging domains, including pervasive
computing in general and the Internet of Things. The rise has
been so rapid over the past decade that software engineering
support for these new domains has not kept pace. We seek
to confirm or dispel several widely held beliefs related to
developing CPS, with a specific focus on the verification and
validation stages (specifically during the testing and other later
stages of a software development cycle). Table I documents
several of these beliefs, along with relevant references to the
literature. The section of the paper in which we address each
belief is listed in the right-most column of Table I. Our
investigation takes three parts: a broad literature review, a
quantitative on-line survey, and qualitative interviews. This
combined study benefits from the strengths of each of its parts;
while we feel the study methods are rigorous, some threats to
validity still exist. We discuss these in Section VII. For each
of our three methods, before discussing the results, we here
briefly describe the goals of the approach, our protocol, and
how we analyzed the data.

Literature Review. It is obviously not possible (or desir-
able) to perform a complete literature review of CPS verifica-
tion and validation in this paper. Instead we aim to provide
a broad look at the variety of techniques and approaches
that could be applied to CPS verification and validation. The
approaches analyzed in the literature review helped us shape
the questions for the on-line survey and interviews.

Protocol. We conducted this review by exploring related
publications in the recent past in the areas/categories of static
analysis, theorem proving, model checking, run-time verifica-
tion, simulation based testing, synchronous approaches of real-
time systems testing, model driven development (MDD) based
tools, and finally social and cultural impact of verification
and validation. All of these reviews were focused through
a lens capturing cyber-physical systems and other closely
related domains (e.g., hybrid systems and real-time systems).
The review reported in this paper is a refinement of a much
broader look that included additional domains (e.g., distributed
systems in general, reactive systems, sensor networks, etc.) and

a deeper look at specific categories of approaches. The artifacts
covered in this paper serve as (highly referenced) exemplars
of the state of the art in verification and validation for CPS.

Data Analysis. For each category in our review, we chose
a few representative approaches (selected based on measures
of popularity including citations and discussions of practical
applications) and provide a short summary (due to the size
limitation) of their pros and cons.

On-line Surveys. Our survey has two aims. First, we aim
to corroborate findings from the literature review by cross-
checking them with those CPS researchers with hands-on
experiences. Second, we seek to confirm or dispel the strongly
held beliefs listed in Table I.

Protocol. Based on the findings from our literature review,
we created a set of multiple choice questions that attempt to
resolve the veracity of the strongly held beliefs surrounding
CPS development and debugging. We also designed a set of
open-ended questions motivated to complement the variety of
information collected in the literature review1.

We sent the invitation of the on-line survey to 82 CPS
researchers, who publish work related to real-world CPS
development and deployment in relevant academic conferences
and received 25 responses. We reached experts from a wide
range of subfields, including electrical, mechanical, chemical,
and biological engineering and from computer science; 37.5%
of them have expertise in control systems and AI, 37.5%
of them in networking, 16.7% of them in cyber-security,
16.7% of them in civil engineering, mechanical engineering,
or other “traditional” engineering fields, 37.5% in real-time
systems, distributed systems, algorithm, verification, testing,
and software engineering, in general. When asked about their
primary role(s), 70.8% have roles as CPS modeling experts,
designers, and architects; 54.2% have roles in validation and
verification; and 41.7% classified themselves as CPS develop-
ers. The participants had, on average, 8.35 years of software
development experience and 6.69 years of experience in CPS
applications.

Data Analysis. We performed statistical analysis on the
multiple choice questions. We collated the free-text responses
by combining responses that aligned contextually. We use a
phenomenological approach [26], which attempts to aggregate
meaning from multiple individuals based on their “lived expe-
riences” related to the concept (i.e., phenomenon) under study.
Our on-line survey (and, in fact, our interviews), are exactly
targeting the conclusions we can draw based on studies of the
experiences of a group of individuals, in this case, experts in
CPS development.

Interviews. To more deeply examine the implications of
several of the responses in the survey and corroborate the
findings in the survey relative to the strongly held beliefs
listed in Table I, we created open-ended questions around
the trends we saw in the survey results, to explore further
CPS practitioners opinions related to CPS verification and
validation. The full questions list is available online2.

1The surveys were delivered via SurveyMonkey; the full text is available
at (https://www.surveymonkey.com/s/MP7HP7W)

2http://goo.gl/5vwvPf
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TABLE I: Summary of strongly held beliefs about CPS development

Belief Sections
I. CPS developers are largely untrained in traditional software engineering methodologies. [34], [90] §IV-A, §V
II. CPS developers are generally unfamiliar with traditional software verification and validation tools and methodologies. [34], [90] §IV-A, §V
III. High-level programming languages (e.g., Java) are not applicable to CPS. [39], [106] §IV-A, §V
IV. Resource constraints (e.g., CPU, memory, and storage) are a major issue in developing and debugging CPS. [62], [106], [109] §IV-A, §V
V. Existing model checking and other formal techniques are insufficient to meet CPS applications’ needs. [17], [22], [65], [103] §III, §V
VI. Simulation alone is insufficient in supporting verification and validation of CPS. [79] §IV-B, §IV-C, §V
VII. An ad hoc, trial-and-error approach to development is the state of the art for CPS systems. [81], [90] §IV-B, §V
VIII. There is a significant gap in language between formal models of computing and communications and models of physics that
makes applying them jointly in CPS challenging. [2], [67], [96]

§IV-B §IV-C, §V

Protocol. We conducted these interviews through personal
interactions3. The audio of the interviews was recorded with
the participants’ consent. In the case of in-person interviews,
the participants often showed the interviewer documents, pa-
pers, devices, and other artifacts that were relevant to the
interview questions; this often highlighted the real constraints
and limitations or showcased the development and deployment
environments. The interviewees were CPS experts in charge
of real-world CPS systems from around the world (from North
America, Europe, Asia, and Australia). The real cyber-physical
systems developed and deployed by the interviewees include
a large scale bridge health monitoring system in Australia, an
assisted living device for elder persons in one of the biggest
hospitals in Australia, robots for extra-terrestrial exploration,
an autonomous military system, autonomous vehicles in the
USA, a Ventricular Assist Device (VAD) in the USA, and
a few others. We found the participants through our review
of the CPS literature and development tools; the selected
interview participants are in charge of the development and
deployment of real-world CPS applications development and
deployment. We interviewed an expert in autonomous vehicles,
another in closely related autonomous robots, one in medical
CPS, two in formal methods, one in unmanned aerial vehicles
and wireless sensor networks, one in assisted living, one
in wearable devices, and the last one in structural health
monitoring.

Data Analysis. We transcribed the interviews and then used
the same methodologies as we did for the on-line survey.

III. LITERATURE REVIEW

In our literature review, we focus on breadth of coverage,
providing exemplars in the wide variety of applicable areas,
including formal methods, model- and simulation-based test-
ing, runtime verification, and multiple practical tools. We also
look briefly at social and cultural factors that have a non-trivial
impact on the adoption of these techniques.

Formal Methods. Static analysis is used to efficiently
compute approximate but sound guarantees about the behavior
of a program without executing it [33]. Abstract interpretation
relates abstract analysis to program execution [25] and can be
used to compute invariants [21], [30], [78]; these approaches
have been applied in CPS, including in flight control soft-
ware [12] and outer space rovers [53], [48]. In general, the
efficiency and quality of static analysis tools have reached a
level where they can be practically useful in locating bugs that

3Two interviews were done over Skype; the remainder were in person

are otherwise hard to detect via testing. However, for mission-
critical CPS applications (which may contain millions of lines
of code that interact in complex ways with a physical world),
existing industry static analysis tools either do not scale well
(e.g., [53]) or tend to introduce many false positives (e.g.,
[49], [50], [55]).

Theorem proving has been applied in deductive verifica-
tion [68], [69], where validity of the verification conditions are
determined. Theorem provers have also been used for verifying
hybrid systems [1], [82]. Isabelle/HOL [83] has been used to
formally verify the kernel piece of seL4 [60], which is the
foundation OS for a highly secure military CPS application.
This work shows that, with careful design, a (critical compo-
nent of a) complex CPS can be formally verified by the state
of art theorem prover. However, the requirement for human
intervention and high costs (the total effort for proof was about
20 person-years, and kernel changes require 1.5-6 person-years
to re-verify [59]) makes applying theorem proving impossible
for general-purpose CPS applications, which may contain
millions of lines of code [87] and require much quicker (and
less expensive) changes.

The verification world is also rife with highly capable
model checkers [28], [63], including those that handle real-
time constraints [11], parametric constraints [45], stochastic
effects [46], and asynchronous concurrency with complex
and/or dynamic data structures (though not sharable between
concurrent processes) [38], all of which are common in CPS.
Model abstraction and reduction can make analysis more
tractable (and thus more applicable to CPS) [24], [41], [104],
however, error bounds are usually unquantified, which makes
the verification unsafe. While model checking allows verifica-
tion to be fully automated, in addition to issues such as state-
explosion, complexity in property specification, and inevitable
loss of representativeness [8], CPS exhibit bugs that crop up
only at run-time based on the physical state of the deployment
world; such bugs cannot be captured by model checking alone.
In hybrid systems, online model- checking has received some
attention, investigating, for example the potential behavior of
a system over some short-term (time-bounded) future. Such
approaches have been applied to checking medical device
applications [17], where the findings have motivated further
investigation into adaptations of model checking targeted for
CPS-like domains.

It is exceedingly difficult to prove properties of CPS auto-
matically because of the disconnect between formal techniques
for the cyber and well-established engineering techniques for
the physical [23], [86]. This disconnect is the root of Belief
VIII in Table I. In recent works [19], [36], physical and
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software processes are modeled and composed together either
as timed automata or hybrid automata, and the compositional
models are verified by model checkers against correctness
properties. However, the combinatorial explosion both for
the number of reachable discrete states and the reachable
sets of continuous variables remains an unresolved research
challenge. Further, the large scale of CPS applications pushes
scalability requirements well beyond the capabilities of exist-
ing tools. Though significant progress has been made in formal
verification that has the potential to change this landscape for
CPS, without support from other approaches, including run-
time verification (which is much less constrained by scalability
issues) [10], formal methods alone are not enough to tackle
the challenges in CPS verification and validation [22], [65].
These positions from the literature are the root of Belief V in
Table I; our survey and interviews will try to further identify
uses and challenges associated with real-world CPS developers
applying formal techniques.

Run-Time Verification. In run-time verification, correct-
ness properties specify all admissible executions using ex-
tended regular expressions, trace matches, and others for-
malisms [10]. Temporal logics, especially variants of LTL [88]
are popular in runtime verification. However, basic tempo-
ral logics do not capture non-functional specifications that
are essential in CPS (e.g., timeouts and latency) and lack
capabilities to deal with the stochastic nature of many CPS
applications [40], [89], [93]. Probabilistic temporal logic such
as Probabilistic Computation Tree Logic (PCTL) [42] and
Continuous Stochastic Logic (CSL) [7] have been introduced
two decades ago to specify probabilistic properties, and a
subset of CSL [40] and a CSL-compatible language [93]
are used to monitor probabilistic properties at runtime. How-
ever, these temporal logics lack the capacity to monitor the
continuous nature of the physical part of CPS applications.
In [100], a monitor is created for stochastic hybrid systems and
a monitorability theorem is provided. However, there is little
discussion of whether the monitor will impact the system’s
functional and non-functional behaviors. In [61], an efficient
runtime assertion checking monitor is proposed for memory
monitoring of C programs. This non-invasive monitoring is
well suited to mission- critical and time-critical CPS appli-
cations. In summary, the state of art in run-time verification
can potentially provide a great supplement for formal methods
and traditional testing in CPS. However many opportunities
remain to make run-time verification more suitable to the
idiosyncrasies of CPS and approachable to CPS developers.
For instance, aspect-oriented monitoring tools [18] are less
intrusive, and their adaptation to CPS run-time verification
may prove more approachable for developers.

Model-Based Approaches. In this category, we talk about
model based testing, which uses formal models to enable
(automatic) testing of CPS applications [105]. We also include
simulation based techniques aimed at the model analysis of
CPS applications [13], [37], [72]. Modeling real-time compo-
nents has been decomposed into behaviors, their interactions,
and priorities on them; reasoning can then occur layer by
layer [9], [98]. In general, such approaches allow the veri-
fication of all system layers from the correctness proof of the

lower layers (i.e., gate-level) to the verification procedure for
distributed applications; such an approach has been used to
verify automotive systems, a key exemplar of CPS [15]. The
practicality and costs of development associated with these
approaches are still unknown. While there are many compu-
tational and network simulators that many software engineers
may be familiar with, in the CPS domain, one of the most
relevant systems is Simulink, which is widely deployed in the
automotive industry and other mission critical domains (e.g.,
avionic applications) [44]. In [5], A Matlab toolbox called
S-Taliro is created to systematically test a given model by
searching for a particular system trajectory that falsifies a given
property written in a temporal logic. However, S-Taliro suffers
from a memory explosion problem when a system contains
larger specification formulas. Matlab also provides Simulink
Design Verifier (SDV) [54] as an extension toolset to perform
exhaustive formal analysis of Simulink Models. SDV is able to
create test suites satisfying a given model coverage [52], and
generate counterexamples for the violation of formal properties
(e.g., temporal properties [51]). However, the test inputs are
discrete and not suitable for CPS models with time-continuous
behaviors, which makes SDV an unlikely candidate to capture
continuous dynamics of CPS applications [76]. In [31], another
Matlab toolbox called Breach is used for reachability anal-
ysis, parameter synthesis, and monitoring of temporal logic
formulas. In [32], Breach is able to support Time-Frequency
Logic (an extension to Signal Temporal Logic [75]), which
is capable of specifying not only temporal logic properties
but also frequency-domain properties. However, this toolbox
generally requires developers to write supplementary codes
to guide the toolset and thus the approach is error-prone.
As explored further in our on-line survey and interviews, the
truthfulness of the application’s behavior in simulation-based
approaches is often in question [66], and in practice extensive
simulation can not cope with modeling uncertainty and random
disturbances, which are currently only addressed using ad hoc
methods [6]. As a result when system verification has relied
exclusively on simulation, the verification has failed to identify
key failure points [79]; in addressing Belief VI from Table I
in our survey and interviews, we seek to identify situations
when real-world CPS developers rely on simulation and when
it falls short.

Model-based approaches are gaining momentum, and it
seems inevitable that approaches will emerge that can be ap-
plied to general purpose CPS. For now, the high learning curve
associated with creating the models, the costs of developing
them, and scalability remain major hurdles to wide adoption.

Testing and Debugging Tools. Though sensor networks and
CPS are not exactly the same, several tools exist to support
testing and debugging deployed wireless sensor networks,
which provides insight into directions and challenges for
CPS. Passive distributed assertions [92] allow programmers
to specify assertions that are preprocessed to generate instru-
mented code that passively transmits relevant messages as the
assertions are checked. Dustminer [58] collects system logs to
look for sequences of events responsible for faulty interactions
among sensors. Clairvoyant [108] uses a debugger on each
sensor node to instrument the binary code to enable GDB-
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like debugging behavior. MDB [102] provides the same style
of behavior for macroprograms specified at the network level
(instead of the node level). Envirolog [73] records all events
labeled with programmer-provided annotations, allowing an
entire execution trace to be replayed. Declarative tracepoints
allow the programmer to insert checkpoints for specified
conditions that occur at runtime. Sympathy [91] collects
and analyzes a set of minimal metrics at a centralized sink
node to enable fault localization across the distributed nodes.
Finally, KleeNet [95] uses symbolic execution to generate
distributed execution paths and cover low- probability corner-
case situations. In summary, these tools and algorithms can
tackle various similar issues in CPS; an immediate effort to
adapt them more specifically to CPS would be one that directly
accounts for the physical world with continuous dynamics.

Cultural and Social Concerns. To improve the state of
art and practice of developing and debugging cyber-physical
systems, it is essential to have a robust, scalable and inte-
grated toolset that not only provides accessible approaches
for verification and validation but approaches that are also
more willingly adopted by practitioners. The major cultural
and social impediments include lack of funding and lack of
priority [4], which are not related to technical aspects at
all. Apart from commonly known false positives, the reasons
developers do not use static analysis tools have been doc-
umented as developers’ overload [57], while mandate from
supervisors, the (in)ability to find knowledgeable people, and
code ownership all play a role in how bugs are fixed [80].

In many of the approaches we reviewed, even when the CPS
developers attempted to provide significant rigor to verification
and validation tasks, they almost always had to fall back on
a “trial and error” approach, which results in a more ad hoc
approach to verifying the system [81]. In addressing Belief VII
from Table I, our survey and interviews seek to uncover how
pervasive trial and error is among real-world CPS developers.
In correlation with Belief I, we are also interested in whether
real-world CPS developers are classically trained software
engineers who are aware of more formal methods or whether
they are “outsiders” who simply default to ad hoc methods.

IV. THE ON-LINE SURVEY

Our on-line survey consisted of 32 multiple choice and
free answer questions designed to (1) understand participants’
definitions of CPS; (2) determine participants’ familiarity with
existing techniques for verification and validation, and how
they are applied to CPS; and (3) to collect information about
the main challenges in verification and validation of CPS, from
an “in the trenches” perspective. Table II shows an abbreviated
version of the survey. The specific questions were driven by
our literature review, which also helped elicit the strongly held
beliefs in Table I. The questions were crafted to help confirm
or dispel each of these beliefs. Our approach in the survey was
intentional. We began by generating definitions of both cyber-
physical systems and of verification and validation. We then
built on this foundation to determine, in detail, the experts’
various approaches to and perceptions of the wide array of
CPS verification and validation techniques.

TABLE II: Summary of Survey Questions (abbreviated; see
https://www.surveymonkey.com/s/MP7HP7W for complete survey)

Background
What are your primary application domains of expertise (multiple choice)?
What are your primary roles (multiple choice)?
How many years of cyber-physical systems development experience do
you have?
What programming languages have you used in developing CPS applica-
tions? (multiple choice)
Definition
What are the differences between CPS and embedded systems? (free text)
How do you define verification and validation (in general) (free text)?
Perceptions
Please rate agreement or disagreement (Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree)

- Simulation alone is sufficient for verification and validation of CPS.
- Formal methods for verification and validation of CPS is not tractable
with respect to resources and time.
- The state of the art of verification and validation of CPS involves
repeatedly rerunning the system in a “live” deployment, observing
its behavior, and tweaking the implementation (both hardware and
software) to achieve the stated requirements.

Experience
What percentage of your work is devoted to verification and validation?
How do you think code inspection can help with verification and valida-
tion? (free text)
What testing methodologies do you employ during verification and
validation of CPS? (multiple choice)
What model checker(s) do you employ during verification and validation
of CPS? (multiple choice)
What simulation tools have you used? (multiple choice)
Have you written assertions to aid in verification and validation of CPS?

A. Background and Definitions

Among CPS developers, there are strong opinions about ap-
propriate programming languages. The programming language
greatly influences the verification tools and techniques that
can be applied; while some techniques apply at the design
level and are thus more general purpose, others apply at
the language level. The responses to the question “What
programming languages are you familiar with?” mirror
surveys of programming language adoption in general (with
C/C++ and Java taking the top spots, and Python a close
third). Only one of our respondents was familiar with nesC, the
programming language for TinyOS sensor network platforms.
This is interesting given that many CPS experts purportedly
believe that high-level programming languages are not appro-
priate for cyber-physical style systems [39], [106].

Fig. 1: “A programming lan-
guage like Java is not applicable
to systems with hard real-time
constraints.”

A subsequent question
broached this question directly,
when we asked participants
to rate their agreement with,
“A programming language
like Java is not applicable
to systems with hard real-
time constraints.” Figure 1
shows the results; we were
surprised by the implication
that many of the surveyed
CPS experts found Java to
be reasonably appropriate for
CPS development (50% of
self-classified developers, referred as developers, selected



6

disagree/strong disagree, 30% selected neutral). Consider
other Java dialects such as RT-Java or Java Embedded, or Java
ME, that are designed specifically for developing real-time
or embedded applications, this further counters the colloquial
claim expressed as Belief III in Table I that high-level
languages are not appropriate to CPS development, which
has a potential rippling effect on future research directions.
In our interviews, we found even stronger evidence for these
findings (Section V).

We also asked the participants to express definitions of both
cyber-physical systems and verification and validation in their
own words. This is important in setting a foundation for the
remainder of the survey responses. When we asked, “In your
opinion, what are the main differences between cyber-
physical systems and conventional embedded systems,”
most respondents’ answers identified commonly cited key
distinctions; the following responses were typical:

“embedded systems were mostly focused on software/hard-
ware interacting with low level sensing and real-time control.
CPS includes embedded systems but also networks, security,
privacy, cloud computing, and even big data.”
“CPSs tend to focus more on the interplay between physical
and virtual worlds, and the kind of applications possible with
the observation (and modification) of the physical world done
through devices embedded in the environment.”

While the above gets at participants’ individual defini-
tions of CPS (which largely converge), we also wanted to
understand CPS developers’ perspectives on verification and
validation. In response to “How do you define verification
and validation,” over half of the participants gave something
quite similar to commonly accepted definitions (i.e., that
verification establishes how well a software product matches
its specification, while validation establishes how well that
software product achieves the actual goal [14]). Many other
respondents (30% developers with incorrect answers) failed
to correctly express the concepts. Intuitively, these results
motivate the creation of easy-to-use tools and better education
that enable even CPS developers without a rigorous software
engineering background to develop robust systems.

B. Perceptions

One of the primary goals of this survey is to uncover
the veracity of the beliefs in Table I. We phrased several
of these sometimes controversial points as questions about
“perceptions” associated with CPS development. We asked the
participants to rate their level of agreement (or disagreement)
with the statements using a five-point Likert scale.

It is often stated (and even empirically demonstrated [79])
that simulation does not sufficiently match a system’s behavior
in the real world. We asked our participants to rate their
agreement with “The use of simulation alone is suffi-
cient for supporting verification and validation of cyber-
physical systems.” Given the variety of backgrounds among
our participants, this question has the potential to tease out
a potential dichotomy among CPS developers with different
backgrounds. In fact, all but one of the survey respondents

selected either “Disagree” or “Strongly disagree.” The one
respondent who selected “Strongly Agree” was also one of
the four survey respondents who gave their primary area of
expertise as “Civil Engineering/Mechanical Engineering/Other
Engineering,” where models are more traditionally accepted as
complete representations of the system.

Fig. 2: “The use of for-
mal methods for verification
and validation of cyber-physical
systems is not tractable with
respect to resources and time.”

Another commonly held be-
lief (Belief V in Table I) is that
formal approaches have too
high of an overhead to be prac-
tically applied in CPS [103].
When we asked the partic-
ipants to rate “The use of
formal methods for veri-
fication and validation of
cyber-physical systems is not
tractable with respect to re-
sources and time,” the diver-
sity of answers was surprising,
as was the apparent support for
at least limited use of formal
methods for CPS. Figure 2 shows the distribution of responses
(40% developers were in favor and 30% selected neutral).

CPS developers will widely claim that the most common
approach to debugging CPS requires a significant amount of
“trial and error” [81], [90] (Belief VII in Table I). To evaluate
this claim, we asked the participants’ opinions regarding “The
current state of the art of verification and validation of
cyber-physical systems involves repeatedly rerunning the
system in a ’live’ deployment, observing its behavior, and
subsequently tweaking the implementation (both hardware
and software) to adjust the system’s behavior to achieve
the stated requirement.” 91.3% of the participants expressed
either “Strongly Agree or Agree.” The current “trial and error”
processes are neither rigorous nor repeatable, but the extensive
amount of in situ debugging that these responses demonstrate
motivates better support for approaches to verification and
validation that function “in the wild.”

Our literature review found that approaches to CPS veri-
fication and validation tend to focus either on computational
models or on models of physics. Rarely do the two converge.
In attempting to address Belief VIII from Table I, the next
question in our survey attempted to ascertain whether this
is intentional or accidental. We asked the participants to
rate their agreement with “A lack of formal connection to
models of physics is a key gap in the verification and
validation of cyber-physical systems.” We found that 69.6%
of the respondents (and 60% of the respondents who also
self-identified as CPS developers) selected either “Strongly
Agree” or “Agree,” while 26.1% (30% of the CPS developers)
were “Neutral.” This is corroborated by a second question, in
which we asked the respondents whether they agreed with
the statement, “Since CPS has both cyber and physical
parts, any approach for verification and validation would
need to allow an engineer to, in some way, examine
both parts at the same time,” to which only 27.3% of the
respondents selected “Disagree” or “Strongly Disagree.” These
two results in conjunction indicate a need for more expressive
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and integrated models that cross the cyber and physical worlds.

C. Experiences

The third section of our survey queried the participants
about their use of verification and validation techniques,
most specifically applied to CPS. As Figure 3 shows, more
than 60% of the participants spent between 30-60% of the
system’s development time on debugging; more than 20% of
the respondents spent more time than that. Clearly, debugging
CPS is expensive and time consuming.

Fig. 3: Project time spent in debugging

Only about half of the participants indicated that they
employed code inspection. Of the respondents who did not
use code inspection, the majority found it to be “not relevant.”
While code inspection is not universally used, it is believed
by some developers to provide an important and useful tool
to improving code quality and code understanding, which
is known to lead to less error-prone implementations [101].
While this motivates better tool support for code inspection
of CPS, it is not a clear significant concern of active CPS
developers.

We received an evenly balanced response to ”Have you
used systematic testing to aid in verification and vali-
dation?” Participants who responded affirmatively reported
improvement of code coverage, systematic review, and iden-
tification of corner cases as benefits. Respondents who have
not used systematic testing gave standard reasons, including a
“lack of time and deep familiarity” and “no easily available
tools.” Generally, CPS developers are not universally familiar
with traditional systematic testing tools. Though systematic
testing is well established in more general purpose software
engineering domains, there are research challenges in bridging
the gap between existing techniques and CPS development.

When we asked “Have you used formal methods (e.g.,
model checking) to aid in verification and validation?”
the majority replied affirmatively. When we followed up with
the participants who had employed formal methods about
the advantages, they cited inferring useful patterns, complete
testing, finding corner cases, and verifying key components.
Some participants even reported a sense that model checking
was becoming increasingly practical for real systems. Those
who did not use model checking said that it is (for example):

“overly complicated for most purposes; most bugs arise from
time dependent interactions with physical systems.”
“not applicable to my domain; demanding and unreliable.”

When we asked “What specific model checker(s) do
you employ?” participants reported high usage of Spin [47]
(53.85%), NuSMV [20] (46.15%), and UPPAAL [63]
(46.15%)), as shown in Figure 4. There was also substantially
high use of other (mostly domain-specific) model checkers.

Fig. 4: Model checkers used

From the free form responses, we noticed that participants
gravitate towards general purpose model checkers for very
small, very specific pieces of their systems. These model
checkers do not enable combined reasoning about the cyber
and physical portions of the systems, which is critical to
complete and correct verification of CPS.

The responses to “Have you used simulation to aid in
verification and validation?” were overwhelmingly positive;
only one participant said “no.” Participants reported using
simulation to understand the system, prototype behavior, refine
specifications, explore configurations, and minimize test effort:

“can provide some preliminary confidence of the system”
“can help refine the specification and validate the system”
“allows assumptions made in modeling to be cross-validated
against another source of ground truth”
“helps save and focus testing effort.”

One participant noted, “modeling and simulation only goes
so far. No one ever found oil by drilling through a map on
a table.” The one participant who did not rely on simulation
stated that, “Good enough simulation does not exist.” Partici-
pants reported high usage of Simulink (61.1%) and proprietary
tools (77.8%), as shown in Figure 5. The remarkably high use
of in-house simulation is concerning because it naturally limits
reproducibility and generalizability and implies that developers
find that simulation tools in general are not sufficient.

Fig. 5: Simulation tools used
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A common approach to debugging at the source level is to
augment a program with assertions that provide checkpoints on
the program’s state throughout its execution. When we asked
the participants about their use of assertions in CPS, the vast
majority (more than 70%) had used them. The respondents
used assertions primarily for bug detection and writing formal
specifications, and, to a slightly lesser extent, to document
assumptions. The participants stated that the use of assertions:

“[provides] formal documentation [and] explicitly states oth-
erwise implicit assumptions, enabling to detect errors sooner
and have a better indication of where a problem stems from”
“forces developer to write down (basically as part of the
code) the expectation for correct behavior [with] the bonus
of being able to ‘execute’ the assertion.”

The two main reasons cited for not having used assertions
in CPS development were concerns about performance and the
difficulty in tracing assertions in deployed systems. In general,
these results bolster our hypothesis that assertions are a useful
means to verify and validate CPS; future research that tailors
assertions to particular challenges of CPS (e.g., distribution
and physical aspects) may ameliorate some of the concerns.

Finally, we asked our participants’ perceptions of open
challenges in verification and validation of CPS. Almost 50%
reported issues with physics models, more than a quarter cited
scalability, and nearly a quarter reported issues with a lack
of systematic verification and validation methods. Figure 6
reports the complete results. Example statements include:

“CPS models are fragile. We need verification and validation
methods that scale with the complexity of the model and are
robust to slight variations of the model.”
“Time plays a critical role and is misunderstood.”
“Impossible to fully understand environment dynamics.”

Fig. 6: Main research challenges

The survey results indicate models of software systems,
models of physics, and the integration of the two are major
bottlenecks in verification and validation of CPS. Scalability
of existing techniques and a lack of a capability of directly
verifying CPS code from simulation motivate new, tailored
approaches that build on and complement the current state of
the practice. Before exploring these research challenges, we
look at individual interviews with CPS developers.

V. INTERVIEWS

The final piece of study is a set of in depth interviews
with CPS developers in charge of real-world CPS systems,
most of which are mission critical ones (e.g., medical device
and bridge structural health monitoring). We were somewhat
surprised to find that our survey respondents were not com-
pletely against using high-level programming languages like
Java to build CPS. The interviews corroborated the survey
results and, in fact, highlighted high-level languages that are
popular among the CPS developers we interviewed. Specifi-
cally, typical responses from our interviewees in response to
the discussion question “What are the main programming
languages you used in developing CPS applications?” were:

“For the high level, mostly it is Python. Low level is C and
C++. In the middle is Java.”
“For wireless sensor networks, mainly C, nesC; for aerial
drones, mainly C++, Java. We also extended C++, C, and
Java with high level abstractions for specific needs.”
“Algorithms developed in MatLab for modeling and off-line
validation; C++ and Java are written on Android phones to
reproduce codes in Matlab”
“The sensor [. . .] software was mainly written in C and C++.
The [server software] shown to end users with a web based
system was written in C++ and Ruby on Rails.”

Quite simply, while “low-level” languages are still popular
among CPS developers, high-level languages are also com-
monly used for CPS development.

We entered our studies with the perception that CPS de-
velopers are hampered by severe resource constraints in their
deployment environments. Our analysis of the survey results
hinted that this might not be the case. In our one-on-one inter-
views, we discussed the actuality of the resource constraints of
the interviewees’ target platforms and their perceived impact
of those constraints on the debugging task. The interview
results indicate that CPS developers do not always perceive
their target platforms to be resource constrained. Further,
the CPS developers we interviewed did not perceive any
resource constraints the platforms may have to be a significant
impediment to development and debugging:

“The computation platform is not resource constrained.”
“We don’t have concerns of resources in general. However,
to me, wireless sensor networks are a specific type of CPS,
the device nodes are for sure resource constrained. But for
other types of CPS applications, it might not be the case.”

This is an important finding in the sense that techniques
for supporting development tasks for CPS (including those
for verification and validation) often have a quite significant
focus on resource constraints; these efforts may, in fact, be
misplaced or at least over-emphasized.

We know from our experience and from the literature that
simulation is commonly used in verification and validation in
CPS. However, many researchers and practitioners discount
the value of simulation. During our interviews, we asked the
interviewees about the simulation tools they use and their
perception of the pros and cons of using simulation. The
following are some samples of the resulting discussions:



9

“These simulations are not very truthful. We used an in-
house hybrid simulation tool, [but] even with this in-house
simulation, we need real testing as the risk is too big for any
undetected errors in autonomous vehicles.”
“I am not happy with [. . .] simulation tools as they are not
accurate enough; they give you a basic sense of how the
system would work, but actually making the simulation work
requires [too much effort] to tune parameters.”
“We used simulation but what you can test through simulation
is only a very small fraction of the problems which can
potentially come out when you deploy the system.”

A common theme was the revelation that the primary sim-
ulation tools used were in-house simulators. Further, though
from our interviews, we noticed that simulation is increasingly
likely to be used primarily only in the earlier stages of design
to give a rough view of the system and its behavior.

Concerns about the applicability of model checking to CPS
appeared to crop up in our survey; our interviews delved
deeper into the use of model checkers by our interview
subjects. The responses we received to the question “How
do you use model checkers in verifying and validating
CPS applications?” indicate that model checkers enjoy only a
limited use by in-the-field CPS practitioners, usually employed
to check only small pieces of the larger system:

“We use a very simplistic model for partial ordered sets and
use Spin to check it.”
“We would like to transform our questions into timed au-
tomata and feed the input into UPPAAL. But the model
checking suffers from space explosion, and we have to restrict
our input to very small set. It is not that useful [. . .] model
checking [does not] fit our needs.”

The interviewees’ comments related to model checking further
indicated a desire supplant model checking with more robust
run-time verification that is both “on-line” and “incremental.”

We asked, generally, “How do you test CPS applications?”
Across the board, the responses validated our view that trial
and error is currently the most prevalent approach:

“We use simulation and trial and error to observe errors.”
“Mainly visual observation, look at what robots are doing,
take videos and sensor data. Basically it is trial and error.”
“Test software isolated from sensors and controller, then use
trial and error to visually observe what is going on.”
“Visual observation. We collect traces and print out sensor
values. We manually read the traces. It is trial and error.”
“We use ground truth and testing to compare results.”
“We mainly use automated formal verification and some code
review for the kernel part.”
“We used volunteers to collect real data and applied them to
MatLab models. The real test is done on real patients. Trial
and error. Ground truth is provided by nurses and cameras.”

The majority of our survey respondents identified a lack of
formal connection to models of physics as a key concern. We
explored this gap more in the interviews by asking the subjects
about the software and physics models they employ. We were
surprised to find that CPS developers tend not to deeply con-
sider (formal) models of physical systems during development.

They also found available software models inadequate. Some
examples of their responses include:

“The environment is not ideal, we created static physics
models to handle noise. The models are still immature and
fixed. We need on-line learning models.”
“We used physics models of motors [and a] flow dynamics
model. We use these models to determine what forces to
counteract using actuation.”
“We mainly used distribution models (e.g., partial order mod-
els, lattice models) to detect global [correctness] predicates.
We abstract away the physics model.”

Recent emerging work has demonstrated the use of model-
driven development to automatically generate CPS software
from heavily validated models [56], [85]. Our interviews
attempted to ascertain a practitioner’s view on the use of these
approaches. Model-driven development, though having a quite
lengthy history, is far from mature, especially with respect to
CPS. Some examples of our interviewees’ responses include:

“For simple problems, model-driven development might be
possible. But for complex problems, [. . .] model-driven de-
velopment is not very realistic.”
“I am not optimistic about this approach. To create models
that are very accurate takes too long, which is not useful.”
“There is a significant gap between the perceived environment
and the modeled environment. [You risk] building a model
more complex than the traditional programming task.”

We also asked our subjects, “How have you used asser-
tions? What improvement you like to see for the use of
assertions in CPS?” Our results confirm our intuition that
assertions are a reasonable approach to debugging CPS, but
that to make them even more appealing, especially to domain
experts, an assertion framework should be complemented by
CPS-specific features (e.g., temporal and physics aspects).

“I used assertions to assert the effects of actuation, mainly
used for debugging. We actually need to debug assertions,
as assertion happens too quickly and it fails to observe the
effects of actuation. In CPS, actuation latency is not taken
care of by traditional assertions.”
“I used assertions to figure out errors. Since I could not step
through code since the interaction with the physics, I find
assertions is very useful in this regard.”

Finally, to explore our subjects’ opinions on future research
directions for CPS development and debugging, we ask open-
ended questions, “What are your ideal testing tools for
CPS that are not currently available?” The interview
subjects described a need for integrated simulation tools, more
accessible yet expressive modeling languages, and debugging
tools that give programmers greater visibility into the entire
system’s behavior (both cyber and physical) and better fault
localization. The following are direct quotes:

“high-fidelity simulation with on-line learning of models.”
“accurate run-time models of physics and software models
to use for off-line development.”
“tools that can reproduce bugs.We could throw random errors
into the model to check how the system reacts. It is also ideal
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to have multi-domain models for motors, mechanical systems
(for integrated simulation).”
“[techniques for] formally specifying behaviors, automating
fault localization by specifying a syndrome (e.g., a pattern).”
“Theorem proving requires too many human intervention, any
more automation can help.”
“There are automated code generation from Matlab models to
C++ and Java ready for smart phones. Integration tests have
to be done manually; it would be good to have integration
test in simulation for heterogeneous models.”
“Need a formal specification language for better clarification.
Integration test can not be automated between client and
server side. [Sensor] node developers and server developers
have to manually collaborate for testing.”

VI. FUTURE RESEARCH DIRECTIONS

From our literature review, survey, and interviews, we have
collected a set of potential research directions that have the
potential to move CPS debugging into a world where the
techniques are more rigorous and repeatable than the ad hoc
testing that is the current state of the practice.

Formal Methods. To analyze continuous aspects of CPS,
higher-order-logic automatic theorem provers [43] have been
employed. Reducing the enormous amount of user intervention
required is a key research challenge. Further, these approaches
need to be made more expressive to capture the heterogeneity
of CPS. As a future direction, a generic prover supporting
other forms of differential equations (i.e., non-homogeneous)
is highly desired. Theorem proving can also be supplemented
by static timing analysis to perform program flow analysis,
making traditional theorem proving more tenable. Future
research in static analysis must deal with the challenges
imposed by complex hardware (e.g., multicore platforms with
caches) [16]. As for model checking, it would be ideal to
have an integrated platform to combine model checkers; for
instance, CPS systems could benefit from a combination of a
stochastic model checker [23] with KRONOS [28] to explore
both stochastic and real-time features of CPS.

Simulation. From our on-line surveys and interviews, a
simulation approach that explicitly integrates the cyber and
the physical is required. Such co-simulation has begun to be
explored, for instance, to combine the network simulator ns-
2 [99] with Modelica [35] to simulate industrial automation
and a power grid [3]. As a step further, CPS developers
would benefit from a flexible framework for moving between
full simulation (co-simulation) and a full testing environment,
allowing aspects of the simulation to be incrementally re-
placed by physical devices and other characteristics of the
real deployment environment. This framework requires an
environment in which models and physical devices can “talk”
the same language, making the transition from one to the other
transparent to the CPS developer and his debugging task.

Run-time verification. Temporal logics are often used to
specify correct system behaviors and used to generate run-time
monitors for CPS. However, there are no existing algorithms
to generate monitors from Metric Temporal Logic [77], [84].
Combined with the promise that run-time assertions demon-
strated in our studies, we expect that a run-time assertion

checking framework [110] that captures the essence in MTL
(e.g., specifying latency) combined with a high-level modeling
language similar to Java Modeling Language [64] would be
more accessible to developers in annotating CPS programs.
Such automatically generated monitors would enable CPS
validation at run-time in a non-intrusive manner with respect
to functional and non-functional behaviors of the CPS appli-
cations under study.

In general, we should promote solutions that do not interfere
with the developer’s process (see existing testing methods,
for instance). Because the physical world is an essential
component of CPS, that means successful approaches will
likely function “in the wild.”

VII. THREATS TO VALIDITY

Internal validity. We made some assumptions in some
of the findings in Sections IV and V. For instance, from
the reported high ratio of in-house simulation, we draw
a conclusion that general purpose simulation tools are not
sufficient. There might be other confounding variables that
result in the high ratio of in-house simulation, for instance
participants might have no access to the general purpose
simulation tools due to license issues. The on-line survey’s
lack of interaction restricted us from ruling out those con-
founding variables. To mitigate these issues, we used the
literature survey and interviews to corroborate our findings.
When analyzing interviews and free text answers, we chose
to use a phenomenological approach instead of grounded
theory [26] because we wanted to attempt to study the process
of CPS verification and validation and not the agents of the
process (i.e., the developers themselves) [74]. Grounded theory
is also particularly useful if existing theories about the process
do not exist [27], which, given our deep literature survey,
is clearly not the case here. In analyzing our results, we
draw usage conclusions from perceptions about the use (e.g.,
familiarity with a programming language is indicative of the
use of the programming language); again conclusions from
the survey were substantively corroborated by the interviews.
In our survey, 41% of the CPS researchers also classified
themselves as developers. We did not always distinguish re-
sults between researchers and these self-classified developers.
However, for any questions with significant differences (i.e.,
the question about the use of formal methods), we did explore
these potential two communities for their comparability. Our
interviews focused more on practicing CPS developers.

Construct validity. The categories in the literature review
and questions in our survey and interviews may neglect im-
portant aspects, which may consequently cause us to overlook
key issues in verification and validation of CPS. To mitigate
this, we carried out an even more in-depth literature study than
is reported here; this study covers hundreds of research papers
across relevant domains and publication venues. This coverage
mitigates the concern that we missed a significant question for
our survey or interview. Another construct validity issue lies
in the number of participants in the on-line survey (25) and
interviews (9). We did successfully reach a wide cross-section
of disciplines and cultures, including both researchers (survey)
and practitioners (interviews) across the world.
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External validity. The participants in the interview are
(necessarily) from a limited set of domains. These interviews
do not include CPS practitioners from many interesting CPS
fields like smart energy grids, and smart cities. The conclu-
sions drawn from the interviews may not be applicable to
these domains. To mitigate these issue, we did hand pick
practitioners across four continents who are directly involved
with developing and deploying real (a few large scale) CPS
applications from a wide range of subfields.

VIII. CONCLUSIONS

We generated an overall picture of the state of the art and
state of the practice of verification and validation in cyber-
physical systems though a broad literature survey, an on-line
survey of CPS researchers, and qualitative interviews of CPS
practitioners. We focused our investigation around a set of
strongly held beliefs associated with the development of CPS.
The results for the first two beliefs were mixed: while some
CPS developers are deeply familiar with classical software
engineering approaches, many are not and even those that are
familiar do not apply these techniques generally to CPS. We
dispelled the second two beliefs: in fact, high-level program-
ming languages are used by CPS developer experts, and these
same experts are not overly hindered by resource constraints.
We confirmed that existing formal method techniques and sim-
ulation are, as yet, insufficient for supporting the development
of entire general-purpose CPS. We also confirmed strongly
that the current state of the practice in CPS verification and
validation remains an ad hoc trial and error process. Finally,
we confirmed that there are still significant gaps between the
formal models of computing and the formal models of physics
that underpin today’s CPS systems. This investigation has
elicited a set of research directions that have the potential to
directly address challenges that real CPS developers cited in
the experiences in developing and debugging real-world CPS.
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