
A Platform for Evaluating Autonomous Intersection Management Policies

Chien-Liang Fok, Maykel Hanna, Seth Gee, Tsz-Chiu Au,

Peter Stone, Christine Julien, and Sriram Vishwanath

University of Texas at Austin

{liangfok,michael.jean,seth.gee,c.julien,theory}@mail.utexas.edu, {chiu, pstone}@cs.utexas.edu

Abstract—There is a significant push towards greater vehic-
ular autonomy on roads to increase convenience and improve
overall driver experience. To enable this autonomy, it is imper-
ative that cyber-physical infrastructure be deployed to enable
efficient control and communication. An essential component
of such road instrumentation is intersection management.
This paper develops an intersection management platform
that provides the sensing and communication infrastructure
needed to enable efficient intersection management policies.
The testbed, located in a indoor laboratory, consists of an
intersection and multiple robotic vehicles that can sense and
communicate. Whereas traditional approaches to intersection
management rely on simulations, this testbed enables the first
realistic evaluation of several intersection management policies.
Six simple but practical centralized and distributed policies
are evaluated and compared against the current state of the
art, i.e., traffic signals and stop signs. Through extensive
experimentation, this paper concludes that, in the scenario
tested, even a simple coordinated management policy can halve
vehicular delay, while improving the aggregate traversal time
of the intersection by 169%.

Keywords-Autonomous vehicles, Intersection management

I. INTRODUCTION

Imagine driving down a deserted street and approaching

a traffic signal at a four-way intersection. Suppose there are

no obstructions preventing you from seeing cross-traffic. As

you approach the light turns red, forcing you to stop despite

no conflicting traffic. Throughout the entire red cycle the

vehicle is idling — wasting time and energy.

The above scenario, while simplistic, illustrates a fun-

damental problem with our current vehicular transportation

system. In particular, the delays and waits at intersections

can be extremely frustrating and inefficient. Increasing the

degree of autonomy in how vehicles are scheduled to cross

intersections can lead to shorter drive-times and enhanced

overall driving experience. Although vehicle autonomy is

desirable at all times and not just at intersections, complete

autonomy is a highly complex problem that requires consid-

erable effort and thorough testing before it becomes a reality.

Indeed, there is a vast and growing body of work on enabling

full vehicular autonomy [1], [2]. In this paper, we focus

on a critical component in the goal of fully autonomous

vehicles—the ability to autonomously and safely navigate

intersections.

A majority of existing research on autonomous vehicles

focuses on enabling vehicles to operate on current roads,

which are designed for human-operated vehicles. These

include techniques from machine learning and artificial

intelligence to enable vehicles to recognize road markings,

road signs, traffic signals, other vehicles and pedestrians,

and, in general, the laws of the road. While this is essential

for a gradual transition from human-controlled vehicles to

autonomous ones, it limits the efficiency gains that can be

afforded by the switch since all of these constructs are

tailored to the relatively sluggish response times and low

communication expressiveness of human drivers (i.e., we

honk, “nudge forward”, flash the lights, etc.). Going back

to the scenario, an autonomous vehicle at an empty stop-

light would still be left idling, wasting time and energy,

despite the ability to safely cross. Thus, research on vehic-

ular autonomy should be combined with a re-thinking of

conventional vehicular-management systems. For example,

replacing traffic signals with an intersection manager could

enhance intersection throughput. Developing an understand-

ing of whether this throughput increase is indeed possible

in a safe and reliable manner is the main goal of this paper.

We reiterate that autonomous intersection management

does not require that all vehicles be fully autonomous at

all times. It only requires that intersections and vehicles be

instrumented such that vehicular management at intersec-

tions can be conducted autonomously. Once the intersection

is safely navigated, the vehicle can be returned to human-

control to perform other complex tasks (such as merging,

lane changes etc.). In this way, autonomous intersection

management can be restricted to select (critical) intersec-

tions that are particularly accident-prone and/or are traffic

bottlenecks.

We investigate mechanisms by which road intersections

can be improved by instrumenting the intersection with ad-

vanced management schemes and the vehicle with the ability

to sense properties of the intersection and communicate with

a scheduler and/or other vehicles over a wireless network.

Instead of forcing every vehicle to stop, as is the case of

stop signs, or to cycle among non-conflicting paths through

the intersection at predetermined intervals, as is the case

with traffic signals, new forms of intersection management

entail a system that dynamically reacts to and communicates

with traffic, enabling vehicles to cross the intersection with

lower delay. We refer to such a system as an autonomous
intersection.

2012 IEEE/ACM Third International Conference on Cyber-Physical Systems

978-0-7695-4695-7/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCPS.2012.17

87

Underlying our investigation is the requirement that vehi-

cles detect that they are approaching, entering, and exiting an

intersection. Vehicles must coordinate with each other and/or

the intersection itself to ensure safe and efficient passage, po-

tentially without stopping or even slowing down. Such ideas

have previously been investigated using simulations [3], or

mixed reality simulations involving a single vehicle [4]. Our

work differs from these in the following ways:

• It is a multi-vehicle robotic testbed located in an in-

strumented laboratory; our results are based on system

measurements and not (simplistic) simulated models for

vehicular motion and communication.

• We devise simplified intersection management policies

that account for the limits and nuances of a real cyber-

physical system. These policies are low in complexity

and found to be robust in practice.

By evaluating an actual cyber-physical system, we account

for scalability, robustness, safety, and overall performance of

these policies in terms of the physical characteristics of the

vehicle and surrounding environment, all of which are near-

impossible to accurately replicate in a simulator.

This paper is organized as follows. The next section

discusses related work. Section III provides the problem

definition. It is followed by our approach (Section IV)

which also details the intersection management policies we

evaluate. Section V presents our implementation, followed

by an evaluation and experimental results in Section VI. The

paper ends with conclusions and future work in Section VII.

II. RELATED WORK

Research on vehicular autonomy has made significant

progress in recent years. This was in part due to a series

of robotic car competitions like the DARPA Grand Chal-
lenges [5]. These competitions accelerated the development

of autonomous vehicles to the point where the technical

problem of open-road autonomous driving is considered by

some to be essentially solved [3]. The non-technical barrier

for the adaptation of autonomous vehicles are largely traffic

laws and regulations, though this is also being overcome [6].

The vast majority of research on autonomous vehicles

focuses on how to ensure they run on existing road infras-

tructure; there is limited literature on understanding changes

to road infrastructure that can facilitate vehicular autonomy.

One such project on jointly optimizing autonomous vehicles

and road infrastructure is the PATH program, which relies

on magnetic markers in the roadway for measuring steering

angle and vehicle movements [7]. The Autonomous Intersec-

tion Management (AIM) protocol [3], [4], [8] is a vehicle-

to-infrastructure (V2I) mechanism in which vehicles request

space-time in the intersection for their trajectories prior to

arriving at the intersection; a server at the intersection han-

dles these requests, granting or rejecting reservations using

a grid-based collision detection scheme. This protocol is

enhanced to reduce network traffic and increase safety using

spatial-temporal buffers surrounding the vehicles [8]. While

AIM is feature rich, it was evaluated either purely through

simulations [3] or mixed reality simulations involving one

vehicle [4]. AIM is one of the many intersection manage-

ment schemes that can be evaluated using our testbed. In

this paper, we implement several intersection management

schemes that have lower computational complexity than (and

are sometimes simplified versions of) AIM and demonstrate

that such policies increase intersection efficiency over tradi-

tional traffic-signal-based schemes.
Vehicle-to-Vehicle (V2V) forms of autonomous intersec-

tion management have also been investigated [9], [10]. In

this form, no centralized server is required (i.e., there is no

single point of failure) and vehicles coordinate in a peer-

to-peer fashion when crossing the intersection. Naumann et
al. investigated a distributed policy that uses virtual “tokens”

that a vehicle must possess to cross certain contested areas of

the intersection [9] and formally evaluated it using petri-nets.

VanMiddlesworth et al. developed a protocol that enables

vehicles to “call ahead” to reserve space-time in the inter-

section [10]. Their protocol outperformed the traditional stop

sign in light traffic. We implemented a slightly simplified

version of the protocol in [10] that does not use estimated

time of arrival and demonstrated that it also outperforms a

stop sign in light traffic.
Other researchers have investigated autonomous intersec-

tions using real systems involving multiple mobile vehicles.

For example, Kolodko and Vlacic used golf-cart-like Imara

vehicles in evaluating an autonomous intersection [11]. In

their study, all vehicles must come to a complete stop at

the intersection irrespective of traffic conditions. This is

analogous to the stop sign policy in this paper. Our work

differs in being a framework for evaluating many different

intersection management policies.
Finally, many other mobile wireless network testbeds

exist [12], [13]. Our work differs in it focus on autonomous

intersections and not purely on wireless communication.

III. PROBLEM DEFINITION

In this section, we describe the key challenges addressed,

our assumptions, and desiderata of our testbed.

A. Challenges
The first challenge is how to design and implement a

testbed and software infrastructure for evaluating a wide

range of intersection management policies. The framework

must be flexible to account for V2I and V2V policies that

require different context information at different times.
The second challenge relates to using the testbed to

evaluate actual management policies, thereby demonstrating

our framework’s efficacy. This is challenging because it

requires actual system deployment. The goal in doing this is

to gain insight into the potential real-world efficiency gains

alternative intersection management policies can provide

relative to existing traffic signal and stop sign-based policies.

88

B. Assumptions

We assume all vehicles crossing the intersection are

autonomous, will actively participate in the employed man-

agement policy, and travel straight through the intersection

without turning or switching lanes. Handling occasional

non-autonomous vehicles, pedestrians, and cyclists, turning,

lane switches, and hardening the system against faults and

adversaries are essential. However, they are left as future

work to reduce the complexity of our initial implementation,

and enable us to focus on the aforementioned primary

challenges. Solutions for handling many of these challenges

exist, though they have only been evaluated in simulation.

In addition, a few more assumptions are made. First,

we require the autonomous vehicles to communicate with

each other and the surrounding infrastructure over wireless

network links. Second, we require the autonomous vehicles

to be equipped with sensors that can precisely detect when

the vehicle is approaching, entering, and exiting the inter-

section. For example, overhead markers may be installed

that can be detected by the vehicles as they pass underneath

(similar to existing toll collection points on our highways).

For now, the detection of these points need to be absolutely

reliable, though this may be relaxed in the future as more

advanced fault-tolerant intersection management policies are

developed. Note that depending on the management policy

employed, the vehicle may not need to know additional

details of the intersection like its size, location, and ori-

entation, though the testbed should support the delivery

of such information. Finally, we assume that the vehicles

have sufficiently powerful brakes or that the lanes have a

sufficiently-wide buffer zone on either side (i.e., a shoulder),

to enable a vehicle traveling at the speed limit to stop upon

detecting the entrance of the intersection, and not end up

blocking any of the cross traffic lanes. In our current system,

the vehicles have a stopping distance of about 21cm when

traveling at 0.5m/s, and a buffer of 69cm is used to ensure

safety when vehicles stop at the intersection’s entrance.

Finally, we assume that the employed policy remains

constant. Investigating how the policy can be dynamically

changed on-line based on context like amount of traffic, time

of day, and the weather is an area of future work.

C. Desiderata

Real system. The key components of the testbed, which

include the vehicles, the intersection, and the infrastructure

for managing the intersection, should all be real and not

virtual entities in a simulator. All of the sensing necessary for

the vehicles to participate in the intersection should be done

using real sensors. This includes sensors that detect the key

points of the intersection (i.e., the points of approach, entry,

and exit), and the sensors that enable the vehicles to follow

lanes that traverse the intersection. All of the computation

and communication necessary to coordinate safe traversal of

the intersection should be done live and not a prori in an

off-line manner. The goal is to keep the testbed as realistic

as possible to capture the highly complex interactions that

occur between the cyber and physical elements in a real

autonomous intersection.

Extensible and flexible. The testbed should be easily

extensible to support evaluating new intersection manage-

ment algorithms, types and numbers of vehicles, and types

of intersections. An important contribution of this testbed

is to provide a foundation on which different intersection

management policies can be evaluated and compared. The

testbed should support a wide variety of vehicles with dif-

ferent physical properties like width, height, weight, turning

radius, rate of acceleration, and stopping distance since

future autonomous vehicles will likely exhibit such diversity,

just as how our human-controlled vehicles do today. The

cost of each vehicle should be low enabling large scale

experiments involving many vehicles. Finally, the testbed

should enable testing different types of intersections, e.g.,

with different numbers of roads or different numbers of lanes

in each road.

Safety. Since we are working with a real system that

contains many dynamic components and parts, maintaining

absolute safety is critical. Ideally, intersection management

policies should prevent collisions, even in the face of

unpredictable system behavior like wireless disconnection.

However, in case they fail, the resulting collision should not

endanger anyone’s life. We achieve this in our testbed by

scaling down the system and using lighter-weight vehicles

that cause little permanent damage when they collide.

IV. APPROACH

We approach the problem of evaluating intersection man-

agement policies for autonomous vehicles from both a cyber

and physical perspective.

A. Cyber-Approach

From a cyber-perspective, we developed a software frame-

work that provides infrastructure for rapidly implementing

and evaluating a highly diverse set of intersection manage-

ment policies. The key cyber-components of this infrastruc-

ture are shown in Figure 1. They consist of an experiment

manager running on a central control station, an autonomous

intersection client running on each vehicle, and an optional

server located at the intersection; the latter is used by V2I

intersection management policies.

Since autonomous intersections are naturally distributed

systems and at a minimum consist of numerous mobile

vehicles, coordinating the start of an experiment is not

trivial. Our experiment manager communicates with each

of the participating vehicles prior to the start of the experi-

ment. It takes as input an experiment configuration file that

specifies the experiment name, type, and vehicles used. If

the experiment is evaluating a V2I policy, it also specifies

the address of the central server managing the intersection.

89

��������	
�
�
	
����

�����
��	����
�����

��
�	�������	
�������	�
������������	
���

��
�	������
�	
�������	�����	
�
����	
��
���	�

��������
���	��

��
�	������
�	
�������	�����	
�

����	
��
���	�

�	
�
���

��
��

�	

�
��

��	
��

�
�

��
	�

�

�����	
���

Figure 1. The cyber-elements of our autonomous intersection
testbed

Upon receiving the experiment configuration, the experiment

manager wirelessly connects to the autonomous intersection

clients running on each vehicle, informing them of the

experiment parameters. It then coordinates the start of the

experiment ensuring all vehicles begin moving at approxi-

mately the same time.

Prior to running the experiment manager, an autonomous

intersection client is started on each vehicle. This client is

a software process that executes the autonomous intersec-

tion management protocols to safely navigate across the

intersection. To keep this component generic and support

the evaluation of a diverse set of intersection management

policies, the client simply defines an abstract client dae-

mon and provides the supporting infrastructure needed by

specific instances of the daemon that implement the actual

intersection management protocols. Specifically, the client

provides the daemon a network interface for both single and

multi-cast communication, a vehicular kinematics interface

for controlling the speed and steering of the vehicle, an

event interface for informing the daemon when the vehicle

is at critical points around the intersection, and relative state

information like from which points the vehicle will enter and

exit the intersection. The client selects which client daemon

to instantiate and use based on the experiment configuration

message from the experiment manager.

To support V2I autonomous intersection management

schemes, we provide an autonomous intersection server,

which is a software process that runs on a machine at

the intersection. As the vehicles approach and cross the

intersection, they communicate with this server using a

protocol set by a specific intersection management policy.

Like the client, the server is designed to be generic. It

simply defines an abstract server daemon and provides the

infrastructure for supporting instances of the daemon. Each

instance of the server daemon implements the server-side of

a specific autonomous intersection management policy. The

server provides the daemon specifications of the intersection,

a network interface, and interfaces for accessing relevant

protocol-specific sensors. The selection of which server

daemon to use is done when the server is started, which must

occur prior to the beginning of the experiment. We for now

assume that the server runs the same protocol throughout its

lifetime. As mentioned previously, the ability to dynamically

change intersection management protocols based on context

is left as future work.

B. Physical Approach

The physical design of the autonomous intersection

testbed impacts how the vehicles move and detect the

intersection and the repeatability of experiments. To simplify

aspects of the system not directly related to the evaluation

of intersection management protocols, we create a “clean-

room” environment for the intersection. There are no obsta-

cles or unexpected debris in the road that need to be detected

by the vehicles. In addition, markers are installed at the

critical points along the intersection as shown in Figure 2.

They include the starting locations of the vehicles and the

points of approach, entry, and exit from the intersection.

These markers ensure the robots begin at the same location

across experiments (i.e., that the initial physical state of the

system is consistent across runs) and are easily detected by

the vehicle using simple sensors and do not require complex

computer vision object-recognition algorithms. In the real

world, a reasonable analog may be RFID tags mounted

above the lanes that can be read by vehicles as they pass

under it.

���������	
�
���	
����

�	����	
��!��	
�
���	
����

������

���������

�	����

�!���

������	����������

������

��������

�	����

�!��

������	���������

Figure 2. The physical markers placed around our autonomous
intersection testbed. A four-way two-lane intersection is shown here
as an example. Other intersection configurations are supported, but
the relevant markers remain the same.

Prior to conducting an experiment, the vehicles are phys-

ically placed in their starting locations, which are shown

by the green diamonds in Figure 2. They are oriented

to face towards the intersection. Note that a lane may

contain multiple vehicles. Lanes are demarcated by lines

on the ground that the robot can follow using a simple

90

vision sensor. When the client receives the start message

from the experiment manager, it moves the vehicle forward

while following the lane. Upon detecting the marker at

the approaching point, the client’s daemon initiates the

intersection management protocol that it implements. The

protocol should ideally grant the vehicle permission to cross

the intersection by the time it reaches the entry point. If it

fails to do this, the vehicle must stop and wait for permission.

Upon gaining permission to cross, the vehicle travels across

the intersection and eventually past the exit marker. This

illustrates our basic approach at establishing a cyber-physical

testbed for evaluating intersection management schemes for

autonomous vehicles. The next sub-section provides details

on the actual intersection management policies we devel-

oped. It is followed by a detailed discussion of the system’s

implementation.

C. Autonomous Intersection Management Policies

We developed eight different policies for managing au-

tonomous intersections to demonstrate the flexibility of our

testbed. They are failsafe against wireless communication

failure since the vehicles will not enter the intersection due

to the lack of a grant message. Being simple, these policies

are not flawless, but they demonstrate some naive and

intuitive approaches to autonomous intersection navigation

and illustrate the capabilities of our general purpose inter-

section testbed. In the future, more nuanced policies may

be developed, perhaps by extending one of the following

protocols, and evaluated using our testbed. The policies are

discussed below.

V2I-Sequential. In this policy, the intersection is man-

aged by a central server, which grants vehicles permission

to cross the intersection on an opportunistic basis. Initially,

the server is idle waiting for vehicles to approach. After

reaching the approaching point to the intersection, the ve-

hicle sends the server a RequestAccess message asking

for permission to cross. This message contains the ID of the

transmitting vehicle.1 The vehicle periodically retransmits

this message until it receives a GrantAccess message

from the server, at which point it can cross the intersection.

If the vehicle reaches the entrance to the intersection without

receiving a GrantAccess message, it stops at the entrance

until such a message is received. When the vehicle reaches

the exit marker, it sends an Exiting message to the server

telling it that it has exited the intersection.

The server is relatively simple. It maintains a single

value, grantedVehicle, which records which vehicle is

currently granted permission to cross the intersection. This

value is initialized to null. Each time a RequestAccess
message is received, if grantedVehicle is null, the

server changes the value to be the ID of the sender and

1The ID must be globally unique, e.g., it could be the vehicle’s VIN.

replies with a GrantAccess message. Otherwise, it ig-

nores the request. Ignoring the request is acceptable since

the vehicle will periodically retransmit the request until a

GrantAccess message is received.

Since wireless communication will not be 100% re-

liable in any real-world system, it is possible for the

GrantAccess message to be lost. This will result in

an inconsistent state where the server mistakenly thinks a

vehicle is in the intersection. To account for this, when a

RequestAccess message is received, the server checks

whether the ID contained within this message is equal to

grantedVehicle. If it is, the message is a duplicate and

the server replies with a GrantAccess message. Similarly,

to account for lost Exiting messages, the vehicle period-

ically transmits this message to the server until the server

replies with an acknowledgement. If the vehicle moves out

of range prior to the exiting message getting through, a

lengthy timeout can be set in the server that indicates the

vehicle is mostly likely out of the intersection.

V2I-Parallel. This policy is also managed by a central

server. It is the same as V2I-Sequential except it attempts to

increase the throughput of the intersection by allowing more

than one vehicle to cross the intersection at a time. To do

this, the RequestAccess message contains not only the

ID of the vehicle, but also specifications on where the vehicle

will enter and exit the intersection. Using this information,

the server can determine the path the vehicle will travel

through the intersection and whether it will conflict with

any vehicles already in the intersection. Thus, in this scheme,

the server maintains a list of vehicles that have been granted

permission to cross the intersection. Note that while the core

logic of the client on the vehicle is the same between V2I-S

and V2I-P, different client daemons must be used since they

need to transmit different RequestAccess messages.

V2I-Reservation. This is an enhanced version of V2I-

Parallel that allows vehicles to obtain reservations for future

times when they can enter the intersection. To do this,

the RequestAccess message is extended to include the

amount of time the sending vehicle thinks it will need

to cross the intersection. The server uses this information

to determine the earliest time the vehicle can cross and

responds with this “reservation time.” Upon receiving this,

the client adjusts the speed of the vehicle to arrive at the

entrance just-in-time. Ideally, this would allow the vehicle to

avoid coming to a complete stop. This policy is very similar

to AIM, except it does not perform fine-grain spatiotemporal

allocation of grid locations within the intersection.

V2V-Sequential. This scheme achieves the same seman-

tics as V2I-Sequential except without the use of a central

server. Requiring every intersection to have a server may not

be feasible in reality due to cost, and the server represents a

single point of failure. In addition, this approach highlights

our framework’s flexibility in evaluating both ad hoc and

centralized intersection management schemes. In the V2V-

91

Sequential management scheme, the vehicles communicate

amongst themselves to negotiate when they can each cross

the intersection.

Each vehicle maintains a neighbor list that records the

state of the other vehicles that want to cross the intersection

and the last time a message was received from each vehicle.

This list is initially empty but is populated as the vehicle

approaches the intersection based on wireless beacons it

receives. The potential states of neighbors include idle,

requesting, crossing, and exiting. All vehicles initially start

in the idle state.

When a vehicle reaches the approaching point of the

intersection, it begins to periodically broadcast a beacon

indicating that it is in a requesting state. Simultaneously,

it receives beacons from other vehicles approaching the

intersection. Since in this management scheme only one

vehicle can be in the intersection at a time, if it detects

that other vehicles are requesting, it must decide whether

to yield to another vehicle. To determine which vehicle can

proceed and which must stop, the IDs of the vehicles are

compared. The vehicle with the highest ID is given priority

to cross the intersection first.2 If a vehicle decides to yield

the intersection to another vehicle, it stops at the entrance

to the intersection.

While waiting, the vehicle periodically checks its neighbor

list to determine whether it can potentially cross the inter-

section. It can potentially cross the intersection if there are

no other requesting vehicles, no vehicle in the intersection

(i.e., in the crossing state), or if it has the highest ID

among the requesting vehicles. After determining that it is

potentially safe to cross, the vehicle first waits a minimum

safe duration that is a multiple of the beaconing rate. This

is to gain higher confidence that it is indeed safe to cross.

The period may be adjusted to account for the necessary

level of safety. The longer the period, the more likely the

vehicle can safely cross the intersection; the trade-off is,

of course, unnecessarily delaying vehicles. After this period

expires, if the vehicle still concludes that it is safe to proceed,

it changes its beacons to indicate that it is crossing the

intersection and proceeds to cross. When it reaches the

exit point, it changes its beacon to indicate that it has

finished crossing the intersection. It continues to broadcast

this beacon for a pre-set period of time.

V2V-Parallel. This intersection management scheme is

similar to V2V-Sequential except it enables multiple nodes to

cross the intersection. It does this by including specifications

on where the vehicle is entering and exiting the intersection

in the beacons. Using this information, each node can

determine whether it will interfere with the crossing node.

If a waiting or requesting vehicle determines that it can

2To prevent starvation (i.e, a vehicle waiting at the entrance forever),
more advanced vehicle selection policies can be employed that, for example,
consider how long a vehicle has been waiting at the intersection when
deciding which can go first.

safely cross the intersection simultaneously with a vehicle

that is already crossing, it immediately changes it state to

crossing and begins to cross the intersection. The assumption

is that the vehicles are traveling along parallel lanes, though

not necessarily in the same direction. If vehicles can turn,

additional coordination steps are necessary to ensure the

vehicles that follow the one that is already crossing do not

collide.

V2V-Reservation. This extends V2V-Parallel to support

reservations. It works by having the vehicles broadcast

their self-selected entry time (if determined) and how long

they expect to take crossing the intersection. Using this

information along with the neighbor list and aforementioned

vehicle ID-based ordering, each vehicle computes when it

should enter the intersection and arrive just-in-time.

Stop Sign. This management scheme is designed to model

the behavior of the traditional stop sign. It is a centrally

managed scheme where the vehicles ignore the approaching

marker and only send a request upon reaching and stopping

at the entrance marker. In this scheme, the same server is

used as in the V2I-Parallel scheme.

Traffic Signal. As the name implies, this scheme mimics

the behavior of a traffic signal. The server runs in a cy-

cle periodically granting access to vehicles traveling along

nonintersecting lanes. When several vehicles approach the

intersection almost at the same time, they can be granted

access to enter the intersection (i.e., given green signals) if

their lanes are nonintersecting and no vehicles are occupying

their lanes the intersection; otherwise, only a subset of these

vehicles on nonintersecting lanes can enter the intersection

and the rest will have to wait until next cycle. Note that

in this scheme, the clients run the same daemon as in

V2I-Parallel, but the server runs a special daemon that

implements the semantics of a traffic signal.

Collectively, the stop sign and traffic signal policies pro-

vide a baseline performance against which the other more

flexible schemes can be compared.

V. IMPLEMENTATION

We implemented the autonomous intersection testbed in

Pharos [14], a general mobile computing platform consist-

ing of approximately thirty highly modular Proteus mo-

bile robots. These robots serve as the autonomous vehi-

cles in our system. For this work, we used the hardware

configuration shown in Fig. 3. It consists of a modified

Traxxas Stampede mobile chassis and a module containing

computational elements, a CMUCam2 vision sensor, and

a Sharp GP2Y0A02YK0F Short Range IR range finder.

The computational elements include a general-purpose x86

computer and a Freescale 9S12 microcontroller (MCU). The

x86 is a VIA EPIA Nano-ITX motherboard that contains a

32-bit 1GHz VIA C7 CPU, 1GB of DDR2 RAM, a 16GB

compact flash drive, and a CM9-GP IEEE 802.11g WiFi

mini-PCI module based on the Atheros AR5213A chipset.

92

���������
��������

	���
�����

�����"���

#��������

"$�������������������
	�������������

�

���������
�������

Figure 3. The Proteus Node.

Each Proteus runs Ubuntu Linux 11.04 server and Player

3.02 [15]. Custom Player drivers provide programming

abstractions for vehicle movement and sensing; it is through

these interfaces that we provide the resources needed by the

client daemons on the vehicles. The WiFi interfaces form

an ad hoc network among the robots and with the central

server should one be used.

While scaled down, the Proteus robots are real systems

that move with the same nonholonomic motion as most

real vehicles (i.e., the front wheels steer while the rear

wheels remain straight). In addition, their size (they weigh

6kg and have dimensions of 40x32x35cm) and low cost

(less than $2,500 USD each) prevent catastrophes in case

intersection management schemes fail and collisions occur.

Given the robots’ modularity, where the mobile chassis

and computational plane are decoupled, the Traxxas mobile

chassis can be easily swapped with something larger like a

golf cart. By exploiting this modularity, our testbed enables

users to first evaluate autonomous intersection management

policies using small scale vehicles and to move onto larger

vehicles after gaining confidence in the safety and correct-

ness of a particular policy. For this study, we limit our

experiments to the Traxxas mobile chassis due to limits in

our lab’s physical dimensions and the fact that we are testing

our implementations of various intersection management

policies for the first time.

Using Pharos, we implemented one of the first real-world

managed autonomous intersections that involves multiple

vehicles. Figure 4 shows the testbed configured to evaluate

the performance of intersection management policies in a

four-way intersection of two 2-lane roads. White vinyl tape

denotes lanes. The ground is dark-green outdoor carpet,

which provides a smooth moderate friction surface for the

vehicles to accelerate without excessive tire slippage. The

high contrast between the white tape and dark-green carpet

is necessary for the vehicle’s CMUCam2 to reliably detect

it. The CMUCam2 is mounted on two medium torque HiTec

Figure 4. The Autonomous Intersection Testbed configured with a
4-way intersection of two 2-lane roads. The vehicles are positioned
at their starting points.

HS-322HD Deluxe Servos, which pan and tilt the camera to

ensure a vehicle can follow the lane around curves. As a

vehicle follows the line, it passes under overhead markers

that denote the critical points of approach, entrance, and

exit of the intersection. These markers are constructed of

1 inch PVC pipe and ABS plastic. They rise 66 cm above

the vehicles and span 51 cm across the lane. A 14 cm wide

sheet of ABS plastic facing down ensures the vehicle reliably

detects the marker. The markers are painted black to prevent

confusing the vision sensor, which is searching for a bright

white line that denotes the lane. The vehicle uses its short

range IR range finder to detect these overhead markers as

it follows the lane. Figure 3 shows how this IR sensor is

mounted facing up towards the front of the vehicle to ensure

rapid detection when the vehicle passes under the marker.

The vehicle’s 9S12 MCU samples this sensor at 25Hz, which

is sufficient for the vehicles to reliably detect the markers.

To reduce the chance of false positives, the client on the

vehicle monitors the Traxxas’ wheel encoder and ensure

that consecutive markers are at least 15cm apart (they are

separated by at least 36cm in our test configuration). While

this critical point detection system suffices for our testbed,

the development of alternative more reliable mechanisms is

future work.

In addition to detecting the critical points around the

intersection, it is also important to detect which lane the

vehicle is in. Our system supports several options to achieve

this. The first is to manually specify this in the experiment

configuration file passed to the experiment manager. This is

acceptable since we need to manually place the robots at

their starting locations anyway, meaning we know a priori
how the vehicle will travel through the intersection. The

second option is to use an active range sensor like Cricket

motes installed at the base of markers at the approaching

points of the intersection and on the vehicle. As a vehicle

drives past an approaching marker, the cricket mote on the

vehicle determines the distance to the cricket mote on the

marker and its ID. Together, this information can identify

the lane the vehicle is in. Specifically, if the distance is

93

less than a threshold, the vehicle assumes it is in the lane

corresponding to the ID of the cricket on the marker. Other

technologies like RFID may also be used. In the experiments

presented in this paper, we use the first approach since it is

the simplest.

The software framework that implements the cyber-

portion of our system is primarily written in Java. We use

Java sockets and multicast sockets for network communi-

cation. A Java client interfaces with the Player robotics

framework, enabling our framework to control the vehicle’s

speed and steering and to receive short range IR read-

ings and wheel encoder information for detecting markers.

Object-oriented programming provides a highly extensible

and efficient implementation. All client daemons extend a

master abstract ClientDaemon that implements the core

services including lane following, critical point detection,

and entry/exit point detection mechanisms. Likewise, all

server daemons extend an abstract ServerDaemon that

provides the basic network and sensing interfaces. The same

client daemon is used in the V2I-Parallel, V2I-Sequential,

and Traffic Signal management schemes. This is because the

client does not need to know whether the server is allowing

simultaneous traversals of the intersection, or even imple-

menting traffic-signal semantics. In addition, the Stop Sign

client daemon extends the V2I-Parallel client daemon by

simply ignoring the approaching marker (all other behavior

in the Stop Sign client matches that of the V2I-Parallel client

daemon). In all, by exploiting the object-oriented nature of

the Java programming language, we provide an extensible

framework for evaluating autonomous intersections with

significant code reuse.

VI. EVALUATION

We used our testbed to evaluate our eight different inter-

section management policies. Four vehicles are configured

to cross a four-way intersection between a two 2-lane roads.

The starting locations of the vehicles and the dimensions of

the intersection are shown in Figure 5. The dimensions are

only shown for one lane since the other four lanes are the

same. During the experiment, the speed limit is set to 0.5m/s.

Note that 0.5m/s is a moderate speed since the distance

between the entrance and exit is 199cm, meaning a vehicle

may cross in only 4 seconds. For the Traffic Signal policy,

a 2-phase traffic signal was emulated with a 30s cycle time,

meaning up to � 30
4 � = 7 vehicles may cross per enabled

lane per cycle. After each experiment, we manually reset

the system by physically moving the vehicles back to their

start states and terminating and restarting all vehicle and

intersection software processes.

Each intersection management scheme was executed until

it ran flawlessly ten times (i.e., all four vehicles successfully

crossed the intersection without any collision). The reasons

for failure vary, but are usually due to factors unrelated to the

���������
�	��
����

������������������� �����

���������
�����������

���������
���������

���������
��������

Figure 5. The starting configuration of all experiments performed,
and the dimensions of the intersection used in the evaluations.

intersection management policy.3 For example, most failures

include loss of the start experiment message sent by the

experiment manager to a vehicle, loose wires connecting

the IR or wheel encoder sensors to the MCU, out-of-

focus CMUCam2 vision sensor causing the vehicle to loose

the lane, and the vehicle’s batteries running out of power.

Logical errors in the implementation of an intersection man-

agement policy would sometimes cause failure. However,

such errors could usually be identified and replicated using

our testbed, enabling quick resolution, demonstrating how

our testbed can assist in debugging intersection management

policies.

For the V2I tests, the server was running on the same

machine as the experiment manager, an Apple Macbook Pro

laptop residing next to the testbed. The experiment manager

only runs prior to the start of the experiment and thus does

not consume any computational resources during the actual

experiment. In addition, both entities reside entirely within

the cyber-domain and thus are relatively agnostic to the

actual machine on which they run. The V2I client daemon

was configured to have a request timeout of two seconds,

meaning it would retransmit requests to the server at a rate

of 0.5Hz. Recall that in the current V2I schemes, the server

will simply ignore a request if it cannot be granted.

For the V2V tests, the broadcast period was randomly

selected between 100ms and 1s. This helps avoid repeated

collisions between synchronized beacon transmitters. The

maximum number of consecutive beacons that can be lost

before concluding that a node is disconnected is five. Thus,

if more than five seconds pass and no beacon is received

from a particular vehicle, the vehicle is removed from the

local vehicle’s neighbor list. The minimum safe duration

was set to 2.1s, meaning a node must wait 2.1s after

detecting a potential opportunity to cross the intersection

3For full details of all experiments including raw data and videos, see:
http://pharos.ece.utexas.edu/wiki/index.php/AutoInt#Experiments.

94

��

%�

&�

'�

(�

)��

)%�

)&�

)'�

)(�

%��

������������	
���
�� �	������������ ����������

��
�
��
��
	�

�%������������ �%����	������ �%����
�	���
�� �%������������

�%����	������ �%����
�	���
�� �	����������� ��
�������

Figure 6. The performance of the intersection management policies.

before concluding that it is safe. This period was selected to

enable all other competing vehicles to announce their state

at least twice during this period.

We used extensive logging to enable off-line analysis of

performance. In addition, all experiments were recorded by

an overhead camcorder enabling us to verify the experiment

physically worked (i.e., that all vehicles stopped where they

should and that there were no potential collisions).

The results are shown in Figure 6. They present the

average times over 10 successful executions of each type

of intersection management policy. The error bars denote

95% confidence intervals. We used three values to evaluate

the management policies: time in intersection, wait time,

and grant latency. Time in intersection is the time a node

spends between leaving the entrance and arriving at the

exit. In our scenario, the different intersection management

policies do not significantly impact this duration, which is

about 6s. Since the width of the intersection is 199cm, the

average speed was 199cm
6s = 0.33m/s, which is lower than

the 0.5m/s speed limit. The slower speed and longer time

in the intersection is due to some vehicles stopping at the

entrance and having to accelerate through the intersection.

The wait time is the duration a vehicle stops at the

entrance of the intersection prior to crossing. Among our

metrics, wait time is the most critical since it is a direct

cost in terms of increasing the time to cross the inter-

section; it is the source of the frustration in the example

scenario in Section I. The wait time was much smaller in

the V2I-Parallel and V2I-Reservation management policies

because two vehicles will have a wait time of near zero,

meaning they can immediately cross the intersection upon

arrival without slowing, and the other two vehicles will

only wait the amount of time it takes one vehicle to

cross the intersection since the other two are crossing in

parallel. The wait times are not zero in the reservation-

based policies because the vehicles could not decelerate

fast enough between the approaching and entering points

to the intersection. Clearly, separating these points more

��

��

���

���

���

���

���

���

���

���

�

��
��

��
��
��

Figure 7. Total duration of four vehicles crossing the intersection.

may further improve reservation-based policy performance.

Wait times are higher in the V2V policies than in the V2I

policies due to the overhead of distributed decision making,

specifically the 2.1s minimum safe duration a vehicle must

wait before it an be sure its decision is correct.

In V2I experiments, the grant latency is the time be-

tween when a vehicle first asks for permission to cross the

intersection and when it is granted permission. For V2V

experiments, it is the time between when a vehicle first wants

to gain access to the intersection and when it decides it has

access. The grant latency is clearly more variable across

schemes; it is significantly lower in the parallel schemes,

and the V2I-Reservation scheme is by far the best at only

0.23±0.03s since the server always grants a vehicle access,

though potentially at a future point in time.

Of particular interest is a comparison between the vari-

ous new management schemes relative to traditional traffic

signals and stop signs. In these experiments, traffic signals

have on average higher grant latencies and wait times than

stop signs since traffic signals essentially allow “batches” of

vehicles traveling along the same lane through, meaning our

use of four vehicles dispersed across all four lanes does not

play to this policy’s strength. Instead, such a traffic pattern

better fits a stop sign. More interestingly, V2V-Reservation

had a wait time nearly identical to that of Stop Sign (4.1 ±
0.7s versus 4.0 ± 1.2s). This implies that the amount of time

needed to perform V2V coordination equaled that of having

every node stop and query a central stop sign server for

directions. Finally, the results indicate that V2I-Reservation

is more than twice as efficient as a traditional stop sign in

terms of the wait time (1.7 ± 0.5s versus 4.0 ± 1.2s).

Finally, we estimate the aggregate traversal times of all

vehicles of the intersection by measuring the total duration

of intersection traversal, which is the time between the first

vehicle entering and the last vehicle exiting. The results

are shown in Figure 7. They indicate that among all of the

management policies, V2I-Reservation had the lowest (best)

duration of 10.0 ± 0.2s. This is lower than the stop sign,

which has a duration of 14.5 ± 0.4s. The V2V-Reservation

95

policy had a duration of 12.8 ± 0.2s, which also beats the

stop sign. When comparing the traditional traffic signal,

which has a duration of 26.9 ± 3.6s, to the newer V2I-

Reservation management policy, the aggregate traversal time

for four vehicles to cross the intersection is improved by

approximately 26.9−10.0
10.0 · 100 = 169% when using V2I-

Reservation.

VII. CONCLUSIONS AND FUTURE WORK

A rethink of the conventional infrastructure for our road-

ways is an essential counterpart to increasing autonomy

being incorporated into our vehicles. By instrumenting our

roads with cyber-physical infrastructure, the entire traveling

experience can be made safer, faster, more energy efficient

and more enjoyable. This paper represents a significant step

in this direction by focusing on instrumenting intersections,

which when combined with vehicular autonomy and coor-

dination, can enable faster intersection traversal times. In

particular, we construct a cyber-physical testbed for evaluat-

ing new intersection management policies. Our investigation

resulted in the design and implementation of one of the first

autonomous intersection testbeds with multiple real vehicles.

Unlike previous testbeds that are based partly or entirely

on simulation, our testbed can test the physical properties

and intersections of multiple physical vehicles entirely in

reality. An evaluation of numerous intersection protocols

illustrates the efficacy of our testbed and indicates that a V2I-

Reservation intersection management policy is superior to

both the traditional traffic signal and stop sign mechanisms

that we use today.

In the future, we intend to run larger experiments and

evaluate new intersection management policies using our

testbed. Past simulations indicate that more sophisticated

policies that perform advanced reservations and fine-grain

control of space-time within the intersection will result in

even greater efficiency [3], [8]. Additional investigation is

also needed to study the impact of 1) vehicles with vary-

ing speeds and dynamics, 2) traffic patterns with different

lane or intersection configurations, 3) pedestrians and non-

autonomous vehicles, 4) sensory inputs other than location.

To this end, we will extend our testbed to support turning,

switching lanes, swerving to avoid disabled vehicles, pri-

oritizing emergency vehicles, avoiding locations that may

contain non-autonomous entities, and experimenting with

additional sensors like laser range finders and cameras.

Ultimately we would like to scale up the testbed to use

life-size vehicles and mixed-reality simulations [4], and to

support multiple sequential autonomous intersections.

REFERENCES

[1] E. Guizzo, “How google’s self-driving car works,” http:
//spectrum.ieee.org/automaton/robotics/artificial-intelligence/
how-google-self-driving-car-works, October 2011.

[2] C. Squatriglia, “Audi’s robotic car drives better
than you do,” http://www.wired.com/autopia/2010/03/
audi-autonomous-tts-pikes-peak, March 2010.

[3] K. Dresner and P. Stone, “A multiagent approach to au-
tonomous intersection management,” Journal of Artificial
Intelligence Research, vol. 31, pp. 591–656, March 2008.

[4] M. Quinlan, T.-C. Au, J. Zhu, N. Stiurca, and P. Stone,
“Bringing simulation to life: A mixed reality autonomous
intersection,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[5] “DARPA grand challenge,” http://en.wikipedia.org/wiki/
DARPA Grand Challenge.

[6] R. Calo, “Nevada bill would pave the road to autonomous
cars,” http://cyberlaw.stanford.edu/node/6663, April 2011.

[7] S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand,
W.-B. Zhang, D. McMahon, H. Peng, S. Sheikholeslam, and
N. McKeown, “Automated vehicle control developments in
the path program,” IEEE Transactions on Vehicular Technol-
ogy, vol. 40, no. 1, pp. 114–130, 1991.

[8] D. Fajardo, T.-C. Au, T. Waller, P. Stone, and D. Yang, “Auto-
mated intersection control: Performance of a future innovation
versus current traffic signal control,” Transportation Research
Record (TRR), 2011.

[9] R. Naumann and R. Rasche, “Intersection collision avoidance
by means of decentralized security and communication man-
agement of autonomous vehicles.” in Proceedings of the 30th
ISATA - ATT/IST Conference, 1997.

[10] M. VanMiddlesworth, K. Dresner, and P. Stone, “Replacing
the stop sign: Unmanaged intersection control for autonomous
vehicles,” in AAMAS Workshop on Agents in Traffic and
Transportation, Estoril, Portugal, May 2008, pp. 94–101.

[11] J. Kolodko and L. Vlacic, “Cooperative autonomous driving at
the intelligent control systems laboratory,” Intelligent Systems,
IEEE, vol. 18, no. 4, pp. 8 – 11, jul-aug 2003.

[12] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi,
N. A. Syed, S. Sharma, and T.-c. Chiueh, “Mint-m: an
autonomous mobile wireless experimentation platform,” in
Proceedings of the 4th international conference on Mobile
systems, applications and services, ser. MobiSys ’06. New
York, NY, USA: ACM, 2006, pp. 124–137. [Online].
Available: http://doi.acm.org/10.1145/1134680.1134694

[13] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller,
R. Ricci, and J. Lepreau, “Mobile emulab: A robotic wireless
and sensor network testbed,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Pro-
ceedings, april 2006, pp. 1 –12.

[14] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and
S. Vishwanath, “Pharos: A testbed for mobile cyber-physical
systems,” Univ. of Texas at Austin, Tech. Rep. TR-ARiSE-
2011-001, 2011.

[15] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The
player/stage project: Tools for multi-robot and distributed
sensor systems,” in ICAR, 2003.

96

