Physically Informed Assertions for Cyber Physical
Systems Development and Debugging

Xi Zheng
The University of Texas at Austin
Email: jameszhengxi@utexas.edu

Abstract—Cyber Physical Systems (CPS), widely used in per-
vasive computing, integrate computation in the cyber world with
control of physical processes. Developing CPS is challenging
because interactions between physical and cyber components are
complex and often unpredictable. Traditional debugging tech-
niques can detect bugs in the cyber world, but bugs introduced
from physical components and induced by limitations in the
software interface to physical hardware are still difficult to detect.
My research will capture the state of art and the state of the
practice in verification and validation of CPS. Based on this, I will
design middleware that combines models of the physical world
with programming-language based assertions to help developers
to design, develop, and debug robust CPS applications with ease.

I. INTRODUCTION

Cyber Physical Systems (CPS) have gained popularity both
in industry and the research community and are represented
by many varied mission critical applications. Debugging CPS
is important, but the intertwining of the cyber and physical
worlds makes it very difficult. First, the connections between
the debugging tasks and sensor platforms are tenuous. It is
difficult (and at times impossible) to incorporate physical
sensor readings into debugging rules and tools. This issue
is further complicated by the heterogeneous nature of sensor
platforms; different platforms require their own languages
and operating systems making it challenging to add sensor
information to the debugging task in a general purpose way.
Second, sensors are often unreliable, and retrieval of sensor
data usually incurs latency. Traditional debugging tools and
techniques do not account for nondeterminism or the fact that
the impact of a program action may not be instantaneously
assessable in the physical environment. Third, the impact of
a CPS application’s actuation is often unexpected from the
developers’ perspective and influenced by the environment.
Existing development tools do not make it straightforward for
a developer to explicitly specify the program’s assumptions
about the operating environment. Lastly, the cyber world is
discrete, while the physical world is continuous; this gap
makes it nearly impossible to observe both cyber and physical
correctness collectively.

CPS developers rely heavily on simulation to safeguard
the correctness of CPS. As an example of the limitations of
simulation, a vehicle in the 2007 DARPA Urban Challenge
dangerously deviated from its computer-generated path and
stuttered in the middle of a busy intersection. The bug was
ultimately determined to be related to limitations of the
steering rate at low speeds, which was undetected by the

(sophisticated) simulation model used [1]. While simulation
models may provide very good representations of the real
world, they often fail to accurately represent the environment;
playback of recorded traces in simulation environments suffers
from a similar limitation in that it reduces the inherently
continuous environment to a discrete one.

My work (i) quantitatively and qualitatively captures the
state of the art and state of the practice in debugging CPS;
(ii) creates a modeling language to capture continuous/discrete
dynamics and asynchrony in CPS; (iii) lays the groundwork
for in situ CPS debugging by enabling integrating sensing into
CPS applications across different sensor platforms; (iv) creates
a middleware that bridges the gap between the cyber and
physical worlds using physics models that relate the devel-
oper’s expected conditions (captured in logical variables) to
real physical constraints; (v) creates a physically informed
assertion language that allows developers to capture both
cyber and physical correctness; and (vi) builds a debugging
framework that checks CPS assertions at run time.

II. PHYSICALLY INFORMED ASSERTIONS

As an example to explain the key contributions, consider an
autonomous vehicle tasked to move in a square [2].

I am conducting a qualitative and quantitative review of
the state of the practice in verifying and validating CPS
applications using a survey and interviews of CPS experts.
Early results confirm our hypothesis that methods used today
are ad hoc and lack rigor and repeatability. Further, CPS
debugging processes usually entail deploying and measuring
the system in each different target deployment environment, a
manual, tedious, expensive, and sometimes dangerous process.

To address these debugging challenges, my work will de-
velop Brace, a multi-component toolkit to support debugging
CPS. Fig. 1 shows how Brace will support the specification,
development, and debugging of CPS applications.

= ~~ CPSTarget
/ Environment

@=) 2 A
.)

Deployable ?\g N\ /r’

CPS Program N f

[

Annotated
CPS Program

Brace

4 pCPS
\ jAssertion -

—— = | L Y)
J) Bind Force _ Actuators

Fig. 1. The Brace Framework Architecture

Framework

CPS Brace
Developers Assertion

CPSP. To capture the complex nature of continuous and
discrete dynamics in CPS, we are creating a modeling lan-
guage, Cyber Physical Systems Processes (CPSP) which is
both simple to use and expressive enough to provide accurate
modeling support for both development and debugging, includ-
ing checking invariants at runtime. The intrinsic heterogeneity
and complexity of CPS stresses existing modeling languages
and frameworks [3]. For instance, a model of a CPS usually
contains heterogenous models of various physical dynamic
processes as well as models of computations, networks and
software. Modeling those systems requires knowledge in and
inclusion of various domains including but not limited to
control theory, software engineering, networking, mechanic
engineering, and electrical engineering. To address these chal-
lenges, CPSP will incorporate aspects of modeling techniques
drawn from the domain of hybrid systems, in which continuous
dynamics and discrete events coexist and interact [4].

Alur et al. [5] introduced Hybrid Automata, in which a
hybrid system is modeled as a finite automaton with discrete
and continuous variables. At a given location, the values
of the continuous variables change over time according to
the model’s associated law. Each location is associated also
with an invariant control condition. The transitions of the
automaton are labeled with guarded commands. The original
Hybrid Automata model has undergone many refinements, and
is the most widely used model in the domain of hybrid sys-
tems [6]. Hybrid CSP [7] relies on continuous statements that
were added to CSP to describe interactions among processes
exclusively as communication. The syntax of Hybrid CSP,
however, is not straightforward, which we believe will hinder
its adoption. SHIFT [8], which is used to describe and simulate
dynamic networks of hybrid automata, is, on the other hand,
much more accessible. SHIFT is not as expressive as HCSP
in terms of describing asynchrononous processes, which is
crucial for complex CPS.

We will merge two languages into CPSP to enable the
simplicity of being compatible with the object-oriented pro-
gramming paradigm and the expressiveness for specifying
continuous/discrete dynamics and asynchrony of CPS. We will
provide a tool to map Java classes of existing CPS programs
to types; the resulting CPSP map file (based on XML) will
be used by BraceBind and BraceAssertion (described below).
As an extension to CPSP, we can apply the Model Driven
Development (MDD) methdology [9], where an efficient Java
application prototype can be automatically generated from
CPSP models. The prototype will have pre-defined CPS asser-
tions and can interact with the BraceBind library to access data
from mathematical models and physical sensors. The main
challenge of this research direction is how to generate efficient
code in turns of performance, memory utilitzation, compilation
time and system size [9].

BraceForce. CPS demand a tight yet flexible connection
between a debugging environment’s available sensing capabil-
ities and the cyber world of the CPS application. To bring
sensing into CPS applications, I created BraceForce [10],
which integrates different sensor platforms with very little

programming effort. In our example, BraceForce allows our
autonomous movement application to connect to precise lo-
calization capabilities that may be available in the debugging
environment but not in the deployment environment (e.g.,
overhead cameras). BraceForce not only supports the CPS
debugging challenge that motivates my work but is also
useful for general purpose CPS application development as
these applications also often incorporate sensing into core
application functionality.

BraceBind. In debugging CPS, developers must consider
unreliable sensor data, latency in data retrieval, and unexpected
or delayed results from actuation. I am creating BraceBind,
a middleware that allows domain experts to connect CPSP
models to CPS code.

BraceBind provides tool to take in a CPSP model and a
related CPSP map file, and convert the model into a Java
library, which converts the continuous dynamics in the model
into Java functions/classes and maps discrete variables in the
model either to static Java variables with pre-assigned values
or Java variables linked to sensors, the values of which are
accessed through BraceForce. The integration of CPSP models
into CPS applications enables two channels of data to inform
the debugging task: one from the raw sensor data and another
computed from the models. While the raw data gives direct
measurement of the debugging environment, the models bring
the benefits that come from simulation: the ability to express
expectations of the values. The former enables debugging in
a target environment; the latter enables simulated debugging.
Together, the two provide a complete, unified debugging suite.
In our example, we use BraceBind to connect our program
to the expected acceleration and steering capabilities of our
particular robotic platform (i.e., the Roomba).

BraceAssertion. A key challenge in debugging is speci-
fying expected behavior, for which assertions are commonly
used. My research will define a rich assertion language,
BraceAssertion to enable CPS architects to capture underly-
ing assumptions and characteristics of the environment. For
example the following code shows how a developer might
use a BraceAssertion to specify that, after instantiating the
RobotMover, the robot’s location changed by 1 meter:
CPSAssert (distance (Sensors.before (Sensors.LOC),

Sensors.after (Sensors.LOC))
== 1) {

new RobotMover (speed, angle,

}

duration);

We can define more expressive assertions, for example
allowing folerance in the assertion to account for both noise in
sensing and error in actuation. I will explore various semantics
of BraceAssertions based on my interviews with developers.

Besides inline annotation, we are also looking at the pos-
sibility of specifying BraceAssertion for state and transition
invariants, or as pre/post conditions for specific function
blocks in the CPSP models, where we can also introduce
quantification (e.g. universal quantifier and existential quan-
tifier). BraceAssertions provides tool to automatically place
the assertions in the right place of the existing program by the

help of CPSP map file.

Brace. The BraceAssertion will become the fundamental
component of Brace [2], a run-time CPS debugging mid-
dleware, which validates CPS assertions at runtime. Eval-
vating the assertions can be based on input from sensors
in the debugging environment (connected via BraceForce),
input from the physical models (connected via BraceBind),
or both. The assertion in the code snippet above shows one
that takes input from BraceForce, indicated by the use of
the Sensors package. Alternatively, using BraceBind would
change Sensors to Models but leave everything else about
the CPS code unchanged. In this sense, Brace allows the
developer to validate the same system in multiple ways. Brace
will also provide static analysis, for example, using physics
models to invalidate assertions that are physically impossible.

III. EVALUATION

To evaluate Brace and its constituents, I will use CPS appli-
cations from the autonomous vehicle domain and from a heart
pump controller. For the purposes of this (brief) explanation,
we focus on the autonomous vehicle. Evaluation of Brace will
include both “unit testing” of the constituent components and
“integration testing” of the entire Brace family, including user
studies involving real CPS developers.

Evaluating BraceForce will assess the ease with which
developers can access general-purpose sensor data and the
overhead of performing this access through the BraceForce
middleware. Evaluations of BraceBind will assess the impact
of different degrees of expressiveness on both the quality of
the results and the computational complexity of computing
the models at run time. Finally, evaluations of BraceAssertions
will be based on expressive power and developer’s assessments
of usability. When the entire Brace suite is assembled, I will
conduct a user study that will ask CPS developers to write a
variety of CPS assertions for the evaluation applications, with
the aim of to answering these research questions:

1) How easy it is to use BraceAssertions to specify desired
properties in the CPS applications? And at what cost?

2) How expressive is BraceAssertion by a grade scale (1-5,
1 as lowest) from professional programmers in the user
studies?

3) Can Brace find errors quicker or find more errors com-
pared with state of the art simulation tools (LabView and
Simulink/Stateflow) and a model checking tool based
also on hybrid automata (HyTech [11])?

I will also use benchmarks for the following metrics:

1) Runtime overhead imposed by Brace

2) Scalability of Brace (e.g., can Brace successfully check
assertions distributed across multiple distributed cyber
and physical components)

3) Fault localization (i.e., accuracy of bug detection)

4) Precision (i.e., false positive bug detections)

5) Recall (i.e., bugs undetected by Brace)

IV. CONCLUSION

I presented a middleware system that brings physically
informed assertions to CPS development and debugging. Ap-
plication architects can capture underlying assumptions and
characteristics of the environment through assertions and will
be able to develop and debug robust pervasive applications
with ease across different deployment environments.

ACKNOWLEDGEMENT

I thank my advisor, Christine Julien, for her guidance and
support. This work was supported by the NSF CNS-1239498.

REFERENCES

[1] S. Mitra, T. Wongpiromsarn, and R. M. Murray, “Verifying cyber-
physical interactions in safety-critical systems,” IEEE Security and
Privacy, vol. 11, no. 4, pp. 28-37, 2013.

[2] X. Zheng, C.-L. Fok, C. Julien, S. Khurshid, and M. Kim, “Brace:
Assertion-driven development of cyber-physical systems applications,”
Tech. Report TR-ARISE-2013-001, University of Texas at Austin, 2013.

[3] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli, “Addressing
modeling challenges in cyber-physical systems,” DTIC Document, Tech.
Rep., 2011.

[4] D. Liberzon, Switching in systems and control. Springer, 2003.

[5] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
in 1Ith International Conference on Analysis and Optimization of
Systems Discrete Event Systems. Springer, 1994, pp. 329-351.

[6] A. Platzer, “Differential dynamic logic for hybrid systems,” Journal of
Automated Reasoning, vol. 41, no. 2, pp. 143-189, 2008.

[71 Z. Chaochen, W. Ji, and A. P. Ravn, “A formal description of hybrid
systems,” in Hybrid Systems IIl. Springer, 1996, pp. 511-530.

[8] A. Deshpande, A. Gollu, and L. Semenzato, “The shift programming
language for dynamic networks of hybrid automata,” Automatic Control,
IEEE Transactions on, vol. 43, no. 4, pp. 584-587, 1998.

[9] B. Selic, “The pragmatics of model-driven development,” Software,

IEEE, vol. 20, no. 5, pp. 19-25, 2003.

X. Zheng, D. E Perry, and C. Julien, “Braceforce: A middleware enabling

novice programmers to integrate sensing in cps applications,” Tech.

Report TR-ARISE-2013-003, University of Texas at Austin, 2013.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker

for hybrid systems,” in Computer aided verification. ~ Springer, 1997,

pp. 460-463.

(10]

(11]

