

Automated Association of Code Changes with Computed
Behavioral Differences

Jonas Michel
University of Texas at Austin

Electrical & Computer Engineering

jonasrmichel@mail.utexas.edu

ABSTRACT

Developers often find it necessary to know how source code

changes affect the run-time behavior of a program. Currently,

identifying behavioral differences between program versions is a

tedious manual task that is not exclusively supported by tools or

research techniques. The goal of this project is to determine if a

mapping from a set of known structural changes to a set of known

behavioral changes can be inferred and if so, how reliable the

mapping is. This report describes an approach that identifies

structural differences between two versions of a program and

computes the corresponding attributable dynamic behavioral

differences. To enable automation of the approach and

experimental evaluation, Bidirectional Structural-Behavioral

Change Mapper (BsbCmapper), a prototype Java tool, is

presented. Using BsbCmapper, I demonstrate through a small case

study on an open-source project that an informative mapping can

in fact be automatically inferred between structural and dynamic

behavioral differences. The mappings are furthermore

demonstrated to be both accurate and reliable.

1. INTRODUCTION
Many practical and analytical scenarios exist where developers

face a need to understand run-time behavior differences between

program versions. More specifically, there are many cases in

which a developer would like to know if and how specific

structural changes contribute and relate to dynamic behavior

changes. For example, consider a developer performing a

refactoring on a set of classes. To verify successful completion of

this task, he or she would need to check that the changes made did

not induce behavioral changes in the overall system‟s behavior.

Similarly, consider a test engineer improving a regression test

suite for a recently updated software system. In order to create

tests that effectively assess the new functionality, he or she would

be interested in knowing if there were any changes to code

covered by the existing test suite. Further scenarios where a

developer must understand how specific code changes relate to

run-time behavior differences include performance monitoring,

bug resolution, software evolution tracking, system maintenance,

and program comprehension. The process of determining how

particular code differences between two program versions

contribute to dynamic behavior differences can often be difficult

and tedious, especially in larger more complex software systems.

Current tools and research techniques do not directly enable easy

understanding of run-time differences between program versions.

This tedious task must be performed manually, likely requires

being familiar with a system or program, and requires the use of a

handful of tools in tandem to dig through source code and test

results, comparing the two by inspection. The efficiency with

which this task is performed depends greatly on the developer‟s

prior understanding of and familiarity with the system. Even in

the case where a developer does have a good understanding of the

system he or she is working on, great amounts of time could be

devoted to correlating code changes and dynamic behavior

differences. Consider, again, the developer in the refactoring

example. If the refactored program did actually exhibit different

behavior, the developer would then be faced with the challenge of

pinpointing the changes responsible for the unwanted behavioral

changes. Similarly, the test engineer improving the test suite

would need to manually sort through source code changes and

inspect results from, potentially expensive, test executions to

successfully complete their job.

In this project, I am interested in determining if a mapping from a

set of known structural changes to a set of known behavioral

changes can be inferred and if so, how reliable the mapping is.

This report presents a methodology and approach for

automatically associating structural code changes with detected

dynamic behavior differences. To enable automation of the

approach and a means of evaluating the methodology, I designed

Bidirectional Structural and Behavioral Change Mapper

(BsbCmapper), a prototype Java tool that builds on two existing

research tools. Using BsbCmapper, a small case study is

conducted on various versions of FreeMarker [5], an open-source

HTML template engine for Java servlets, to evaluate the utility

and effectiveness of the approach. The case study highlights some

of the limitations of the tool, but also verifies that an informative

mapping from structural to behavioral changes can in fact be

inferred automatically.

The goal of this project is not to provide a silver bullet with which

a developer can pinpoint the behavioral differences that resulted

from a source code change. Rather, this methodology and

prototype tool will hopefully be a basis for future research and

provide a means of alleviating some of the burden placed on

developers needing to know what behavioral differences exist

between two programs and why they exist.

The rest of the report is organized as follows: Section 2 describes

related work in this area of research, Section 3 contains a high

level description of the methodology and implemented approach,

Section 4 describes details of the BsbCmapper implementation,

Section 5 describes the verification process and presents a case

study of BsbCmapper on FreeMarker, and Section 6 finishes with

conclusions that can be drawn from the case study‟s results and

discusses areas of future work.

2. RELATED WORK
The approach implemented in this project draws heavily from

existing research. However, it does so in such a way to produce

original results. Six main bodies of work form the foundation of

this project, two of which are used directly. My project shares a

very similar motivation and problem definition with all six of

these related pieces of work, however my project‟s solution is

more generally applicable.

The motivation, problem definition, and solution presented in

“Scaling Regression Testing to Large Software Systems” by Orso,

Shi, and Harrold [1] is, in essence, equivalent to that of this

project. Orso et al. describe a technique that identifies behavioral

differences between two program versions, but for the purposes of

regression test selection. Accordingly, their work infers an

association between behavioral differences and test cases. My

project follows this same line of thought, but extends the

application from tests to structural changes. The tradeoff,

however, is precision. While my project‟s technique is more

generally applicable and encapsulates more use case scenarios, it

sacrifices a great deal of confidence in accuracy to do so.

“Semantics-Aware Trace Analysis” by Hoffman, Eugster, and

Jagannathan [6] presents an approach for representing the

dynamic behavior of a program using execution traces to create

semantic trace abstractions. “Semantic views” are aggregate

collections of events with shared semantic traits found in a

program‟s execution trace. Using a longest common subsequence

(LCS) based algorithm, semantic views produced by different

program versions can be compared for differences. The purpose

making these comparisons is using them to pinpoint exactly the

cause of regressions in large programs. The advantage of this

approach is that it preserves semantic context. However, it does

not take structural context into account. At a high level, my

approach differs from this work in three ways. First, Hoffman et

al.‟s work attempts to identify the semantic root cause of behavior

differences. That is, it creates a mapping of behaviors to code

changes. I am attempting to make the opposite association (i.e.

code changes to behavior differences). Second, Hoffman et al.‟s

work has a very specific application: regression identification. My

project applies to a more general set of uses. Finally, behavior-to-

code association is performed by a process of elimination in

Hoffman et al.‟s approach. Conversely, my project‟s approach

uses a constructive approach to make inferences.

“Automated Behavioral Regression Testing” by Jin, Orso, and Xie

[7] proposes a tool called Behavioral REgression Testing (BERT),

which identifies behavioral differences between program versions

by logging behavioral characteristics during program execution.

My approach is very similar to that used in BERT in that it

involves linking together a set of existing tools to produce a

unique output. However, this work too is primarily focused on

behavior differencing for the purpose of fault identification.

BERT identifies behavioral differences and additionally

determines if any of the differences can be characterized as faults.

The limitation of the BERT tool is that it leaves a large portion of

the analysis to the user. After BERT is executed on two program

versions, the user must manually verify if BERT‟s fault

identifications are indeed valid. My project attempts to go one

step further and attempt to perform some of this final portion for

the user automatically and for more general use purposes, not

strictly for fault detection.

“Automated Inference of Structural Changes for Matching Across

Program Versions” by Kim, Notkin, and Grossman [8] introduces

a means of automatically inferring API-level changes between

two program versions and concisely representing these changes as

first-order relational logic rules. I use this work as a building

block for my project because of its efficient and extendable

representation of structural differences. Furthermore, this

alternative representation of API-level changes couples nicely

with the PARCS, the second building block of this project‟s

approach.

“Tracking Performance Across Software Revisions” by Mostafa

and Krintz [9] presents Performance-Aware Revision Control

Support (PARCS), a tool that identifies behavioral differences

between program versions and attempts to attribute likely

structural changes to behavioral changes. I use the PARCS

process as another building block in my project because of its

ability to identify topological and performance differences, its

extendibility, and because of its intimate similarity to my

approach. Despite how similar this work is to my project, it is

only addresses half of the problem that motivates my project.

Mostafa and Krintz‟s work attempts to map detected behavioral

changes to code changes. My project extends this work by

performing inference in the opposite direction as well, by

mapping known code changes to detected behavioral changes.

Furthermore, the change rules that explain identified code changes

in my project can be extended to help explain the behavioral

differences identified by PARCS. Any behavioral differences that

were not a result of method additions, deletions, or direct

modifications, PARCS attributes to indirect method modifications

and/or non-deterministic effects and throws away. The application

of Kim et al.‟s API-level change rules enables even further insight

into these particular behavioral differences.

“Chianti: A Tool for Change Impact Analysis of Java Programs”

by Ren, Shah, Tip, Ryder, and Chesley [10] presents a tool that is

conceptually very similar to PARCS in the sense that it attributes

structural differences to behavioral differences, however, again,

the intended use of Chianti (test selection and impact analysis) is

much more specific and geared towards regression identification.

3. APPROACH
At a high level, my project‟s approach consists of three

components, the first two of which implement tools and/or

algorithms contributed by existing research. Given two versions

of a program (P and P‟) and a test suite (T), first, API-Level Code

Matching [8] is performed on P and P‟ to identify method-level

changes and transformations that describe change details. Second,

a variation of a technique used by PARCS [9] is implemented to

detect dynamic behavior differences between P and P‟ triggered

by T and attribute them to categorized code changes. Finally, set

comparison is performed to infer a mapping of API-Level Code

Change rules to behavioral differences.

3.1 API-Level Code Changes
The first component directly uses an API-Level Code Change tool

introduced by Kim et al. in [8]. P and P‟ are given as inputs to the

tool, which automatically infers probable code changes at or

above the method level and represents these inferred changes as a

set of first-order relational logic rules. Each change rule consists

of an applicable scope, exceptions to the rule, and the

transformation that occurred between P and P‟. The

transformation is one of nine predetermined transformations,

which includes argument appended, argument deleted, and

varying types and granularities of object replacement. The set of

rules (R) representing a set of likely structural changes (ΔS)

produced for P and P‟ is saved in XML format for use in the

second and third steps. This tool also provides an API that enables

easy access to inferred change rules and their applicable scope.

Kim et al.‟s API-Level Code Matching tool was chosen as the

basis for identifying structural differences because of its concise

and descriptive representation of changes. The use of change rules

as a change vocabulary, as opposed to a diff, allows structural

differences to be grouped together by similarity in a human-

readable format. Furthermore, the tool is highly extensible. In

essence, this component answers the question, “what changed

structurally and how?”.

3.2 The PARCS Process
The second component of the approach implements a process

based on a technique used by the Performance-Aware Revision

Control Support (PARCS) behavioral differencing tool introduced

by Mostafa and Krintz in [9]. Figure 1 illustrates the PARCS

process at a high level.

Figure 1. The PARCS process [9]

Given P (rev1), P‟ (rev2), and T (test input), PARCS first compiles

P and P‟ to obtain the bytecode program versions. The bytecode

versions of P and P‟ are executed using T as input to generate

their respective calling context trees (CCTs). Each node of the

CCT, representing a method call, is annotated with performance

metrics, specifically call site, absolute execution time, and relative

execution time. The bytecode versions of P and P‟ are also

compared to generate a change list of added, deleted, modified,

and renamed methods. The change list and CCTs are used to

identify topological behavioral differences (ΔBT) as a result of

added or deleted methods (ΔbA/D), directly modified methods

(ΔbM), and indirectly modified methods or non-deterministic

effects (ΔbND). After these topological differences are excised, the

remaining CCTs are identical in topology, but may vary in

performance metrics. PARCS uses a weight matching algorithm

to quantify the degree of similarity, or overlap, between the two

trees in terms of their annotated performance data. This

information represents the behavioral weight difference between P

and P‟ (ΔBW).

The PARCS process was selected for two reasons. First, PARCS

makes clever use of CCTs, a very common structure used for

program execution representation. CCTs are advantageous

because they can be traversed, sorted, and matched using standard

tree algorithms and provide a good tradeoff between size and

accuracy compared to other dynamic behavior abstractions [9].

PARCS uses CCTs to identify behavioral differences in terms of

topology as well as performance. Second, there is an intimate

similarity between the motivation and problem definition of

PARCS and that of my project. In essence, this component

answers the question, “what changed behaviorally and how?”.

3.3 Structural and Behavioral Mapping
The final component of the approach performs set comparison of

information identified in the first two components to infer a

mapping from structural to behavioral changes. There are three

cases that are considered.

A. Structural changes are identified that do not result in a

behavioral change. More formally expressed, this is the case

for methods

m: (m ∈ ΔS ∩ m ∉ (ΔBt ∪ ΔBw))

B. Structural changes are identified that do result in a behavioral

change. More formally expressed, this is the case for

methods

m: (m ∈ ΔS ∩ m ∈ (ΔBt ∪ ΔBw))

With this set, a mapping of change rules, R, to behavior

differences, ΔBT (ΔbA/D, ΔbM, ΔbND) and ΔBW can be

constructed.

C. Dynamic behavior changes are identified that are not a result

of a structural change. More formally expressed, this is the

case for methods

m: (m ∈ (ΔBT ∪ ΔBW) ∩ m ∉ ΔS)

This third and final component of the approach establishes a

bridge between the first two components. In the case of (B), it

provides potential answers to the questions, “what behavioral

changes occurred as a result of the structural changes and why?”.

3.4 Threats to Validity
Validity is a very large concern for this approach and the project

in general. There are many threats to internal, construct, and

external validity. The largest source of threats to internal and

construct validity originate from the fact that test input is limited

to the provided test suites. Therefore behavioral changes may

actually be the result of the nature of a particular test case and not

necessarily because of a structural change. This exemplifies a

confounding type of threat to internal validity. Furthermore, a

valid question is whether this approach will measure the relation

between structural and behavioral changes, or simply the coverage

provided by the test suite. This is certainly an important point, and

the results presented in the case study (Section 5) demonstrate

potential effects of this issue. Finally, threats to external validity

are also present. Given the threats to both internal and construct

validity in addition to the inability to validate this approach on a

large scale, it would be almost impossible to prove that an

approach claiming a concrete mapping of structural to behavioral

differences was correct for any arbitrary set of programs.

However, that is not the goal of this project. I do not claim that

my results are concrete, but rather that the mappings are “likely”,

identify useful information, and are a good starting point for

further investigation.

4. Implementation
To enable automation of the approach and a means of evaluating

its methodology, I designed Bidirectional Structural and

Behavioral Change Mapper (BsbCmapper), a prototype Java tool.

The first component of BsbCmapper uses Kim et al.‟s API-Level

Code Change tool directly to identify structural change details.

The second component implements a reverse-engineered version

of the PARCS process to identify dynamic behavior differences.

The final component aggregates the first two components‟ results

into standardized sets with which it performs set comparison to

infer relationships between structural and behavioral changes.

Additionally, the third component also compares the structural

changes identified by the API-Level Code Change tool for

analysis purposes. Due to time restrictions and the sharp learning

curves of some of the libraries the tool utilizes, BsbCmapper

suffers from several important limitations. BsbCmapper‟s

limitations are pointed out at the end of this section.

4.1 API-Level Code Change Use
Kim et al.‟s API-Level Code Change tool provides a useful API,

which enables easy access to the changed methods and change

rules it infers between two versions of a program. BsbCmapper

makes direct use of this API to query the matching rulebase it

constructs. The API-Level Code Change tool also defines a

canonical JavaMethod data type to uniquely represent methods.

For the sake of convenience and consistency, BsbCmapper also

internally represents methods using this data type.

4.2 Reverse-Engineered PARCS
Because PARCS is not a publicly available research tool,

BsbCmapper implements a reverse-engineered version (RE-

PARCS) based on the details in [9]. Mostafa and Krintz‟s paper

leaves out many low-level details, therefore BsbCmapper‟s RE-

PARCS implementation makes some assumptions about how

some of these low-level tasks are carried out.

4.2.1 Bytecode Comparison
BsbCmapper‟s RE-PARCS implementation uses the Apache Byte

Code Engineering Library (BCEL) [4] to perform method-level

bytecode comparison of two program versions. The PARCS

method change sets (i.e. added, deleted, modified, and renamed)

are constructed exactly as described in [9]. Following the PARCS

bytecode comparison technique, BsbCmapper compares compiled

bytecode (.class) files that have identical package and class file

names. Uncommon packages and class files are reported, but are

not used for any further analysis. An important assumption made

in this component is the notion of a “modified method.” PARCS

defines a modified method as one that is “present in both revisions

with everything identical except for the code body.” A direct

equivalence comparison of BCEL method code cannot be used

directly because bytecode contains information beyond the actual

compiled code, for example call site. Therefore, two methods‟

code could be syntactically identical, but exist at different points

in their respective program version and would therefore be

considered not equivalent by a direct BCEL method code

equivalence comparison. BsbCmapper defines code equivalence

as the union of several BCEL code attributes. These attributes can

be summed to an integer value, which is used to represent a

method‟s code‟s comparable identity.

4.2.2 CCT Generation
BsbCmapper‟s RE-PARCS implementation generates CCTs using

AspectJ [3], an aspect-oriented extension to Java. The tool uses a

simple logging aspect that is woven into a program‟s source code

when the program is built. The CCT-generating aspect logs

method invocation attributes (i.e. caller, call-site, and execution

time) to an XML file when the program it is woven into is

executed (e.g. with test input). BsbCmapper stores CCTs

internally in a traversable tree data structure and additionally in a

depth-indexed lookup table for fast access to nodes at specific

depths. The complementary use of a depth-indexed lookup table

in addition to the tree data structure cuts down on complexity and

runtime significantly.

4.2.3 Topological Comparison
The BsbCmapper RE-PARCS uses the PARCS Relaxed

Common-Tree Matching topological comparison algorithm

described in [9] verbatim to identify dynamic behavior differences

represented as topological differences in program versions‟ CCTs.

Using the changed methods identified by bytecode comparison,

topological differences are iteratively identified, attributed to

method additions, deletions, modifications, or non-determinism,

and excised from the respective CCT. The nodes (methods) and

subtrees excised are saved for use in BsbCmapper‟s structural and

behavioral change mapping component.

4.2.4 Performance Lite-Weight Comparison
PARCS uses an iterative performance weight matching algorithm

based on that introduced by Zhuang et al. in [11] to compute the

performance overlap of two topologically-identical CCTs. Due to

time limitations, BsbCmapper‟s RE-PARCS computes overlap

using the same overlap equation as PARCS, but does not perform

any iterative weight adjustments to improve the performance

overlap of two CCTs. BsbCmapper‟s lite-weight performance

comparator reports and stores methods with relative performance

differences above a user-defined threshold (0-1).

4.3 Bidirectional Change Mapping
This final component of BsbCmapper aggregates differences

identified by the first two components and compares their overlap

and uniquely identified differences. The set of structural changes

identified by the API-Level Code Change tool is taken to be the

union of the tool‟s left-to and right-to domain. The set of

behavioral differences identified by the RE-PARCS

implementation is taken to be union of the methods identified as

differences by the topological comparator and the performance

weight comparator. More specifically,

ΔS = ΔsL ∪ ΔsR

 ΔB = ΔBT ∪ ΔBW

 Where,

ΔBT = ΔbA ∪ ΔbD ∪ ΔbM ∪ ΔbND

ΔBW = m : pweight(m) ≥ thresholdW

The sets ΔbA/D consist of the roots of subtrees identified as

differing due to added or deleted methods and each root‟s

respective caller. The set ΔbM consists of the roots of subtrees

identified as differing due to directly modified methods and the

chain of modified dominators from a subtree root up to the CCT

root. The set ΔbND consists of the roots of subtrees identified as

differing due to non-determinism. Finally, ΔBW consists of the

methods with performance weight differences greater than the

specified weight threshold.

It is important to note that only the roots of topologically differing

subtrees are considered for comparison. This is because we are

only interested in the specific points where behavior between two

versions of a program began to diverge. What happens after this

point is not comparable.

BsbCmapper reports statistics regarding each stage of the RE-

PARCS implementation (e.g. differing packages and classes,

number of methods identified as changed for each bytecode

change category, number of subtrees and nodes excised due to

types of changes, common CCT size, etc.) and optionally the

results of each RE-PARCS stage as well.

BsbCmapper performs two set comparisons: structural-structural

change set comparison and structural-behavioral change set

comparison. The first comparison is performed between the

structural change sets identified by API-Level Code Change

matching and bytecode comparison. BsbCmapper identifies

structural changes that are exclusively identified by API-Level

Code Change matching and exclusively by bytecode comparison,

and reports a detailed mapping breakdown where the two overlap

(i.e. for each API-Level Code Change type identified, the

aggregate number of bytecode change types it maps to). This is

done to provide more insight into the results of the second set

comparison. The second comparison is performed in a similar

fashion between the API-Level Code Change structural change set

(ΔS) and the RE-PARCS behavioral change set (ΔB).

BsbCmapper identifies changes that are exclusively identified by

API-Level Code Change matching and exclusively by RE-PARCS

topological and weight comparison, and reports a detailed

mapping breakdown where the two overlap. In addition to the

aggregate breakdown of the two sets‟ commonality, the specific

methods that are common between the two sets and their change

type in each set are reported.

4.4 Limitations
BsbCmapper suffers from several practical limitations mainly due

to decisions that had to be made due to time restrictions. First, the

BsbCmapper process is not fully automatic. A user must generate

results from the API-Level Code Change tool and CCTs for the

program versions being compared prior to using BsbCmapper. In

other words, BsbCmapper does not automatically kick off and

collect API-Level Code Change version comparison and CCT

generation; these steps must be performed manually. Second,

BsbCmapper‟s user interface (UI) is strictly text-based, which

makes interpretation and navigation of results difficult. Third, and

most importantly, BsbCmapper suffers from memory limitations.

It was discovered too late how large the CCT XML files actually

become for even a small to medium sized open-source projects

(sometimes over a gigabyte). Because BsbCmapper uses RAM to

access CCTs and not a relational database, it is limited in the

types and sizes of programs it can analyze.

5. EVALUATION RESULTS
To evaluate BsbCmapper‟s RE-PARCS implementation, small

scale verification was performed on a feature-by-feature basis.

Second, a case study is conducted on various versions of

FreeMarker, an open-source HTML template engine for Java

servlets, to empirically evaluate the utility and effectiveness of the

implemented approach.

5.1 Verification
Originally, I had planned to verify the RE-PARCS

implementation by running it on the same open-source test

subjects used by Mostafa and Krintz and comparing RE-PARCS‟

results to those listed in [9]. However, I ran into many problems

due to the memory limitation described in Section 4.4 – the CCTs

generated for each of these test subjects were simply too large to

be evaluated by BsbCmapper. Therefore, small scale verification

was performed on a feature-by-feature basis. Using two versions

of a small test program, each of the RE-PARCS features were

tested extensively to verify that their behavior was consistent with

their counterpart‟s as described in [9].

5.2 Case Study: FreeMarker
My experimental platform is a dual-core Intel Core 2 Duo

machine clocked at 2.0 GHz with 4M of L2 cache and 2GB of

main memory running the Windows 7 operating system. The Java

virtual machine used is HotSpot version 17.0-b17 within JDK

1.6.0_21.

FreeMarker [5] is an open-source HTML template engine for Java

servlets and was chosen because its size is within BsbCmapper‟s

memory capacity and exhibits an overlap of identified structural

and behavioral changes. As a side note, BsbCmapper was

successfully tested on many different open-source projects for this

project; however it was often the case that while there would be

many RE-PARCS-identified behavioral differences, the API-

Level Code Change tool would not identify any change rule

matches. Therefore, it was somewhat of a challenge to find a test

subject for which both tools identified changes and for which

those changes overlapped. The results obtained using FreeMarker

are included in this report because they do in fact meet all of these

criteria. This section contains results from the FreeMarker case

study and one additional experiment.

5.2.1 Test Procedure
Seven versions of FreeMarker were selected whose generated

CCTs were compatible with BsbCmapper‟s memory limitation.

Table 1 shows details regarding these versions and their CCTs.

Version

Release

Date Files Methods

CCT

Nodes

CCT

Depth

2.3.16 12/7/2009 20 1632 115 27

2.2.8 6/15/2004 15 1568 334 10

1.8.5 11/16/2004 16 1681 2121 49

1.8.2 10/6/2004 16 1641 2066 53

1.8.1 2/17/2004 16 1638 2066 51

1.8 12/6/2003 16 1634 2066 51

1.7.5 6/1/2002 15 1521 268 24

Table 1. FreeMarker version details

The CCT node count and depth originate from the CCTs

generated by the test suite included with the respective version.

Note that version 2.2.8 was released before versions 1.8.2 and

1.8.5. This is because 2.x versions contain some extra features that

1.x versions do not and are a secondary branch of the FreeMarker

open-source project.

This case study is designed to answer the two research questions

posed in this project. The first research question being, “can a

mapping from a set of known structural changes to a set of known

behavioral changes can be inferred?” and the second being, “if a

mapping can be established, how reliable is it?”.

To answer the first question, pairs of versions are compared using

BsbCmapper. The test suite of the earlier version is used as test

input to both program versions for CCT generation. To answer the

second question, BsbCmapper‟s results are compared in terms of

“version separation”, the number of version releases that separate

two FreeMapper versions. For example, the comparison of

versions 1.8 and 1.8.1 possess a version separation of 1 whereas a

comparison of versions 1.8 and 1.8.2 possess a version separation

of 2. This study uses BsbCmapper to compare all of the possible

1.x combinations (10) and the one 2.x combination for a total of

11 combinations. 1.x and 2.x versions are not directly compared

against each other because their feature set is not similar enough,

however their results are indirectly comparable.

Figure 2. Average number of methods and change types

identified exclusively by (a) RE-PARCS and (c) API-Level Code

Figure 3. Effects of version separation on (a) common CCT size,

(b)

Figure 4. Average number of methods and change types

identified

Figure 2. Average number of methods and change types identified exclusively by (a) RE-PARCS and (c) API-Level Code Change

matching and (b) their common overlap

Figure 3. Effects of version separation on (a) common CCT size, (b) RE-PARCS and API-Level Code Change set overlap, and (c)

Bytecode and API-Level Code Change set overlap

Figure 4. Average number of methods and change types identified exclusively by (a) Bytecode comparison and (c) API-Level Code

Change matching and (b) their common overlap

5.2.2 Case Study Results and Discussion
In all version combinations of this study, the API-Level Code

Change tool is used with a seed threshold of 0.7 and an exception

threshold of 0.3 (see [8] for threshold details). A performance

weight threshold of 0.01 is used for the RE-PARCS performance

weight comparator in all version combinations of this study.

Figure 2 shows a breakdown of the number of methods identified

exclusively by RE-PARCS (Figure 2(a)), exclusively by API-

Level Code Change (Figure 2(c)), and their overlap (Figure 2(b))

averaged over the 11 version combinations used. On average, RE-

PARCS identifies a comparable amount of differences due to

additions, deletions, and direct modification that API-Level Code

Change does not capture. On the other hand, API-Level Code

Change identifies many changes due to package, type, and input

signature replacements that RE-PARCS does not. This behavior is

most likely due to the fact that RE-PARCS does not consider

methods in packages and classes that do not have identical names.

Therefore, even if their package or class was simply renamed,

methods in non-identical packages and classes are entirely

excluded from the RE-PARCS topological and performance

weight comparison components.

In the case of these FreeMarker combinations, the two tools

overlap only on differences attributed to additions and deletions

by RE-PARCS. API-Level Code Change categorizes these

additions and deletions as procedure replacements, return

replacements, and input signature replacements. This effect is

most likely due to, first the average number of modified methods

is exceptionally small and second, RE-PARCS‟ method

modification is at a sub-method level. Therefore, it is likely that

the API-Level Code Change tool will not detect RE-PARCS‟

modified methods. Nevertheless, because of the relatively small

amount of overlapping methods and because BsbCmapper

explicitly identifies on which methods the two tools overlap, I was

able to inspect the overlapping cases by hand. In every case, the

API-Level Code Change rule was accurate!

It is important to note that RE-PARCS does not identify any

changes due to performance weight differencing. This effect is

due to the amount of excising performed by RE-PARCS‟

topological comparison component. In most of the FreeMarker

version comparisons, very little of the CCT are identified as

topologically identical, and the performance weight differences in

the remaining CCTs are less than the performance weight

threshold.

Figure 3 shows three noteworthy trends for FreeMarker version

comparison over different version separation distances. In all

cases show in this figure, the values used are obtained by

averaging the data points at each version separation amount.

Figure 3(a) illustrates the effects of version separation on RE-

PARCS‟ topological comparison. The father apart two compared

versions are the more behavioral differences they exhibit.

Therefore, with more topological differences, RE-PARCS

performs more excising. After three versions of separation, the

topological comparator almost entirely excises both CCTs. Figure

3(b) shows the relative proportion of RE-PARCS-identified

behavioral changes, API-Level Code Change-identified structural

changes, and their overlap as the version separation is increased

between two versions of FreeMarker. The y-axis is a log scale so

that the smaller values are more apparent. In all cases, API-Level

Code Change identifies many more structural changes than RE-

PARCS identifies behavioral changes. However, their overlap

peaks in the case of BsbCmapper comparisons that are three

versions apart, after which there is not much variance. This effect

is likely due to the fact that in this case after three versions of

separation, there are no more topological differences from which

to draw; the CCTs are entirely excised! What is important is that,

though the overlap between the identified changes of the two

methodologies, there is not much variance even as more and more

distant versions are compared. This indicates that the reliability of

the mapping remains constant.

5.2.3 Additional Experiment and Discussion
An additional experiment is conducted using BsbCmapper results

obtained during the FreeMarker case study. To better gauge the

quality and more informatively interpret the case study results, a

similar change set comparison is performed between the structural

changes identified by RE-PARCS‟ bytecode comparison and the

API-Level Code Change tool.

First, Figure 3(c) shows the relative proportion of bytecode-

identified structural changes, API-Level Code Change-identified

structural changes, and their overlap as the version separation is

increased between two versions of FreeMarker. When the version

separation is small, API-Level Code Change identifies a majority

of the structural differences. However, beyond a separation of one

version, bytecode comparison detects a majority of the structural

changes, but there is roughly a 30% overlap of the two methods‟

identified changes. Additionally, beyond a separation of one

version, there is not much variance between the two methods‟

relative amount of identified changes. This effect is likely due to

the fact, again, that RE-PARCS excludes packages and classes

that do not have identical names. It could be the case that

modifications that occur after more than one version separation

are predominantly in added or renamed packages and classes.

Therefore, the bytecode comparator reaches a ceiling value.

Figure 4 shows a more detailed breakdown of the types of

changes identified exclusively by each structural change

identification method and their common overlap. Figure 4(a)

illustrates that a majority of the bytecode-exclusive identified

changes are added and directly modified methods, whereas Figure

4(c) illustrates that a majority of the API-Level Code Change-

exclusive identified changes are package and class replacements.

This effect emphasizes previous observations; RE-PARCS‟

bytcode comparison does not detect changes within potentially

renamed packages and classes and API-Level Code Change has

difficulty detecting sub-method level changes (i.e. bytecode-

identified directly modified changes). A clear trend in the overlap

illustrated in Figure 4(b) is that bytecode-identified modified

methods make up only a very small amount of the commonly

identified API-Level Code Change methods. The rest of the

bytecode change types are more or less evenly distributed within

each API-Level Code Change type.

6. CONCLUSIONS AND FUTURE WORK
The experimental evaluation of this project‟s approach using

BsbCmapper, though limited, verifies that not only can a mapping

from structural to behavioral changes be automatically inferred,

but additionally, it is accurate and retains reliability! In each of the

hand-inspected cases where the API-Level Code Change

structural changes overlapped with the RE-PARCS-identified

dynamic behavior differences, the API-Level Code Change rule

listed was accurate and, within the low-level context of the

bytecode change semantics, the RE-PARCS change categorization

was accurate as well. Due to time limitations, I was not able to

identify the significance of the identified changes within the

context of the FreeMarker program, but the fact that API-Level

Code Change rules can successfully be mapped to dynamic

behavior differences means that in these few cases, more detailed

information is provided as to why this behavior difference exists!

The relatively small amount of behavioral differences detected by

RE-PARCS with respect to the number of detected API-Level

Code Change differences in the FreeMarker case study could be

attributed to two possibilities. First, this effect could be an

indication of an insufficient test suite. Second, and more likely,

because RE-PARCS does not consider methods in non-identically

named packages and classes, modification to identical methods in

renamed packages or classes are ignored. The API-Level Code

Change tool indicated that there were many package and class

replacements within the compared versions of FreeMarker. Any

changes made to identical method within these packages would

not have been considered by RE-PARCS.

The results observed in the small scale case study, though very

dependent on the test subject, do verify that a bidirectional

mapping structural and behavioral differences between two

versions of a program can in fact be automatically inferred and

that the mapping is reliable. Future work will need to directly

address the practical limitations of BsbCmapper in order for the

utility of this approach to be realized. If BsbCmapper is to

actually be used, it will need to be made fully automatic to reduce

the effort required to use it. Secondly, the nature of BsbCmapper‟s

results necessitates an interactive graphic user interface (GUI).

The tool has the potential for reporting more text-based results

than any developer would care to look at no matter how useful

they were stated to be. A more useful approach would be to report

high-level results initially and provide a UI that enabled a

developer to search and/or dig deeper in specific places. Finally,

BsbCmapper will need to store and access CCTs via a relational

database for it to be used on programs with any amount of test

input. The current memory limitations do not enable behavior

triggered by large test suites to be captured.

In conclusion, this project demonstrated that a bidirectional

mapping can in fact be inferred between structural code changes

and dynamic behavior differences. The reliability of this mapping

was demonstrated to remain non-varying even as less similar

program versions were compared. Though very limited in its

utility, the BsbCmapper implementation of this project‟s approach

provides more information than existing tools about why certain

behavior differences exist between two program versions in the

context of structural code changes.

7. REFERENCES
[1] A. Orso, N. Shi, and M. Harrold. Scaling Regression Testing

to Large Software Systems. In SIGSOFT „04/FSE-12:

Proceedings of the 12th ACM SIGSOFT twelfth international

symposium on foundations of software engineering (Newport

Beach, CA, USA, 2004), ACM, pp. 241-251.

[2] A. Villazón, W. Binder, P. Moret, and D. Ansaloni. MAJOR:

Flexible Tool Development with Aspect-Oriented

Programming. In Software Maintenance, 2009 – IEEE

International Conference (Edmonton, Alberta, Canada,

2009), IEEE, pp. 378-388.

[3] AspectJ Aspect-Oriented extension to Java.

http://www.eclipse.org/aspectj

[4] Bytecode Engineering Library. http://jakarta.apache.org/bcel

[5] FreeMarker Java Template Engine Library.

http://freemarker.sourceforge.net

[6] Hoffman, K., Eugster, P., and Jagannathan, S. Semantics-

Aware Trace Analysis. In PLDI ‟09: Proceedings of the 2009

ACM SIGPLAN conference on Programming language

design and implementation (Dublin, Ireland, 2009), ACM,

pp. 453-464.

[7] Jin, W., Orso, A., and Xie, T. Automated Behavioral

Regression Testing. 2010 Third International Conference on

Software Testing, Verification and Validation (Paris, France,

2010), pp. 137-146.

[8] Kim, M., Notkin, D., and Grossman, D. Automatic Inference

of Structural Changes for Matching Across Program

Versions. ICSE '07: Proceedings of the 29th international

conference on Software Engineering (Minneapolis, MN,

USA, 2007), IEEE, pp. 725-743.

[9] Mostafa, N., and Krintz, C. Tracking Performance Across

Software Revisions. In PPPJ ‟09: Proceedings of the 7th

International Conference on Principles and Practice of

Programming in Java (Calgary, Alberta, Canada, 2009),

ACM, pp. 162-171.

[10] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley. Chianti:

A Tool for Change Impact Analysis of Java Programs. In

OOPSLA ‟04: Proceedings of the 19th annual ACM

SIGPLAN conference on object-oriented programming,

systems, languages, and applications (Vancouver, British

Columbia, Canada, 2004), ACM, pp. 432-448.

[11] Zhuang, X., Kim, S. IO Serrano, M., and Choi, J.-D. Perdiff:

A Framework for Performance Difference Analysis in a

Virtual Machine Environment. In CGO ‟08: Proceedings of

the sixth annual IEEE/ACM international symposium on

code generation and optimization (New York, NY, USA,

2008), ACM, pp. 4-13.

