
 

Automated Association of Code Changes with Computed 
Behavioral Differences 

Jonas Michel 
University of Texas at Austin 

Electrical & Computer Engineering 

jonasrmichel@mail.utexas.edu 

 

 

ABSTRACT 

Developers often find it necessary to know how source code 

changes affect the run-time behavior of a program. Currently, 

identifying behavioral differences between program versions is a 

tedious manual task that is not exclusively supported by tools or 

research techniques. The goal of this project is to determine if a 

mapping from a set of known structural changes to a set of known 

behavioral changes can be inferred and if so, how reliable the 

mapping is. This report describes an approach that identifies 

structural differences between two versions of a program and 

computes the corresponding attributable dynamic behavioral 

differences. To enable automation of the approach and 

experimental evaluation, Bidirectional Structural-Behavioral 

Change Mapper (BsbCmapper), a prototype Java tool, is 

presented. Using BsbCmapper, I demonstrate through a small case 

study on an open-source project that an informative mapping can 

in fact be automatically inferred between structural and dynamic 

behavioral differences. The mappings are furthermore 

demonstrated to be both accurate and reliable.  

1. INTRODUCTION 
Many practical and analytical scenarios exist where developers 

face a need to understand run-time behavior differences between 

program versions. More specifically, there are many cases in 

which a developer would like to know if and how specific 

structural changes contribute and relate to dynamic behavior 

changes. For example, consider a developer performing a 

refactoring on a set of classes. To verify successful completion of 

this task, he or she would need to check that the changes made did 

not induce behavioral changes in the overall system‟s behavior. 

Similarly, consider a test engineer improving a regression test 

suite for a recently updated software system. In order to create 

tests that effectively assess the new functionality, he or she would 

be interested in knowing if there were any changes to code 

covered by the existing test suite. Further scenarios where a 

developer must understand how specific code changes relate to 

run-time behavior differences include performance monitoring, 

bug resolution, software evolution tracking, system maintenance, 

and program comprehension. The process of determining how 

particular code differences between two program versions 

contribute to dynamic behavior differences can often be difficult 

and tedious, especially in larger more complex software systems. 

Current tools and research techniques do not directly enable easy 

understanding of run-time differences between program versions. 

This tedious task must be performed manually, likely requires 

being familiar with a system or program, and requires the use of a 

handful of tools in tandem to dig through source code and test 

results, comparing the two by inspection. The efficiency with 

which this task is performed depends greatly on the developer‟s 

prior understanding of and familiarity with the system. Even in 

the case where a developer does have a good understanding of the 

system he or she is working on, great amounts of time could be 

devoted to correlating code changes and dynamic behavior 

differences. Consider, again, the developer in the refactoring 

example. If the refactored program did actually exhibit different 

behavior, the developer would then be faced with the challenge of 

pinpointing the changes responsible for the unwanted behavioral 

changes. Similarly, the test engineer improving the test suite 

would need to manually sort through source code changes and 

inspect results from, potentially expensive, test executions to 

successfully complete their job. 

In this project, I am interested in determining if a mapping from a 

set of known structural changes to a set of known behavioral 

changes can be inferred and if so, how reliable the mapping is. 

This report presents a methodology and approach for 

automatically associating structural code changes with detected 

dynamic behavior differences. To enable automation of the 

approach and a means of evaluating the methodology, I designed 

Bidirectional Structural and Behavioral Change Mapper 

(BsbCmapper), a prototype Java tool that builds on two existing 

research tools. Using BsbCmapper, a small case study is 

conducted on various versions of FreeMarker [5], an open-source 

HTML template engine for Java servlets, to evaluate the utility 

and effectiveness of the approach. The case study highlights some 

of the limitations of the tool, but also verifies that an informative 

mapping from structural to behavioral changes can in fact be 

inferred automatically. 

The goal of this project is not to provide a silver bullet with which 

a developer can pinpoint the behavioral differences that resulted 

from a source code change. Rather, this methodology and 

prototype tool will hopefully be a basis for future research and 

provide a means of alleviating some of the burden placed on 

developers needing to know what behavioral differences exist 

between two programs and why they exist. 

The rest of the report is organized as follows: Section 2 describes 

related work in this area of research, Section 3 contains a high 

level description of the methodology and implemented approach, 

Section 4 describes details of the BsbCmapper implementation, 

Section 5 describes the verification process and presents a case 

study of BsbCmapper on FreeMarker, and Section 6 finishes with 

conclusions that can be drawn from the case study‟s results and 

discusses areas of future work. 

2. RELATED WORK 
The approach implemented in this project draws heavily from 

existing research. However, it does so in such a way to produce 

original results. Six main bodies of work form the foundation of 



 

this project, two of which are used directly. My project shares a 

very similar motivation and problem definition with all six of 

these related pieces of work, however my project‟s solution is 

more generally applicable. 

The motivation, problem definition, and solution presented in 

“Scaling Regression Testing to Large Software Systems” by Orso, 

Shi, and Harrold [1] is, in essence, equivalent to that of this 

project. Orso et al. describe a technique that identifies behavioral 

differences between two program versions, but for the purposes of 

regression test selection. Accordingly, their work infers an 

association between behavioral differences and test cases. My 

project follows this same line of thought, but extends the 

application from tests to structural changes. The tradeoff, 

however, is precision. While my project‟s technique is more 

generally applicable and encapsulates more use case scenarios, it 

sacrifices a great deal of confidence in accuracy to do so. 

“Semantics-Aware Trace Analysis” by Hoffman, Eugster, and 

Jagannathan [6] presents an approach for representing the 

dynamic behavior of a program using execution traces to create 

semantic trace abstractions. “Semantic views” are aggregate 

collections of events with shared semantic traits found in a 

program‟s execution trace. Using a longest common subsequence 

(LCS) based algorithm, semantic views produced by different 

program versions can be compared for differences. The purpose 

making these comparisons is using them to pinpoint exactly the 

cause of regressions in large programs. The advantage of this 

approach is that it preserves semantic context. However, it does 

not take structural context into account. At a high level, my 

approach differs from this work in three ways. First, Hoffman et 

al.‟s work attempts to identify the semantic root cause of behavior 

differences. That is, it creates a mapping of behaviors to code 

changes. I am attempting to make the opposite association (i.e. 

code changes to behavior differences). Second, Hoffman et al.‟s 

work has a very specific application: regression identification. My 

project applies to a more general set of uses. Finally, behavior-to-

code association is performed by a process of elimination in 

Hoffman et al.‟s approach. Conversely, my project‟s approach 

uses a constructive approach to make inferences. 

“Automated Behavioral Regression Testing” by Jin, Orso, and Xie 

[7] proposes a tool called Behavioral REgression Testing (BERT), 

which identifies behavioral differences between program versions 

by logging behavioral characteristics during program execution. 

My approach is very similar to that used in BERT in that it 

involves linking together a set of existing tools to produce a 

unique output. However, this work too is primarily focused on 

behavior differencing for the purpose of fault identification. 

BERT identifies behavioral differences and additionally 

determines if any of the differences can be characterized as faults. 

The limitation of the BERT tool is that it leaves a large portion of 

the analysis to the user. After BERT is executed on two program 

versions, the user must manually verify if BERT‟s fault 

identifications are indeed valid. My project attempts to go one 

step further and attempt to perform some of this final portion for 

the user automatically and for more general use purposes, not 

strictly for fault detection. 

“Automated Inference of Structural Changes for Matching Across 

Program Versions” by Kim, Notkin, and Grossman [8] introduces 

a means of automatically inferring API-level changes between 

two program versions and concisely representing these changes as 

first-order relational logic rules. I use this work as a building 

block for my project because of its efficient and extendable 

representation of structural differences. Furthermore, this 

alternative representation of API-level changes couples nicely 

with the PARCS, the second building block of this project‟s 

approach. 

“Tracking Performance Across Software Revisions” by Mostafa 

and Krintz [9] presents Performance-Aware Revision Control 

Support (PARCS), a tool that identifies behavioral differences 

between program versions and attempts to attribute likely 

structural changes to behavioral changes. I use the PARCS 

process as another building block in my project because of its 

ability to identify topological and performance differences, its 

extendibility, and because of its intimate similarity to my 

approach. Despite how similar this work is to my project, it is 

only addresses half of the problem that motivates my project. 

Mostafa and Krintz‟s work attempts to map detected behavioral 

changes to code changes. My project extends this work by 

performing inference in the opposite direction as well, by 

mapping known code changes to detected behavioral changes. 

Furthermore, the change rules that explain identified code changes 

in my project can be extended to help explain the behavioral 

differences identified by PARCS. Any behavioral differences that 

were not a result of method additions, deletions, or direct 

modifications, PARCS attributes to indirect method modifications 

and/or non-deterministic effects and throws away. The application 

of Kim et al.‟s API-level change rules enables even further insight 

into these particular behavioral differences. 

“Chianti: A Tool for Change Impact Analysis of Java Programs” 

by Ren, Shah, Tip, Ryder, and Chesley [10] presents a tool that is 

conceptually very similar to PARCS in the sense that it attributes 

structural differences to behavioral differences, however, again, 

the intended use of Chianti (test selection and impact analysis) is 

much more specific and geared towards regression identification. 

3. APPROACH 
At a high level, my project‟s approach consists of three 

components, the first two of which implement tools and/or 

algorithms contributed by existing research. Given two versions 

of a program (P and P‟) and a test suite (T), first, API-Level Code 

Matching [8] is performed on P and P‟ to identify method-level 

changes and transformations that describe change details. Second, 

a variation of a technique used by PARCS [9] is implemented to 

detect dynamic behavior differences between P and P‟ triggered 

by T and attribute them to categorized code changes. Finally, set 

comparison is performed to infer a mapping of API-Level Code 

Change rules to behavioral differences. 

3.1 API-Level Code Changes 
The first component directly uses an API-Level Code Change tool 

introduced by Kim et al. in [8]. P and P‟ are given as inputs to the 

tool, which automatically infers probable code changes at or 

above the method level and represents these inferred changes as a 

set of first-order relational logic rules. Each change rule consists 

of an applicable scope, exceptions to the rule, and the 

transformation that occurred between P and P‟. The 

transformation is one of nine predetermined transformations, 

which includes argument appended, argument deleted, and 

varying types and granularities of object replacement. The set of 

rules (R) representing a set of likely structural changes (ΔS) 

produced for P and P‟ is saved in XML format for use in the 

second and third steps. This tool also provides an API that enables 

easy access to inferred change rules and their applicable scope. 



 

Kim et al.‟s API-Level Code Matching tool was chosen as the 

basis for identifying structural differences because of its concise 

and descriptive representation of changes. The use of change rules 

as a change vocabulary, as opposed to a diff, allows structural 

differences to be grouped together by similarity in a human-

readable format. Furthermore, the tool is highly extensible. In 

essence, this component answers the question, “what changed 

structurally and how?”. 

3.2 The PARCS Process 
The second component of the approach implements a process 

based on a technique used by the Performance-Aware Revision 

Control Support (PARCS) behavioral differencing tool introduced 

by Mostafa and Krintz in [9]. Figure 1 illustrates the PARCS 

process at a high level. 

 

Figure 1. The PARCS process [9] 

Given P (rev1), P‟ (rev2), and T (test input), PARCS first compiles 

P and P‟ to obtain the bytecode program versions. The bytecode 

versions of P and P‟ are executed using T as input to generate 

their respective calling context trees (CCTs). Each node of the 

CCT, representing a method call, is annotated with performance 

metrics, specifically call site, absolute execution time, and relative 

execution time. The bytecode versions of P and P‟ are also 

compared to generate a change list of added, deleted, modified, 

and renamed methods. The change list and CCTs are used to 

identify topological behavioral differences (ΔBT) as a result of 

added or deleted methods (ΔbA/D), directly modified methods 

(ΔbM), and indirectly modified methods or non-deterministic 

effects (ΔbND). After these topological differences are excised, the 

remaining CCTs are identical in topology, but may vary in 

performance metrics. PARCS uses a weight matching algorithm 

to quantify the degree of similarity, or overlap, between the two 

trees in terms of their annotated performance data. This 

information represents the behavioral weight difference between P 

and P‟ (ΔBW). 

The PARCS process was selected for two reasons. First, PARCS 

makes clever use of CCTs, a very common structure used for 

program execution representation. CCTs are advantageous 

because they can be traversed, sorted, and matched using standard 

tree algorithms and provide a good tradeoff between size and 

accuracy compared to other dynamic behavior abstractions [9]. 

PARCS uses CCTs to identify behavioral differences in terms of 

topology as well as performance. Second, there is an intimate 

similarity between the motivation and problem definition of 

PARCS and that of my project. In essence, this component 

answers the question, “what changed behaviorally and how?”. 

3.3 Structural and Behavioral Mapping 
The final component of the approach performs set comparison of 

information identified in the first two components to infer a 

mapping from structural to behavioral changes. There are three 

cases that are considered. 

A. Structural changes are identified that do not result in a 

behavioral change. More formally expressed, this is the case 

for methods  

m: (m ∈ ΔS ∩ m ∉ (ΔBt ∪ ΔBw)) 

B. Structural changes are identified that do result in a behavioral 

change. More formally expressed, this is the case for 

methods  

m: (m ∈ ΔS ∩ m ∈ (ΔBt ∪ ΔBw))  

With this set, a mapping of change rules, R, to behavior 

differences, ΔBT (ΔbA/D, ΔbM, ΔbND) and ΔBW can be 

constructed. 

C. Dynamic behavior changes are identified that are not a result 

of a structural change. More formally expressed, this is the 

case for methods  

m: (m ∈ (ΔBT ∪ ΔBW) ∩ m ∉ ΔS) 

This third and final component of the approach establishes a 

bridge between the first two components. In the case of (B), it 

provides potential answers to the questions, “what behavioral 

changes occurred as a result of the structural changes and why?”. 

3.4 Threats to Validity 
Validity is a very large concern for this approach and the project 

in general. There are many threats to internal, construct, and 

external validity. The largest source of threats to internal and 

construct validity originate from the fact that test input is limited 

to the provided test suites. Therefore behavioral changes may 

actually be the result of the nature of a particular test case and not 

necessarily because of a structural change. This exemplifies a 

confounding type of threat to internal validity. Furthermore, a 

valid question is whether this approach will measure the relation 

between structural and behavioral changes, or simply the coverage 

provided by the test suite. This is certainly an important point, and 

the results presented in the case study (Section 5) demonstrate 

potential effects of this issue. Finally, threats to external validity 

are also present. Given the threats to both internal and construct 

validity in addition to the inability to validate this approach on a 

large scale, it would be almost impossible to prove that an 

approach claiming a concrete mapping of structural to behavioral 

differences was correct for any arbitrary set of programs. 

However, that is not the goal of this project. I do not claim that 

my results are concrete, but rather that the mappings are “likely”, 

identify useful information, and are a good starting point for 

further investigation. 

4. Implementation 
To enable automation of the approach and a means of evaluating 

its methodology, I designed Bidirectional Structural and 

Behavioral Change Mapper (BsbCmapper), a prototype Java tool. 

The first component of BsbCmapper uses Kim et al.‟s API-Level 

Code Change tool directly to identify structural change details. 

The second component implements a reverse-engineered version 

of the PARCS process to identify dynamic behavior differences. 

The final component aggregates the first two components‟ results 

into standardized sets with which it performs set comparison to 

infer relationships between structural and behavioral changes. 

Additionally, the third component also compares the structural 

changes identified by the API-Level Code Change tool for 

analysis purposes. Due to time restrictions and the sharp learning 

curves of some of the libraries the tool utilizes, BsbCmapper 



 

suffers from several important limitations. BsbCmapper‟s 

limitations are pointed out at the end of this section. 

4.1 API-Level Code Change Use 
Kim et al.‟s API-Level Code Change tool provides a useful API, 

which enables easy access to the changed methods and change 

rules it infers between two versions of a program. BsbCmapper 

makes direct use of this API to query the matching rulebase it 

constructs. The API-Level Code Change tool also defines a 

canonical JavaMethod data type to uniquely represent methods. 

For the sake of convenience and consistency, BsbCmapper also 

internally represents methods using this data type. 

4.2 Reverse-Engineered PARCS 
Because PARCS is not a publicly available research tool, 

BsbCmapper implements a reverse-engineered version (RE-

PARCS) based on the details in [9]. Mostafa and Krintz‟s paper 

leaves out many low-level details, therefore BsbCmapper‟s RE-

PARCS implementation makes some assumptions about how 

some of these low-level tasks are carried out. 

4.2.1 Bytecode Comparison 
BsbCmapper‟s RE-PARCS implementation uses the Apache Byte 

Code Engineering Library (BCEL) [4] to perform method-level 

bytecode comparison of two program versions. The PARCS 

method change sets (i.e. added, deleted, modified, and renamed) 

are constructed exactly as described in [9]. Following the PARCS 

bytecode comparison technique, BsbCmapper compares compiled 

bytecode (.class) files that have identical package and class file 

names. Uncommon packages and class files are reported, but are 

not used for any further analysis. An important assumption made 

in this component is the notion of a “modified method.” PARCS 

defines a modified method as one that is “present in both revisions 

with everything identical except for the code body.” A direct 

equivalence comparison of BCEL method code cannot be used 

directly because bytecode contains information beyond the actual 

compiled code, for example call site. Therefore, two methods‟ 

code could be syntactically identical, but exist at different points 

in their respective program version and would therefore be 

considered not equivalent by a direct BCEL method code 

equivalence comparison. BsbCmapper defines code equivalence 

as the union of several BCEL code attributes. These attributes can 

be summed to an integer value, which is used to represent a 

method‟s code‟s comparable identity. 

4.2.2 CCT Generation 
BsbCmapper‟s RE-PARCS implementation generates CCTs using 

AspectJ [3], an aspect-oriented extension to Java. The tool uses a 

simple logging aspect that is woven into a program‟s source code 

when the program is built. The CCT-generating aspect logs 

method invocation attributes (i.e. caller, call-site, and execution 

time) to an XML file when the program it is woven into is 

executed (e.g. with test input). BsbCmapper stores CCTs 

internally in a traversable tree data structure and additionally in a 

depth-indexed lookup table for fast access to nodes at specific 

depths. The complementary use of a depth-indexed lookup table 

in addition to the tree data structure cuts down on complexity and 

runtime significantly. 

4.2.3 Topological Comparison 
The BsbCmapper RE-PARCS uses the PARCS Relaxed 

Common-Tree Matching topological comparison algorithm 

described in [9] verbatim to identify dynamic behavior differences 

represented as topological differences in program versions‟ CCTs. 

Using the changed methods identified by bytecode comparison, 

topological differences are iteratively identified, attributed to 

method additions, deletions, modifications, or non-determinism, 

and excised from the respective CCT. The nodes (methods) and 

subtrees excised are saved for use in BsbCmapper‟s structural and 

behavioral change mapping component. 

4.2.4 Performance Lite-Weight Comparison 
PARCS uses an iterative performance weight matching algorithm 

based on that introduced by Zhuang  et al. in [11] to compute the 

performance overlap of two topologically-identical CCTs. Due to 

time limitations, BsbCmapper‟s RE-PARCS computes overlap 

using the same overlap equation as PARCS, but does not perform 

any iterative weight adjustments to improve the performance 

overlap of two CCTs. BsbCmapper‟s lite-weight performance 

comparator reports and stores methods with relative performance 

differences above a user-defined threshold (0-1). 

4.3 Bidirectional Change Mapping 
This final component of BsbCmapper aggregates differences 

identified by the first two components and compares their overlap 

and uniquely identified differences. The set of structural changes 

identified by the API-Level Code Change tool is taken to be the 

union of the tool‟s left-to and right-to domain. The set of 

behavioral differences identified by the RE-PARCS 

implementation is taken to be union of the methods identified as 

differences by the topological comparator and the performance 

weight comparator. More specifically, 

ΔS = ΔsL ∪ ΔsR 

 ΔB = ΔBT ∪ ΔBW  

 Where, 

ΔBT = ΔbA ∪ ΔbD ∪ ΔbM ∪ ΔbND 

ΔBW = m : pweight(m) ≥ thresholdW 

The sets ΔbA/D consist of the roots of subtrees identified as 

differing due to added or deleted methods and each root‟s 

respective caller. The set ΔbM consists of the roots of subtrees 

identified as differing due to directly modified methods and the 

chain of modified dominators from a subtree root up to the CCT 

root. The set ΔbND consists of the roots of subtrees identified as 

differing due to non-determinism. Finally, ΔBW consists of the 

methods with performance weight differences greater than the 

specified weight threshold. 

It is important to note that only the roots of topologically differing 

subtrees are considered for comparison. This is because we are 

only interested in the specific points where behavior between two 

versions of a program began to diverge. What happens after this 

point is not comparable. 

BsbCmapper reports statistics regarding each stage of the RE-

PARCS implementation (e.g. differing packages and classes, 

number of methods identified as changed for each bytecode 

change category, number of subtrees and nodes excised due to 

types of changes, common CCT size, etc.) and optionally the 

results of each RE-PARCS stage as well. 

BsbCmapper performs two set comparisons: structural-structural 

change set comparison and structural-behavioral change set 

comparison. The first comparison is performed between the 

structural change sets identified by API-Level Code Change 

matching and bytecode comparison. BsbCmapper identifies 

structural changes that are exclusively identified by API-Level 



 

Code Change matching and exclusively by bytecode comparison, 

and reports a detailed mapping breakdown where the two overlap 

(i.e. for each API-Level Code Change type identified, the 

aggregate number of bytecode change types it maps to). This is 

done to provide more insight into the results of the second set 

comparison. The second comparison is performed in a similar 

fashion between the API-Level Code Change structural change set 

(ΔS) and the RE-PARCS behavioral change set (ΔB). 

BsbCmapper identifies changes that are exclusively identified by 

API-Level Code Change matching and exclusively by RE-PARCS 

topological and weight comparison, and reports a detailed 

mapping breakdown where the two overlap. In addition to the 

aggregate breakdown of the two sets‟ commonality, the specific 

methods that are common between the two sets and their change 

type in each set are reported. 

4.4 Limitations 
BsbCmapper suffers from several practical limitations mainly due 

to decisions that had to be made due to time restrictions. First, the 

BsbCmapper process is not fully automatic. A user must generate 

results from the API-Level Code Change tool and CCTs for the 

program versions being compared prior to using BsbCmapper. In 

other words, BsbCmapper does not automatically kick off and 

collect API-Level Code Change version comparison and CCT 

generation; these steps must be performed manually. Second, 

BsbCmapper‟s user interface (UI) is strictly text-based, which 

makes interpretation and navigation of results difficult. Third, and 

most importantly, BsbCmapper suffers from memory limitations. 

It was discovered too late how large the CCT XML files actually 

become for even a small to medium sized open-source projects 

(sometimes over a gigabyte). Because BsbCmapper uses RAM to 

access CCTs and not a relational database, it is limited in the 

types and sizes of programs it can analyze. 

5. EVALUATION RESULTS 
To evaluate BsbCmapper‟s RE-PARCS implementation, small 

scale verification was performed on a feature-by-feature basis. 

Second, a case study is conducted on various versions of 

FreeMarker, an open-source HTML template engine for Java 

servlets, to empirically evaluate the utility and effectiveness of the 

implemented approach. 

5.1 Verification 
Originally, I had planned to verify the RE-PARCS 

implementation by running it on the same open-source test 

subjects used by Mostafa and Krintz and comparing RE-PARCS‟ 

results to those listed in [9]. However, I ran into many problems 

due to the memory limitation described in Section 4.4 – the CCTs 

generated for each of these test subjects were simply too large to 

be evaluated by BsbCmapper. Therefore, small scale verification 

was performed on a feature-by-feature basis. Using two versions 

of a small test program, each of the RE-PARCS features were 

tested extensively to verify that their behavior was consistent with 

their counterpart‟s as described in [9]. 

5.2 Case Study: FreeMarker 
My experimental platform is a dual-core Intel Core 2 Duo 

machine clocked at 2.0 GHz with 4M of L2 cache and 2GB of 

main memory running the Windows 7 operating system. The Java 

virtual machine used is HotSpot version 17.0-b17 within JDK 

1.6.0_21. 

FreeMarker [5] is an open-source HTML template engine for Java 

servlets and was chosen because its size is within BsbCmapper‟s 

memory capacity and exhibits an overlap of identified structural 

and behavioral changes. As a side note, BsbCmapper was 

successfully tested on many different open-source projects for this 

project; however it was often the case that while there would be 

many RE-PARCS-identified behavioral differences, the API-

Level Code Change tool would not identify any change rule 

matches. Therefore, it was somewhat of a challenge to find a test 

subject for which both tools identified changes and for which 

those changes overlapped. The results obtained using FreeMarker 

are included in this report because they do in fact meet all of these 

criteria. This section contains results from the FreeMarker case 

study and one additional experiment. 

5.2.1 Test Procedure 
Seven versions of FreeMarker were selected whose generated 

CCTs were compatible with BsbCmapper‟s memory limitation. 

Table 1 shows details regarding these versions and their CCTs. 

Version 

Release 

Date Files Methods 

CCT 

Nodes 

CCT 

Depth 

2.3.16 12/7/2009 20 1632 115 27 

2.2.8 6/15/2004 15 1568 334 10 

1.8.5 11/16/2004 16 1681 2121 49 

1.8.2 10/6/2004 16 1641 2066 53 

1.8.1 2/17/2004 16 1638 2066 51 

1.8 12/6/2003 16 1634 2066 51 

1.7.5 6/1/2002 15 1521 268 24 

Table 1. FreeMarker version details 

The CCT node count and depth originate from the CCTs 

generated by the test suite included with the respective version. 

Note that version 2.2.8 was released before versions 1.8.2 and 

1.8.5. This is because 2.x versions contain some extra features that 

1.x versions do not and are a secondary branch of the FreeMarker 

open-source project. 

This case study is designed to answer the two research questions 

posed in this project. The first research question being, “can a 

mapping from a set of known structural changes to a set of known 

behavioral changes can be inferred?” and the second being, “if a 

mapping can be established, how reliable is it?”.  

To answer the first question, pairs of versions are compared using 

BsbCmapper. The test suite of the earlier version is used as test 

input to both program versions for CCT generation. To answer the 

second question, BsbCmapper‟s results are compared in terms of 

“version separation”, the number of version releases that separate 

two FreeMapper versions. For example, the comparison of 

versions 1.8 and 1.8.1 possess a version separation of 1 whereas a 

comparison of versions 1.8 and 1.8.2 possess a version separation 

of 2. This study uses BsbCmapper to compare all of the possible 

1.x combinations (10) and the one 2.x combination for a total of 

11 combinations. 1.x and 2.x versions are not directly compared 

against each other because their feature set is not similar enough, 

however their results are indirectly comparable. 

  



 

Figure 2. Average number of methods and change types 

identified exclusively by (a) RE-PARCS and (c) API-Level Code  

Figure 3. Effects of version separation on (a) common CCT size, 

(b)  

Figure 4. Average number of methods and change types 

identified  

 

 

 

 

 

 

 

Figure 2. Average number of methods and change types identified exclusively by (a) RE-PARCS and (c) API-Level Code Change 

matching and (b) their common overlap 

Figure 3. Effects of version separation on (a) common CCT size, (b) RE-PARCS and API-Level Code Change set overlap, and (c) 

Bytecode and API-Level Code Change set overlap 

Figure 4. Average number of methods and change types identified exclusively by (a) Bytecode comparison and (c) API-Level Code 

Change matching and (b) their common overlap 



 

5.2.2 Case Study Results and Discussion 
In all version combinations of this study, the API-Level Code 

Change tool is used with a seed threshold of 0.7 and an exception 

threshold of 0.3 (see [8] for threshold details). A performance 

weight threshold of 0.01 is used for the RE-PARCS performance 

weight comparator in all version combinations of this study. 

Figure 2 shows a breakdown of the number of methods identified 

exclusively by RE-PARCS (Figure 2(a)), exclusively by API-

Level Code Change (Figure 2(c)), and their overlap (Figure 2(b)) 

averaged over the 11 version combinations used. On average, RE-

PARCS identifies a comparable amount of differences due to 

additions, deletions, and direct modification that API-Level Code 

Change does not capture. On the other hand, API-Level Code 

Change identifies many changes due to package, type, and input 

signature replacements that RE-PARCS does not. This behavior is 

most likely due to the fact that RE-PARCS does not consider 

methods in packages and classes that do not have identical names. 

Therefore, even if their package or class was simply renamed, 

methods in non-identical packages and classes are entirely 

excluded from the RE-PARCS topological and performance 

weight comparison components.  

In the case of these FreeMarker combinations, the two tools 

overlap only on differences attributed to additions and deletions 

by RE-PARCS. API-Level Code Change categorizes these 

additions and deletions as procedure replacements, return 

replacements, and input signature replacements. This effect is 

most likely due to, first the average number of modified methods 

is exceptionally small and second, RE-PARCS‟ method 

modification is at a sub-method level. Therefore, it is likely that 

the API-Level Code Change tool will not detect RE-PARCS‟ 

modified methods. Nevertheless, because of the relatively small 

amount of overlapping methods and because BsbCmapper 

explicitly identifies on which methods the two tools overlap, I was 

able to inspect the overlapping cases by hand. In every case, the 

API-Level Code Change rule was accurate!  

It is important to note that RE-PARCS does not identify any 

changes due to performance weight differencing. This effect is 

due to the amount of excising performed by RE-PARCS‟ 

topological comparison component. In most of the FreeMarker 

version comparisons, very little of the CCT are identified as 

topologically identical, and the performance weight differences in 

the remaining CCTs are less than the performance weight 

threshold. 

Figure 3 shows three noteworthy trends for FreeMarker version 

comparison over different version separation distances. In all 

cases show in this figure, the values used are obtained by 

averaging the data points at each version separation amount. 

Figure 3(a) illustrates the effects of version separation on RE-

PARCS‟ topological comparison. The father apart two compared 

versions are the more behavioral differences they exhibit. 

Therefore, with more topological differences, RE-PARCS 

performs more excising. After three versions of separation, the 

topological comparator almost entirely excises both CCTs. Figure 

3(b) shows the relative proportion of RE-PARCS-identified 

behavioral changes, API-Level Code Change-identified structural 

changes, and their overlap as the version separation is increased 

between two versions of FreeMarker. The y-axis is a log scale so 

that the smaller values are more apparent. In all cases, API-Level 

Code Change identifies many more structural changes than RE-

PARCS identifies behavioral changes. However, their overlap 

peaks in the case of BsbCmapper comparisons that are three 

versions apart, after which there is not much variance. This effect 

is likely due to the fact that in this case after three versions of 

separation, there are no more topological differences from which 

to draw; the CCTs are entirely excised! What is important is that, 

though the overlap between the identified changes of the two 

methodologies, there is not much variance even as more and more 

distant versions are compared. This indicates that the reliability of 

the mapping remains constant. 

5.2.3 Additional Experiment and Discussion 
An additional experiment is conducted using BsbCmapper results 

obtained during the FreeMarker case study. To better gauge the 

quality and more informatively interpret the case study results, a 

similar change set comparison is performed between the structural 

changes identified by RE-PARCS‟ bytecode comparison and the 

API-Level Code Change tool.  

First, Figure 3(c) shows the relative proportion of bytecode-

identified structural changes, API-Level Code Change-identified 

structural changes, and their overlap as the version separation is 

increased between two versions of FreeMarker. When the version 

separation is small, API-Level Code Change identifies a majority 

of the structural differences. However, beyond a separation of one 

version, bytecode comparison detects a majority of the structural 

changes, but there is roughly a 30% overlap of the two methods‟ 

identified changes. Additionally, beyond a separation of one 

version, there is not much variance between the two methods‟ 

relative amount of identified changes. This effect is likely due to 

the fact, again, that RE-PARCS excludes packages and classes 

that do not have identical names. It could be the case that 

modifications that occur after more than one version separation 

are predominantly in added or renamed packages and classes. 

Therefore, the bytecode comparator reaches a ceiling value. 

Figure 4 shows a more detailed breakdown of the types of 

changes identified exclusively by each structural change 

identification method and their common overlap. Figure 4(a) 

illustrates that a majority of the bytecode-exclusive identified 

changes are added and directly modified methods, whereas Figure 

4(c) illustrates that a majority of the API-Level Code Change-

exclusive identified changes are package and class replacements. 

This effect emphasizes previous observations; RE-PARCS‟ 

bytcode comparison does not detect changes within potentially 

renamed packages and classes and API-Level Code Change has 

difficulty detecting sub-method level changes (i.e. bytecode-

identified directly modified changes). A clear trend in the overlap 

illustrated in Figure 4(b) is that bytecode-identified modified 

methods make up only a very small amount of the commonly 

identified API-Level Code Change methods. The rest of the 

bytecode change types are more or less evenly distributed within 

each API-Level Code Change type. 

6. CONCLUSIONS AND FUTURE WORK 
The experimental evaluation of this project‟s approach using 

BsbCmapper, though limited, verifies that not only can a mapping 

from structural to behavioral changes be automatically inferred, 

but additionally, it is accurate and retains reliability! In each of the 

hand-inspected cases where the API-Level Code Change 

structural changes overlapped with the RE-PARCS-identified 

dynamic behavior differences, the API-Level Code Change rule 

listed was accurate and, within the low-level context of the 

bytecode change semantics, the RE-PARCS change categorization 

was accurate as well. Due to time limitations, I was not able to 



 

identify the significance of the identified changes within the 

context of the FreeMarker program, but the fact that API-Level 

Code Change rules can successfully be mapped to dynamic 

behavior differences means that in these few cases, more detailed 

information is provided as to why this behavior difference exists! 

The relatively small amount of behavioral differences detected by 

RE-PARCS with respect to the number of detected API-Level 

Code Change differences in the FreeMarker case study could be 

attributed to two possibilities. First, this effect could be an 

indication of an insufficient test suite. Second, and more likely, 

because RE-PARCS does not consider methods in non-identically 

named packages and classes, modification to identical methods in 

renamed packages or classes are ignored. The API-Level Code 

Change tool indicated that there were many package and class 

replacements within the compared versions of FreeMarker. Any 

changes made to identical method within these packages would 

not have been considered by RE-PARCS. 

The results observed in the small scale case study, though very 

dependent on the test subject, do verify that a bidirectional 

mapping structural and behavioral differences between two 

versions of a program can in fact be automatically inferred and 

that the mapping is reliable. Future work will need to directly 

address the practical limitations of BsbCmapper in order for the 

utility of this approach to be realized. If BsbCmapper is to 

actually be used, it will need to be made fully automatic to reduce 

the effort required to use it. Secondly, the nature of BsbCmapper‟s 

results necessitates an interactive graphic user interface (GUI). 

The tool has the potential for reporting more text-based results 

than any developer would care to look at no matter how useful 

they were stated to be. A more useful approach would be to report 

high-level results initially and provide a UI that enabled a 

developer to search and/or dig deeper in specific places. Finally, 

BsbCmapper will need to store and access CCTs via a relational 

database for it to be used on programs with any amount of test 

input. The current memory limitations do not enable behavior 

triggered by large test suites to be captured. 

In conclusion, this project demonstrated that a bidirectional 

mapping can in fact be inferred between structural code changes 

and dynamic behavior differences. The reliability of this mapping 

was demonstrated to remain non-varying even as less similar 

program versions were compared. Though very limited in its 

utility, the BsbCmapper implementation of this project‟s approach 

provides more information than existing tools about why certain 

behavior differences exist between two program versions in the 

context of structural code changes. 

 

 

7. REFERENCES 
[1] A. Orso, N. Shi, and M. Harrold. Scaling Regression Testing 

to Large Software Systems. In SIGSOFT „04/FSE-12: 

Proceedings of the 12th ACM SIGSOFT twelfth international 

symposium on foundations of software engineering (Newport 

Beach, CA, USA, 2004), ACM, pp. 241-251. 

[2] A. Villazón, W. Binder, P. Moret, and D. Ansaloni. MAJOR: 

Flexible Tool Development with Aspect-Oriented 

Programming. In Software Maintenance, 2009 – IEEE 

International Conference (Edmonton, Alberta, Canada, 

2009), IEEE, pp. 378-388. 

[3] AspectJ Aspect-Oriented extension to Java. 

http://www.eclipse.org/aspectj 

[4] Bytecode Engineering Library. http://jakarta.apache.org/bcel 

[5] FreeMarker Java Template Engine Library. 

http://freemarker.sourceforge.net 

[6] Hoffman, K., Eugster, P., and Jagannathan, S. Semantics-

Aware Trace Analysis. In PLDI ‟09: Proceedings of the 2009 

ACM SIGPLAN conference on Programming language 

design and implementation (Dublin, Ireland, 2009), ACM, 

pp. 453-464. 

[7] Jin, W., Orso, A., and Xie, T. Automated Behavioral 

Regression Testing. 2010 Third International Conference on 

Software Testing, Verification and Validation (Paris, France, 

2010), pp. 137-146. 

[8] Kim, M., Notkin, D., and Grossman, D. Automatic Inference 

of Structural Changes for Matching Across Program 

Versions. ICSE '07: Proceedings of the 29th international 

conference on Software Engineering (Minneapolis, MN, 

USA, 2007), IEEE, pp. 725-743.  

[9] Mostafa, N., and Krintz, C. Tracking Performance Across 

Software Revisions. In PPPJ ‟09: Proceedings of the 7th 

International Conference on Principles and Practice of 

Programming in Java (Calgary, Alberta, Canada, 2009), 

ACM, pp. 162-171. 

[10] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley. Chianti: 

A Tool for Change Impact Analysis of Java Programs. In 

OOPSLA ‟04: Proceedings of the 19th annual ACM 

SIGPLAN conference on object-oriented programming, 

systems, languages, and applications (Vancouver, British 

Columbia, Canada, 2004), ACM, pp. 432-448. 

[11] Zhuang, X., Kim, S. IO Serrano, M., and Choi, J.-D. Perdiff: 

A Framework for Performance Difference Analysis in a 

Virtual Machine Environment. In CGO ‟08: Proceedings of 

the sixth annual IEEE/ACM international symposium on 

code generation and optimization (New York, NY, USA, 

2008), ACM, pp. 4-13. 

 


