
BRACE: An Assertion Framework for Debugging Cyber-Physical Systems

Kevin Boos, Chien-Liang Fok, Christine Julien, Miryung Kim
Center for Advanced Research in Software Engineering

University of Texas at Austin
kevinaboos@utexas.edu, {liangfok, c.julien}@mail.utexas.edu, miryung@ece.utexas.edu

Abstract—Developing cyber-physical systems (CPS) is chal-
lenging because correctness depends on both logical and
physical states, which are collectively difficult to observe.
The developer often need to repeatedly rerun the system
while observing its behavior and tweak the hardware and
software until it meets minimum requirements. This process
is tedious, error-prone, and lacks rigor. To address this, we
propose BRACE, a framework that simplifies the process by
enabling developers to correlate cyber (i.e., logical) and physical
properties of the system via assertions. This paper presents
our initial investigation into the requirements and semantics
of such assertions, which we call CPS assertions. We discusses
our experience implementing and using the framework with a
mobile robot, and highlight key future research challenges.

I. INTRODUCTION AND MOTIVATION

Consider a cyber-physical system (CPS) consisting of
mobile robots operating in a smart home in which both
the robots and the home contain a plethora of sensors
and actuators. The sensors enable software applications
to perceive the physical environment, while the actuators
enable them to change the environment’s physical state, e.g.,
by moving objects, toggling switches, and turning knobs.
Applications include patrolling the home for security or
automatically adjusting the lights or thermostat based on
occupants’ locations.

Traditional debugging tools are insufficient since they
only consider a program’s logical state. To debug a CPS,
programmers must jointly reason about logical and phys-
ical state. We propose BRACE, a cyber-physical assertion
middleware and framework. First, BRACE introduces new
forms of assertions catered to the unique demands of CPS.
For example, CPS assertions can span logical and physical
variables and nodes, and specify both spatial and temporal
properties. They are checked by an external, omniscient,
process that can independently observe the physical states.
Second, BRACE supports asynchronous checking of CPS as-
sertions to avoid critical timing failures caused by processing
latencies. Third, BRACE supports explicit actuation of error-
handling code, e.g., when an assertion is violated, the system
can be configured to either halt or execute a user-provided
callback function. Fourth, BRACE can be configured to
tolerate spatial and temporal discrepancies.

Consider the example in Figure 1, which shows three
instances of the same program that moves the robot 1m
forward, turns off the light, and, if successful, moves the

1. // Developer observes robot’s initial location
2. robot.move(1);
3. if(turnOffLight()==SUCCESS) robot.move(1);
4. // Developer observes robot’s final location and state
5. // of the lights; concludes if program executed correctly

(a) Without CPS assertions

1. let prevLoc = getCurrentLoc();
2. robot.move(1);
3. if(turnOffLight()==SUCCESS) robot.move(1);
4. assert(getRoomBrightness() == DARK
5. && prevLoc + 2 == getCurrentLoc());

(b) Manually-created CPS assertions

1. ConfigCPMap(roomBrightness,lightSensor());
2. ConfigCPMap(robotLocation,cameraSensor());
3. initCPState(robotLocation, 0);
4. robot.move(1);
5. if(turnOffLight()==SUCCESS) robot.move(1);
6. CPSAssertAsync("roomBrightness == DARK
7. && robotLocation == 2");

(c) CPS assertions with BRACE

Figure 1. Example program with and without cyber-physical assertions.

robot another meter forward. Figure 1(a) shows how this pro-
gram would be written using existing techniques. The onus
is on the developer to determine the program’s correctness.
Developers need to sense the physical state and correlate this
state with the program’s logic to determine correctness. This
is error-prone and sometimes infeasible because many cyber-
physical systems involve a plethora of networked devices
that rapidly performing actions in parallel, rendering manual
observation extremely difficult.

To address this problem, one may attempt to man-
ually code CPS assertions, as shown in Figure 1(b).
In this program, the developer must implement acces-
sors to physical state (e.g., getCurrentLoc() and
getRoomBrightness()). Creating these methods is
non-trivial as it requires sensing the environment and trans-
forming that physical state into a logical program state.

Figure 1(c) shows CPS assertions written using BRACE.
The correlation between logical variables and physical state
is defined by configuration statements on lines 1-2. The
logical variable roomBrightness is mapped to a BRACE-
provided service called lightSensor, which uses a pho-
tocel to measure the brightness of the room. The logical
variable robotLocation is mapped to a service called

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
New Ideas and Emerging Results

1341

cameraSensor, which uses a camera to track the robot’s
location. Once these mappings are formed, BRACE automati-
cally updates the mapped logical variables based on physical
state as determined by the specified service. Line 3 initializes
the current location of the robot to zero, defining a reference
for robotLocation and allowing developers to use a
relative location instead of absolute coordinates on line 7.
Lines 4-5 contain the program’s core functional logic. Lines
6-7 contain a CPS assertion specifying that if the room is
dark, the robot must have moved two meters. This assertion
only references logical variables automatically maintained
by BRACE, which are significantly easier to write than the
methods in Figure 1(b).

In this paper, we undertake three concrete tasks related
to BRACE: (1) we identify requirements and types of CPS
assertions; (2) we design assertion APIs that jointly operate
over logical and physical states; and (3) we present a
prototype implementation of location-centric CPS assertions.
The remainder of this paper is organized as follows. Sec-
tion II presents related work, followed by our design of
CPS assertions and preliminary evaluation in Section III.
We conclude with our planned next steps in Section IV.

II. RELATED WORK

Assertions are one of the most useful automated tech-
niques available for detecting and locating faults, even when
faulty code is executed but does not cause a failure [1].
BRACE aims to make it easier for programmers to write
and check assertions across both logical and physical states
of a cyber-physical system. Its main goal is to abstract
and aggregate over various sources of sensor inputs to help
developers check explicit system properties at runtime.

Attempts to rigorously validate complex cyber-physical
systems exist. Cleveland et al.’s instrument-based validation
attaches monitors to controller models during simulation [2].
BRACE differs by checking runtime assertions within an ac-
tual system as opposed to in simulation, as well as checking
assertions that span time and multiple nodes. Passive dis-
tributed assertions [3] is a tool that allows developers to add
assertions about a global network state. It works by having
each node broadcast small amounts of additional information
that is received by a secondary “sniffer network,” which
analyzes this data to determine the assertion’s validity. This
is similar to BRACE’s continuously evaluated assertions. The
main difference is that BRACE allows users to explicitly
map logical variables to physical states using configuration
statements, making it easier to write CPS assertions.

Mercadal et. al [4] use a domain-specific Architecture
Description Language (ADL) to safely handle application-
and system-level errors in pervasive computing systems.
Their ADL requires a special compiler to generate Java code,
whereas BRACE only relies on the default Java compiler.
BRACE focuses on identifying and reacting to unexpected
buggy behavior by using an external sensor network and

1. ConfigCPMap(robot1Loc, locSensor(robot1));
2. ConfigCPMap(robot2Loc, locSensor(robot2));
3. ConfigCPMap(babyRoomTemp, tempSensor);
4. . . .
5. MonitorCPProp("robot1Loc == (1,1)
6. AND robot2Loc == (2,1) at time 1pm");
7. MonitorCPProp("robot1Loc == (1,2)
8. AND robot2Loc == (2,2) at time 2pm");
9. MonitorCPPropAction("babyRoomTemp > 71
10. AND babyRoomTemp < 73", ALARM());

Figure 2. Example continuous assertions.

monitoring process, instead of trying to recover from severe
errors or influence the flow of the original CPS application.

Macrodebugging [5] is a debugging tool for wireless
sensor networks that allows developers to sequentially step
through application code despite the fact that the code
executes asynchronously across distributed nodes. For ex-
ample, a programmer can set a breakpoint on a macro
program, which maps to respective program execution points
in individual micro programs. BRACE’s focus is to make
it easier to write and check CPS assertions, as opposed to
providing methods for setting breakpoints and investigating
captured traces. Also related is automatic calibration [6],
which differs from the goals of BRACE because its objective
is to fine-tune program parameters to make an observed
value match a desired value according to a user-defined
model. BRACE’s goal is to simplify the process of defining
and checking system properties at runtime.

III. APPROACH AND PRELIMINARY EVALUATION

We have three primary objectives: (1) APIs for expressing
cyber-physical assertions that jointly reason about logical
program state and physical environment state, (2) a mid-
dleware that converts physical state into logical state, and
(3) runtime processes that evaluate CPS assertions.

A. Key Requirements of BRACE

Mapping Cyber and Physical States. BRACE provides
logical abstractions of the physical environment that CPS
programs can directly reference. BRACE’s cyber-physical
assertions only reference logical variables, some of which
are mapped to physical properties. This mapping is done
internally within BRACE, thus simplifying the process of
implementing these assertions. Some examples of mapping
cyber and physical states include (1) position sensors that
measure the location of a mobile robot, which can be
mapped to a location variable in a program that coordinates
a multi-robot security patrol; (2) temperature sensors em-
bedded in a home, which can be mapped to a temperature
variable in a program that controls an HVAC system; and (3)
occupancy and identification sensors, which can be mapped
to user-preference variables in a program that controls a
smart-home’s audio system. These are just a few examples of
the ways in which cyber and physical states can be mapped.

1342

Synchronous vs. Asynchronous Assertions. Cyber-
physical systems are inherently time-sensitive, making them
sensitive to latencies introduced by interruping normal pro-
gram flow with assertion checks. To address this, BRACE
introduces the notion of asynchronous cyber-physical as-
sertions. The goal is to evaluate assertions only when the
processing latency will not impact the application. Continu-
ous assertions, like those shown in Figure 2,1 are executed
by third-party “observer” processes and thus have minimal
impact on the temporal properties of the system. In-lined
synchronous assertions, such as those shown in Figure 1(c),
introduce latencies if the assertion must execute sequentially
with the surrounding code. BRACE allows assertions to be
executed asynchronously upon a user request, as exem-
plified by the CPSAssertAsync assertion on line 6 of
Figure 1(c). When the program reaches an asynchronous
assertion, the assertion is not immediately evaluated; instead,
the states of the variables referenced by the assertion are
saved, and a background task is spawned to evaluate the
assertion when the program is idle. One consequence is
that the program may execute beyond where the assertion
occurred, making fault localization more difficult since faults
would have more time to propagate. We evaluate assertions
on a first-come first serve basis, meaning that asynchronous
assertion tasks will always execute in the order they were
spawned. These assertions are evaluated using the state of
the system at the time when the assertion was requested,
which is before the fault can propogate. In addition, a user
still has the option to specify a synchronous assertion, which
mandates that the assertion must be completely evaluated
before executing the next program statement.
Continuous Assertions. CPS applications must interact with
the real world, in which time and space are intrinsic. For this
reason, BRACE supports continuous assertions that span a
period of time by checking system invariants continuously.
Suppose the CPS application involves two robots patrolling
the perimeter of an infant’s smart-bedroom to ensure the
baby’s safety. The application’s correctness depends on
whether the robots move in a coordinated and timely fashion
and whether the room’s temperature stays within certain
limits. Using BRACE, the program’s correctness can be
automatically ascertained using the assertions in Figure 2.
These assertions span multiple nodes, locations, and time
frames. The assertion on lines 9-10 demonstrates how the
program can be interrupted by a callback to error handling
code (e.g., ALARM()) if the assertion fails. These assertions
effectively define invariants because they are continuously
evaluated over the program’s execution, not just at particular
points in the application’s code, as with the assertions in
Figure 1(c). If execution of the CPS could be discretized into
a sequence of actions, these assertions would be evaluated
after each action. In reality, our framework uses a separate

1For clarity, we present pseudo-code, not an actual Java-based API.

Table I
DEFAULT SENSOR SUPPORT

Dimension Sensor Type Provides
Location 2-D Camera 2-D Position♦

3-D Camera 3-D Position
Infrared Distance/Range♦
GPS 2-D Position♦
Cricket Mote 2-D Position, Range♦
RFID Proximity
Sonar Distance/Range

Orientation Compass Bearing♦
Gyroscope Spin, Orientation
Magnetometer Magnetic Fields

Force Force Sensor Force, Contact
Light Photodetector Ambient Brightness
Temperature Thermometer Temperature
Pressure Barometer Pressure
Acceleration Accelerometer Acceleration, Tilt♦

“third-party” process to continuously evaluate these asser-
tions without interfering with the application.
Tolerant Assertions. CPS assertions reference both physical
and program state. Due to inherent limitations in measur-
ing physical state, BRACE assertions can specify tolerance
values that can be either a numerical margin of error or a
temporal window in which to watch for acceptable values.
For example, a developer may modify the assertion in
Figure 2, lines 5-6, as follows:

MonitorCPProp("robot1Loc == (1 ± 0.2,
1 ± 0.4) && robot2Loc == (2 ± 0.1,
1 ± 0.3) at time 1pm ± 5min")

These tolerance values help prevent real-world sensor inac-
curacies from causing assertions to fail.
An Extensible Framework for Sensor Support. BRACE
will incorporate a wide variety of sensor interfaces, allowing
the programmer to focus on more abstract CPS functionality
instead of low-level device drivers. Table I lists the default
sensor interfaces included in BRACE and the usage of each
interface. BRACE will provide software hooks enabling new
sensing services to be added to account for the peculiarities
of a specific deployment environment.

Table II
CYBER-PHYSICAL ASSERTION APIS

Assertion API Description
ConfigCPMap(l,p) Maps physical state p to a logical var. l
InitCPState(l,v) Assigns initial value v to logical var. l
CPSAssertAsync(a) Asynchronous execution of assertion a
CPSAssertAsync-
Action(a, h)

Asynchronous execution of assertion a with
callback to error-handling code h

CPSAssertSync(a) Synchronous execution of assertion a
CPSAssertSync-
Action(a, h)

Synchronous execution of assertion a with
callback to error-handling code h

MonitorCPProp(a) Continuous checking of assertion expr. a
MonitorCPProp-
Action(a, h)

Continuous checking of assertion expr. a
with callback to error-handling code h

B. Prototype Implementation and Initial Results

Our initial implementation of BRACE is written in Java
and uses both Player/Stage and ROS robotics middleware;

1343

Figure 3. Our mobile robot: Roomba with top-mounted decal.

its API is shown in Table II. We evaluated it using an
iRobot Create with a top-mounted decal for camera-based
localization, as seen in Figure 3. A ceiling-mounted camera
tracks the decal as the robot moves, and BRACE polls the
camera for location updates. In our sample application, we
instruct the uncalibrated robot to execute several consecutive
movement commands and evaluate an assertion comparing
its expected location against its actual location after each
movement. Figure 4 displays a sample traversal;2 in this case
an assertion was performed at each vertex in the path, us-
ing syntax such as CPSAssertAsync("robotLoc ==
(0 ± 0.05, 1 ± 0.05)"). In this case, it is visu-
ally apparent where the robot begins to stray, and BRACE
successfully detects and quickly reports the discrepancy
between the expected (logical) and actual (physical) location.
BRACE also saves a time-stamped trace of the assertion his-
tory for postmortem analysis. We used both synchronous and
asynchronous assertions across several trials; synchronous
assertions allowed us to pinpoint exactly when and where
the robot strayed, while asynchronous assertions provided
the same error localization at a later point in time.

1"meter"

start"

end"
end"

Expected"Path"
Actual"Path"

Figure 4. An example traversal path.
2For a video of the system running, see: http://tinyurl.com/78x4gb2

We also measured the memory overhead and execution
delay of performing assertions with camera-based localiza-
tion. BRACE uses a negligible amount of memory (a few
kilobytes at most) to store the data required for making
assertions, which is quickly reclaimed after saving the asser-
tion trace to disk. On average, each synchronous assertion
delays the program’s execution by 22.89 ± 6.13ms, but each
asynchronous assertion delays the program by only 0.16±
0.06ms. These delays represent the time required to read
and store necessary state data and to perform a context
switch between the CPS application and BRACE. Clearly,
the execution delay depends on the complexity and location
of the sensor. The benefit of asynchronous assertions is
demonstrated here by the ∼140X improvement in execution
delay over synchronous ones. These preliminary results
demonstrate the potential for BRACE to operate within
constraints necessary for time-sensitive CPS applications.

IV. NEXT STEPS

In the short term, we plan to support more sensor types
and services to enhance BRACE’s ability to collect physical
data. Table I shows the list of sensors that are already sup-
ported by BRACE (denoted by ♦) and the sensors planned
for future support. While our current implementation only
supports in-lined assertions, we plan to implement support
for continuous and temporally-tolerant assertions.

In the long run, we plan on providing an off-line de-
bugging tool that enables developers to investigate runtime
traces captured by BRACE to identify the root cause(s) of
failed assertions. We also envision using CPS assertions as
a basis for automatically correcting CPS system behavior
in the future. By differencing expected physical states and
actual physical states, a novel patch-generation algorithm
can modify the program to make physical states match the
corresponding logical states.

REFERENCES

[1] L. A. Clarke and D. S. Rosenblum, “A historical perspective
on runtime assertion checking in software development,” SIG-
SOFT Softw. Eng. Notes, vol. 31, pp. 25–37, May 2006.

[2] R. Cleaveland, S. A. Smolka, and S. T. Sims, “An
instrumentation-based approach to controller model valida-
tion,” in Proc. of ASWSD, 2008, pp. 84–97.

[3] K. Romer and J. Ma, “PDA: Passive distributed assertions for
sensor networks,” in Proc. of IPSN’09, 2009, pp. 337–348.

[4] J. Mercadal, Q. Enard, C. Consel, and N. Loriant, “A domain-
specific approach to architecturing error handling in pervasive
computing,” in Proc. of OOPSLA ’10, 2010, pp. 47–61.

[5] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. White-
house, “Macrodebugging: global views of distributed program
execution,” in Proc. of SenSys, 2009, pp. 141–154.

[6] J. Weng, P. Cohen, and M. Herniou, “Camera calibration
with distortion models and accuracy evaluation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 14, pp. 965–980, Oct. 1992.

1344

