
On Coordination in Practical Multi-Robot Patrol

Noa Agmon1, Chien-Liang Fok2, Yehuda Emaliah3, Peter Stone1, Christine Julien2, and Sriram Vishwanath2

Abstract— Multi-robot patrol is a fundamental application
of multi-robot systems. While much theoretical work exists
providing an understanding of the optimal patrol strategy for
teams of coordinated homogeneous robots, little work exists
on building and evaluating the performance of such systems
for real. In this paper, we evaluate the performance of multi-
robot patrol in a practical outdoor distributed robotic system,
and evaluate the effect of different coordination schemes on
the performance of the robotic team. The multi-robot patrol
algorithms evaluated vary in the level of robot coordination:
no coordination, loose coordination, and tight coordination.
In addition, we evaluate versions of these algorithms that
distribute state information—either individual state, or entire
team state (global-view state). Our experiments show that while
tight coordination is theoretically optimal, it is not practical
in practice. Instead, uncoordinated patrol performs best in
terms of average waypoint visitation frequency, though loosely
coordinated patrol that shares only individual state performed
best in terms of worst-case frequency. Both are significantly
better than a loosely coordinated algorithm based on sharing
global-view state. We respond to this discrepancy between
theory and practice, caused primarily by robot heterogeneity,
by extending the theory to account for such heterogeneity, and
find that the new theory accounts for the empirical results.

I. INTRODUCTION

Multi-robot patrol is a fundamental application of multi-
robot systems [7], [12], [2], [8], [5], [14] in which a team
of mobile robots continually visit a target area (e.g., a
continuous 2-D environment, a linear path, or a discrete
graph) to monitor some change in the environment’s state.
In this paper we concentrate on frequency-based patrol [7],
[8], [12] where the goal is to maximize a given frequency
criterion, usually idleness, i.e., the time between consecutive
visits to a particular point within the patrolled region [12].
We focus on evaluating the worst and average idleness for a
team of robots patrolling a cyclic set of waypoints.

Previous work on multi-robot frequency-based patrol pri-
marily concentrated on finding optimal patrol strategies for
the robots, and evaluating the solutions using theoretical
tools like approximation ratio [7], and in simulation [12].
Generally, they prove that a team of homogeneous robots
must be tightly coordinated to maintain uniform temporal
separation, which guarantees minimal uniform idleness in a
cyclic patrol environment. Whether such tight coordination

1N. Agmon and P. Stone are with the Department of
Computer Science, The University of Texas at Austin
{agmon,pstone}@cs.utexas.edu

2C. Fok, C. Julien, and S. Vishwanath are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin
{liangfok,c.julien,theory}@mail.utexas.edu

3Y. Elmaliah is with the Department of Computer Science, College of
Management Academic Studies, Israel elmaliahy@colman.ac.il

is practical in reality remains, to our knowledge, an open
question.

We present an empirical study of multi-robot patrol using
a team of mobile robots provided by the Pharos testbed [10].1

Pharos achieves robot navigation using consumer-grade
GPS/compass and communication through ad hoc WiFi.
This is due to practical objectives, i.e., low cost and easy
infrastructure-less deployment. Using Pharos, we evaluate
different coordination mechanisms for maintaining optimal
idleness at given waypoints along a cyclic patrol route. Three
different coordination mechanisms are examined: Uncoordi-
nated, in which the robots do not coordinate their behaviors
with their peers (i.e., they act like individual robots instead
of a team). Tightly coordinated, in which a robot in the
team will not continue to move before knowing that all
its teammates are synchronized in terms of reaching their
respective waypoints, and Loosely coordinated, in which
each robot is coordinated only with the subset of robots that
are within its communication range. Two message update
schemes between the robots are used: individual status
messages—ISM, where each robot sends its peers only its
own status; and global status messages—GSM, where each
robot sends to its peers its entire world view in terms of team
status. We examine the influence of using these two schemes
on the team’s performance in the two coordinated scenarios
(tightly coordinated and loosely coordinated).

Experiments with teams of two and three robots are
conducted and the idleness at each waypoint is recorded.
Results show that loose coordination using ISM performed
better than loose coordination using GSM, since it involves
each robot waiting for fewer other robots. Tight coordination
always fails; the communication scheme is irrelevant when
the route forces the robots to have connectivity disconnec-
tions, which is expected and common in real-world networks
of autonomous robots. Surprisingly, the uncoordinated mech-
anism performed better in terms of average idleness, however
the loosely coordinated algorithm using ISM outperformed
the uncoordinated patrol in terms of worst-case idleness.

We respond to the discrepancy between theory and prac-
tice, caused primarily by robot heterogeneity, by extending
the theory to account for such heterogeneity. Specifically, we
provide a theoretical analysis of the average and worst-case
idleness of a team of two robots, given that the robots do
not have the same velocity, and show that in some cases the
uncoordinated behavior outperforms the coordinated one, as

1Supplemental data, including videos and code documentation, can be
found in: http://pharos.ece.utexas.edu/wiki/index.php/ICRA12

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 650



observed in the experiments.

II. THE PATROL PROBLEM AND COORDINATION
MECHANISMS

In the problem of frequency-based multi-robot patrol,
a team of robots is required to repeatedly visit a set of
interesting locations to optimize some visitation frequency
criterion. A key metric for evaluating the performance of
any solution to this problem is the idleness criterion [12],
which is the time between visits by any robot to a point of
interest.

Theoretically, the optimal algorithm requires that the
robots be tightly coordinated, especially in cyclic patrol
routes (e.g. [2], [12], [9], [8]). Tight coordination means all
robots travel along the cyclic path while always maintaining
uniform inter-robot distance (in time). Specifically, if the
travel time along the cyclic path is N time units, then given
k homogeneous robots, the distance between them should be
maintained as N/k throughout the patrol execution.

In reality, constraints posed by the robots (for example
the range of their wireless communication interfaces), the
environment (rough terrains or large environments in which
direct communication between robots is not possible) makes
it at times impossible to obtain perfect coordination. Addi-
tionally, even robots that consist of the same hardware do
not necessarily act uniformly. For example, their velocities
might not be the same due to slight differences in calibration
and maintenance, and sensor performance.

In this work, we examine the use of the following three
coordination mechanisms, and determine empirically and
theoretically the best coordination mechanism for a team of
k robots patrolling along a cyclic set of waypoints.
Uncoordinated: Each one of the k robots patrols along the
set of waypoints oblivious to the presence of the other robots,
i.e., the robots act as k teams, each consisting of one robot,
and not as a team of k robots.
Tightly Coordinated: The robots are given a list of team-
mates in advance. Each robot progresses through one way-
point at a time. Upon arriving at a waypoint, it will not
continue to move until it is sure that its teammates have also
reached their current destination waypoints.
Loosely coordinated: The robots are given a list of team-
mates in advance, but they also maintain a dynamic list of
“active” teammates. If a robot does not hear from a teammate
within some time duration (we set this value to be 5 seconds),
it will remove the teammate from the list and mark it as “out
of range.” Once it hears from a teammate previously noted
as “out of range”, it adds the teammate back again to the list
of active teammates. Each robot acts in tight coordination
only with team members in its active list.

We used two types of message update schemes between
the robots:
Individual Status Messages (ISM): Each robot sends its
own status to its peers.
Global Status Messages (GSM): Each robot sends its own
status plus its known status of its teammates to its peers.

The only means of coordination between the robots is
through explicit communication (specifically, using WiFi).
They are not equipped with sensors to visually or otherwise
identify their teammates. The robots determine their location
and headings using GPS and compass. The control of the
robots’ actions is done using behavior-based control [15],
where the experiment consists of a sequence of one type of
behavior: GoToWaypoint.

III. IMPLEMENTATION

We implement the multi-robot patrol application using the
Pharos testbed [10], which consists of numerous Proteus
mobile robots. These robots are highly modular, enabling
easy customization for specific applications. For our robot
patrol implementation, the robot configuration is shown in
Figure 1. It consists of a customized Traxxas Stampede
mobile chassis and a plane containing computational ele-
ments, a Garmin eTrex GPS receiver, and a CMPS03 digital
compass. The Traxxas Stampede provides non-holonomic
car-like movement. It is upgraded with a more powerful
V11 Rock Crawler Professional motor, a Devantech 20A
MD03 motor controller, stiffer suspension springs, an E4
miniature optical wheel encoder, and dual Tenergy Lithium
polymer 14.8V 11Ah battery packs. These upgrades enable
the robot to easily move and power the computational and
sensing elements that reside above the chassis. While its
theoretical top speed is 10m/s, we software limit the top
speed to 3m/s. When moving at 0.5m/s, its minimum turning
radius is approximately 3m. The batteries enable continuous
operation of the robot for over six hours.

Fig. 1. One of the Proteus robots used in our tests.

The robot’s main computational components are a general-
purpose x86 computer and a microcontroller. The x86 is a
VIA EPIA Nano-ITX motherboard that contains a 32-bit VIA
C7 CPU running at 1GHz, 1GB of DDR2 RAM, a 16GB
compact flash drive, and a CM9-GP IEEE 802.11g WiFi
mini-PCI module based on the Atheros AR5213A chipset.
It runs Ubuntu Linux 11.04 server and Player 3.0.2 [11].
Custom Player drivers provide high-level programming ab-
stractions for robot movement and sensing. The WiFi in-
terface is configured to form a wireless ad hoc network on
channel 1. This is necessary because as the robots move, they

651



will often go out of range of a central base station, rendering
an infrastructure-based network infeasible.

Specialized tasks are handled by a MC9S12DP512 micro-
controller (MCU) that is attached to the x86 via a 115.2kbps
serial UART. The MCU is responsible for controlling and
accessing most of the robot’s actuators and sensors. Specif-
ically, it controls the MD03 motor controller via a PWM
signal and adjusts the robot’s speed based on feedback from
the wheel encoder. It also controls the front servo via another
PWM signal, which determines the steering of the robot.
Finally, the MCU communicates with the CMPS03 digital
compass via I2C, gathering heading information at 5Hz and
sending this information to the x86.

Localization is achieved using the Garmin eTrex GPS
receiver. It is attached directly to the x86 via a 4.8kbps serial
UART connection, and provides location information at 0.5-
1Hz with approximately 3m accuracy. The GPS receiver is
mounted 30cm above the robot on a plastic pole to improve
the accuracy and reliability of the device.

As previously mentioned, the x86 runs Player 3.0.2, which
provides higher-level software abstractions for the robot’s
sensors and actuators. Player’s Position2DInterface
is used to control the robot’s movements and receive
compass data, while the GPSInterface is used to re-
ceive location data. Finally, an OpaqueInterface is
used to transfer debugging and MCU status informa-
tion to the client application, which in this case is the
MultiRobotPatrolServer.

The MultiRobotPatrolServer is written in Java
as a Player client. A unique instance of this applica-
tion runs on each robot and subscribes to the afore-
mentioned Player interfaces. It implements the multi-
robot patrol logic. The server uses Java sockets for net-
work communication with other robots. Currently, the
robots communicate using singlecast TCP links that are
opportunistically formed when two robots are within
range. The MultiRobotPatrolServer also accepts
connections from the MultiRobotPatrolClient. The
MultiRobotPatrolClient runs on a central base
station and is responsible for initializing a multi-robot
patrol experiment. Initially, all patrol robots are placed
within range of the base station. The patrol begins
when the MultiRobotPatrolClient connects to each
robot’s MultiRobotPatrolServer, and informs it
of the team members, patrol type, patrol route, patrol
speed, number of patrol rounds, and starting points. The
MultiRobotPatrolClient then sends a start mes-
sage to each robot causing it to begin patrolling. Note
that by this time, the robots operate independently of the
MultiRobotPatrolClient. This is necessary since the
robots may move out of range of this client while patrolling.

GPS waypoints specify the patrol route. The
MultiRobotPatrolServer follows this patrol route
by encoding it via a behavior-based programming model.
Each waypoint in the patrol route is stored within a unique
GoToWaypoint behavior, which when executed uses GPS
and compass data to navigate the robot from its current

location to the next waypoint. Thus, the actual patrol
activity is implemented as a sequence of GoToWaypoint
behaviors. Per the behavior-based programming model,
behaviors have starting and terminating conditions. In this
case, the start condition for the first GoToWaypoint
behavior is the arrival at the robot’s starting waypoint.
For the remaining GoToWaypoint behaviors, the starting
condition is the completion of the previous GoToWaypoint
behavior. The terminating condition of the GoToWaypoint
behavior is when the robot reaches the behavior’s waypoint
and, depending on the type of patrol, synchronizes with the
other members of the team.

IV. EVALUATION

A. Experimental Settings

To test the multi-robot patrol implementation, we created a
patrol route on a parking lot as shown in Figure 2. Waypoints
are indicated by the markers, and the route is shown by the
arrows. The route consists of six waypoints arranged in a
rectangle. The waypoints are spaced 18.5m to 19.5m apart
forming a route 114.4m in length per round. In all experi-
ments, the robots patrol the route ten times. We performed
experiments involving two and three robots. The robots patrol
the route in the same direction (i.e., clockwise when viewed
from above). To minimize waypoint idleness, the robots
initially start at different waypoints equally spaced along the
route. Specifically, for two robot experiments the starting
waypoints are 2 and 5, and for three robot experiments the
starting waypoints are 1, 3, and 5. For all experiments, the
robots move at a target speed of 2m/s, though the actual
speed is less because the robots slow when they turn, stop if
they fail to receive GPS or compass readings, and stop when
synchronizing with teammates in coordinated patrols.

Fig. 2. The patrol route used to evaluate our multi-robot patrol implemen-
tation.

For two robot experiments, we performed uncoordinated,
loosely coordinated, and tightly coordinated tests. Two-robot
teams only use ISM messaging since there is no global
information to share among the robots other than the status
of themselves. For three robot experiments, we perform
uncoordinated, loosely coordinated ISM, loosely coordinate

652



GSM, tightly coordinated ISM, and tightly coordinated
GSM.

Each experiment is run twice, enabling us to verify the
stability of results across experiments. We observed that
the general trend was maintained across different types of
experiments and thus, for brevity, we present average values
across both uncoordinated and loosely coordinated experi-
ments. The results of the tightly coordinated experiments are
omitted because, as will be discussed, they promptly fail due
to wireless disconnection between the robots.

B. Experimental Results

Experiments are successful if they execute to completion.
This occurs when all robots complete the desired number
of patrol rounds, which is ten in this case. As previously
mentioned, each experiment is executed twice. Table I shows
which types of experiments executed successfully and which
failed. The failed experiments involve tight robot coordina-
tion. In these experiments, wireless disconnection resulted in
the entire system entering a deadlock state with every robot
waiting for another robot to announce their arrival at their
waypoint. In a ISM test, a permanent wireless disconnection
between any two pairs of robots will result in this deadlock.
In a GSM test, any partition among the robots in the network
will result in deadlock. The results clearly indicate that in the
real-world where wireless links are dynamic and unreliable,
an uncoordinated or loosely coordinated strategy is superior
because it enables the system to avoid deadlock, i.e., it is
more robust to communication failures.

Two Robots Three Robots
Uncoordinated Success Success
Loosely Coordinated ISM Success Success
Loosely Coordinated GSM N/A Success
Tightly Coordinated ISM Fail Fail
Tightly Coordinated GSM N/A Fail

TABLE I
THE SUCCESS AND FAILURE OF MULTI-ROBOT PATROL EXPERIMENTS.

The average waypoint idleness for the successful exper-
iments is shown in Figure 3. The results are the averages
across two executions of each the same experiment. Error
bars denote 95% confidence intervals. As expected, adding a
third robot reduces the overall average waypoint idleness.
In the two-robot scenarios, the average of the uncoordi-
nated case is lowest, but its confidence interval is very
large relative to the coordinated case. This indicates that
loosely coordinating the robots increases the predictability
of the waypoint idleness, though at the cost of slightly
higher average idleness. In the three robot case, the average
idleness in the uncoordinated scenario is far lower than any
coordinated scenario, even when considering the confidence
intervals. The loosely coordinated ISM scenario performs
better than the GSM scenario, despite GSM disseminating
more robots status information. The surprising results are
caused by coordination overhead, and indicate that any form

(a) Two Robots

(b) Three Robots

Fig. 3. The average idleness of each waypoint.

of coordination will only increase the average waypoint
idleness, which is undesirable.

To understand why coordinated patrol has increased idle-
ness, consider the amount of time robots spend waiting at a
waypoint for their teammates to synchronize. This is shown
in Figure 4. Clearly increasing the number of robots results
in an increase in the wait time at each waypoint. When GSM
coordination is used, the wait time increases even more since
robots may wait for teammates who are not directly within
wireless range. As expected, the uncoordinated scenario has
the least wait time (nearly 0) since the robots do not wait
for their teammates at each waypoint. These significant
periods where a robot waits for its teammates explain the
elevated waypoint idleness in the coordinated scenarios. One
interesting observation is that while increasing the number
of robots results in a decrease in waypoint idleness, it results
in an increase in average wait time at each waypoint since
there are more robots with which to synchronize.

The amount of time to complete each experiment is shown
in Figure 5. Again, the results are the averages across two
executions of each experiment type. In all experiments the
robots leave from the same spot, which is our home base next
to the patrol route. The start and end times of an experiment
are calculated as the time they were launched to the time
they reach the final waypoint in the route, respectively. The
results show that the three robot uncoordinated scenario is the
fastest and that multi-robot coordination increases the total
duration. The results also show that GSM coordination in the
three robot scenario increases the duration over the ISM case
by nearly 300s (5 min.), demonstrating the high overhead
of multi-hop coordination. As expected, the uncoordinated

653



(a) Two Robots

(b) Three Robots

Fig. 4. The average wait time at each waypoint.

scenarios exhibit the highest variation in robot completion
times since the robots do not wait for each other and may
operate at different speeds due to variations in the calibration
of their mobility components and accuracy of the sensors
used for navigation.

Fig. 5. The average time to patrol the route ten times.

In the coordinated scenarios, the robots transmit their
status to their teammates approximately once every second.
Since the wireless network is opportunistic and dynamic
due to node mobility, some of these messages are lost. The
number of messages that were transmitted, received, and the
percentage lost are shown in Table II. Three robot networks
have higher message loss than two robot networks, perhaps
due to increased wireless collisions when there are three
transmitters. In general, the frequent message loss, among
other considerations such as heterogeneity in the robots’
velocity, further motivates the use of loose coordination over
tight coordination.

Num. Tx Num. Rx Msg. Loss
2 Robots Loosely 4,315 3,690 10.8%
Coordinated
3 Robots Loosely 13,372 9,042 32.4%
Coordinated ISM
3 Robots Loosely 16,768 13,379 20.2%
Coordinated GSM

TABLE II
THE NUMBER OF COORDINATION MESSAGES TRANSMITTED, RECEIVED,

AND THE PERCENTAGE OF THESE MESSAGES LOST.

V. OPTIMALITY OF PATROL FOR TWO HETEROGENOUS
ROBOTS

As stated in Section IV, a somewhat unexpected exper-
imental result was that the uncoordinated patrol performed
better than the coordinated patrol in terms of average idle-
ness. Based on the difference between the patrol time of
individual robots (see Figure 5), we concluded that this
discrepancy was based on the fact that the robots are not
homogenous, but have different velocities. In this section we
provide theoretical results that shed light on the empirical
superiority of the uncoordinated patrol.

When the robots are homogenous, and specifically have
the same velocity, the optimal patrol scheme for a team
of k robots was shown to be the tightly coordinated one
[4], [7], [8]: The robots should spread uniformly along the
cyclic path, and maintain uniform distribution between them
throughout the execution. If the time it takes a robot to
travel along the entire cyclic path is N time units, then,
by maintaining uniform distance (in time) along the path,
the guaranteed idleness along the path is exactly N/k.
Specifically, the worst idleness along the path and the average
idleness at each point along the path is also N/k.

When the robots are not homogenous, and have different
velocities, the optimality of the tightly coordinated patrol
scheme is not maintained. As mentioned above, we evaluate
the patrol using two criteria: worst idleness, which is the
greatest idleness reported at some point along the path during
the execution of the patrol algorithm, and average idleness,
which is the average idleness at each point along the path.

Denote the velocity of robot Ri, 1 ≤ i ≤ k, by vi
(measured, w.l.o.g. in m/sec), and the length of the path
by S (measured, w.l.o.g., in meters). Assume without loss
of generality, that for a 2-robot team, v2 > v1. Therefore, if
the robots are coordinated, then both travel at velocity v1.

We omit the proofs of the lemmas due to space limitations.

Lemma 1: In a team of two robots, if 2v1 ≤ v2, then
the coordinated patrol does not perform better than the
uncoordinated patrol in terms of both worst and average
idleness.

Lemma 1 provides only a tight bound on the minimal
velocity of R2 that makes it worthwhile to choose the
uncoordinated patrol in terms of worst idleness. The average
idleness can be lower using the uncoordinated scheme also
for lower velocities of v2. The following lemma provides

654



a tighter bound on the average idleness obtained by the
coordinated vs. the uncoordinated patrol when v1 < v2 <
2v1. Denote the least common multiple of S/v1 and S/v2
by dt = lcm(S/v1, S/v2).

Lemma 2: In a team of two robots, if dtS/v1 ≤ dt

S/v2
−

1, then coordinated patrol does not perform better than the
uncoordinated patrol in terms of average idleness.

Returning to the experimental results, we see that in the
two-robot uncoordinated patrol, one robot (R1) completed a
pass through the points at an average of approximately 100
seconds, while the second robot (R2) completed a cycle in
an average of approximately 80 seconds. dt in this case is
400, and hence 400

100 = 4 ≤ 400
80 − 1 = 5 − 1 = 4, and

the dominance of the coordinated patrol is not guaranteed.
Note that Lemma 2 does not take into account time spent
on coordination (exchanging messages to make sure that
all robots are synchronized). Therefore, considering also
the coordination time, the coordinated patrol is expected
to perform even worse than the uncoordinated patrol, as
demonstrated in the experiment.

VI. RELATED WORK

The problem of multi-robot patrol has become a canonical
problem in multi-robot systems in the past few years due
to its immediate applicability in various domains, mainly
security and safety applications. As such, there is a great
deal of work in this area. Two aspects of the problem are
considered in the literature: adversarial patrol, in which
the team’s goal is to maximize its chances of detecting
an adversary trying to penetrate through the patrol path
undetected (e.g. [5], [2]); and frequency based patrol, in
which the team’s goal is to optimize some frequency criteria,
for example to minimize time intervals between visits or
to guarantee minimal deviation between such time intervals
along the patrol path (e.g. [4], [16], [7], [8]). The latter is
the focus of our paper.

The first analysis of the multi-robot patrol problem was
presented by Mechado et al.[12], where they introduced the
notion of idleness as the time between consecutive visits
along points of interest in a graph. They evaluated several
strategies for generating multi-robot patrol paths in simu-
lation. The question they examined was how to find patrol
paths for robots such that the worst idleness is minimized.
Their work did not consider real robotic communication
capabilities, and assumed centralized decision making.

Other theoretical work in multi-robot patrol concentrated
on similar questions, and varied in their suggested solutions.
For example, Elmaliah et al.[8] considered multi-robot patrol
in areas in which some restrictions exist on the domain
(mainly the possibility of representing the world on specific
types of grids), finding a minimal cost Hamiltonian cycle
in polynomial time while accounting for possible directional
velocity constraints. Recently, Portugal and Rocha [16] con-
sidered the problem of multi-robot patrol in graphs, where
the graph is partitioned such that each robot is assigned
to a region of the graph. They evaluated the solution in
simulations. Agmon et al.[3] described the general problem

of multi-robot patrol, accounting for different strategies for
dividing a graph between robots—either with or without an
overlap between the subgraphs associated with each robot.
They evaluated their heuristic solution on a ship simulator,
accounting for real environmental and ship constraints, such
as sea currents, winds and physical capabilities of the ship.
However, their algorithm is also centrally executed, and
concentrates on finding an optimal patrol path for the robots.

Elmaliah et al.[9] considered the problem of multi-robot
patrol along an open fence. In their work they generated
an algorithm for determining the optimal patrol path for
each robot while accounting for accumulation of errors in
robot motion, representing this error in travel time. They
performed an evaluation using real robots, and have shown
that the algorithm that takes into account these deviations
from flawless motion indeed guarantees better point-visit
frequencies. However, in their work they also base their
patrol on tightly coordinated behavior, where in most parts
of the patrol (aside for one endpoint of the open fence)
the robots are committed to maintaining uniform distance
between them.

Marino et al.[13], [14] also considered a real robotic
environment, and suggested a fully distributed behavior-
based framework for multi-robot perimeter patrol. They do
not use explicit communication between the robots, but each
robot base its understanding of the world on its sensing
capabilities, i.e., by observation. In our work we examine
the influence of the communication on the coordination
mechanism of the robots, comparing the resulted frequency
of visits of a point across the different mechanisms.

Finally, since mobile wireless ad hoc networks are inher-
ently less reliable than traditional networks, many network
protocols and middleware services exist that aim to improve
reliability in such networks. They touch multiple levels of
the network stack and employ diverse strategies including
increasing information spread [20], [6], better broadcast
scheduling [19], network coding [21], introducing delay-
tolerance [1], and context-aware adaptation [18], [17]. In
this paper, we utilize the standards-based network stack
available on Ubuntu Linux. The aforementioned protocols
and services were not used because of their proprietary
nature. Regardless, determining their impact on multi-robot
patrol is an interesting direction for future work.

VII. CONCLUSIONS AND FUTURE WORK

Due to modeling and approximations, simulations and
theoretical results often produce conclusions that do not
perfectly reflect reality. In the case of multi-robot frequency-
based patrol that we examine in this paper, there is sig-
nificant inconsistency between theoretically proven optimal
behavior and practical results. This divergence originates
from a combination of two real-world phenomena: unreliable
wireless network connectivity among mobile robots and the
heterogeneity of robots in a team. Through experimentation
in a real-world robotic testbed, we demonstrated that the
uncoordinated and loosely coordinated-ISM algorithms per-
formed better than the theoretically ideal algorithm, which

655



repeatedly fails. Moreover, by relaxing the prior theoretical
assumptions to more closely reflect reality, we have shown
theoretically that in heterogeneous teams, it is sometimes
optimal to act without coordination, as if each robot is part
of its own individual team.

As future work, we would like to extend both the theo-
retical analysis and the empirical evaluation to larger teams
of robots. We intend to examine continuous synchronization,
where robots do not necessarily stop when waiting for their
teammates and can instead continuously synchronize even
when between waypoints. We would also like to evaluate
how the properties of the mobility plane impacts the per-
formance of the multi-robot patrol algorithm. For example,
we could switch to Segway RMP 50-based robots, which
can turn in place, but can only move at 1.7m/s (versus the
Traxxas Stampede, which can move at up to 10m/s).

VIII. ACKNOWLEDGEMENTS

This work was funded in part by AFOSR DURIP project
number FA9550-07-1-0502. The work was also taken place
in the Learning Agents Research Group (LARG) at UT
Austin. LARG research is supported in part by NSF
(IIS-0917122), ONR (N00014-09-1-0658), and the FHWA
(DTFH61-07-H-00030).

REFERENCES

[1] S. B. A., Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and
H. Weiss. Delay-tolerant networking: an approach to interplanetary
internet. Communications Magazine, IEEE, 41(6):128 – 136, june
2003.

[2] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol
in adversarial settings. In Proc. of ICRA’08, 2008.

[3] N. Agmon, D. Urieli, and P. Stone. Multiagent patrol generalized to
complex environmental conditions. In Proc. of AAAI’11, 2011.

[4] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Cor-
ruble, and Y. Chevaleyr. Recent advances on multi-agent patrolling.
Lecture Notes in Computer Science, 3171:474–483, 2004.

[5] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower strategies for
robotic patrolling in environments with arbitrary topologies. In Proc.
of AAMAS’09, 2009.

[6] E. Biagioni and S. H. Chen. A reliability layer for ad-hoc wireless
sensor network routing. In Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) - Track 9 -
Volume 9, 2004.

[7] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling
problem. In Proc. of IAT’04, 2004.

[8] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol
under frequency constraints. Annals of Math and Artificial Intelligence
journal (AMAI), 57(3—4):293—320, 2009.

[9] Y. Elmaliach, A. Shiloni, and G. Kaminka. A realistic model of
frequency-based multi-robot fence patrolling. In Proc. of AAMAS’08,
pages 63–70, 2008.

[10] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and S. Vishwanath.
Pharos: A testbed for mobile cyber-physical systems. Technical Report
TR-ARiSE-2011-001, University of Texas at Austin, January 2011.

[11] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In In Proc. of the
11th International Conference on Advanced Robotics, pages 317–323,
2003.

[12] A. Machado, G. Ramalho, J. Zucker, and A. Drogoul. Multi-agent
patrolling: An empirical analysis of alternative architectures. In Proc.
of MABS’02, pages 155–170, 2003.

[13] A. Marino, L. Parker, G. Antonelli, and F. Caccavale. Behavioral con-
trol for multi-robot perimeter patrol: A finite state automata approach.
In ICRA, 2009.

[14] A. Marino, L. E. Parker, G. Antonelli, F. Caccavale, and S. Chiaverini.
A fault-tolerant modular control approach to multi-robot perimeter
patrol. In ICRA, 2009.

[15] L. E. Parker. On the design of behavior-based multi-robot teams.
Journal of Advanced Robotics, 10:547–578, 1996.

[16] D. Portugal and R. Rocha. Msp algorithm: multi-robot patrolling based
on territory allocation using balanced graph partitioning. In Proc of
the 2010 ACM Symposium on Applied Computing, SAC ’10, 2010.

[17] G. C. Roman, C. Julien, and H. Qingfeng. Network abstractions
for context-aware mobile computing. In Proceedings of the 24rd
International Conference on Software Engineering (ICSE), pages 363
–373, 2002.

[18] R. Sen, R. Handorean, G. Roman, G. Hackmann, and C. D. Gill.
Knowledge-driven interactions across mobile ad hoc networks. Int. J.
Cooperative Inf. Syst., 16(1):123–153, 2007.

[19] M. Slavik and I. Mahgoub. Statistical broadcast protocol design
for unreliable channels in wireless ad-hoc networks. In Global
Telecommunications Conference (GLOBECOM), pages 1 –5, 2010.

[20] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient routing
in intermittently connected mobile networks: The multiple-copy case.
IEEE/ACM Transactions on Networking, 16(1):77 –90, 2008.

[21] Z. Yang, M. Li, and W. Lou. R-code: Network coding based reliable
broadcast in wireless mesh networks with unreliable links. In Global
Telecommunications Conference (GLOBECOM), pages 1 –6, 2009.

656


