Verification and Validation in Cyber Physical
Systems: Research Challenges and a Way Forward

Xi Zheng and Christine Julien*
*The University of Texas at Austin
Email: jameszhengxi,c.julien @utexas.edu

Abstract—It is widely held that debugging cyber-physical sys-
tems (CPS) is challenging; to date, empirical studies investigating
research challenges in CPS verification and validation have not
been done. As a result, the exact challenges facing CPS developers
in the real world remain at best unquantified and at worst
unknown, and the research directions the community should
undertake are not clearly identified. In this paper, we review
our recent empirical study of real-world CPS developers. This
position paper then uses the findings from this study to highlight
the discovered key challenges and to present a research trajectory
to address these challenges.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are an integration of compu-
tation and physical processes. CPS have gained popularity both
in industry and the research community and are represented by
many varied mission critical applications [17]. Debugging CPS
is important, but the intertwining of the cyber and physical
worlds makes it very difficult. There are several common
conceptions and misconceptions related to CPS verification
and validation, but very little existing research attempts to
systematically clarify these mysteries. As a result, research
on CPS verification and validation is largely working in the
dark, tackling issues that may or may not be of importance to
the CPS development community.

For instance, simulation-based testing is often used in
mission-critical CPS applications, and many CPS research
projects build support for such simulation-based testing. But
is simulation-based testing appropriate? What features are
inefficient or incomplete? In a 2007 DARPA Urban Challenge
vehicle, a bug undetected by more than 300 miles of test-
driving resulted in a near collision. An analysis of the incident
found that, to protect the steering system, the interface to the
physical hardware limited the steering rate to low speeds [13].
When the path planner produced a sharp turn at higher speeds,
the vehicle physically could not follow. The analysis also con-
cluded that, although simulation-centric tools are indispensable
for rapid prototyping, design, and debugging, they are limited
in providing correctness guarantees. However, there is no study
to systematically analyze why simulation-based testing fails
and show how CPS practitioners think about using simulation-
based testings for CPS verification and validation.

Through an extensive literature review, we found many
such examples. For instance, we found that, in some mission-
critical industries (e.g., medical device development), correct-
ness is currently satisfied by documentation associated with
code inspections, static analysis, module-level testing, and

integration testing. These tests do not consider the context of
the patient [7]. We could not find any literature to show how
a real CPS practitioner could convince himself that something
like the Therac-25 disaster [12] will not reoccur.

Given the current state of research on software engineering
for CPS, many additional questions derived naturally. For
instance, who are these real CPS practitioners and what are
their backgrounds? Are they trained in traditional software
engineering methodologies and tools? Given research and
development trends associated with programming languages
that target the resource constrained computing platforms that
characterize CPS (e.g., nesC [6]), what programming lan-
guages are actually used by CPS developers and how do these
languages and their programmers deal with challenges caused
by resource constraints? More to the point of understanding
the end-to-end software engineering process for CPS, it is
largely believed that a trial-and-error approach is the state of
art for developing and verifying CPS systems [17]. Even faced
with this reality, many researchers in more traditional software
engineering verification and validation domains regard this
claim as difficult to fathom due to the well demonstrably
poor test coverage of such an approach. But how do real CPS
developers view this approach to verifying their systems?

To seek the answers to these questions, we conducted
a qualitative and quantitative empirical study of the state
of the art in CPS verification and validation [20]. Based
on the overview of the study results and research gaps it
identifies, this position paper proposes an incremental and
realistic approach to address the research challenges in CPS
development and verification. We first review our empirical
study and follow with a research road-map towards supporting
feasible and usable CPS runtime verification to address a
subset of the research challenges identified in the study.

II. THE EMPIRICAL STUDY

To address the dearth of empirical information available
about CPS development, specifically in debugging and testing,
we conducted an empirical study [20] with three parts: a broad
literature review, a quantitative on-line survey, and qualitative
interviews. In the literature review, we took a very broad
look at techniques that have been or could be applied to CPS
verification and validation. Based on the findings, we created
a set of multiple choice questions that attempted to resolve the
veracity of a set of commonly held beliefs surrounding CPS
development and debugging. We received survey responses

from 25 researchers and developers who are active in the area
of cyber-physical systems. In our more in-depth interviews, we
used a set of open-ended questions around the trends we saw
in the survey results to further explore the opinions of CPS
practitioners related to CPS verification and validation. The
nine interviewees were CPS experts from around the world.

Our literature review covered exemplars in a wide variety
of applicable areas, including formal methods, model- and
simulation-based testing, runtime verification, practical tools,
and social and cultural factors that have a non-trivial impact
on the adoption of techniques for verification and validation
of CPS. One of the more interesting and relevant findings
was a piece of work that used Isabelle/HOL [16] to formally
verify the kernel of a secure embedded real-time operating
system that is the foundation for a highly secure military CPS
application [9]. This demonstrated that, with careful design, a
critical component of a complex CPS can actually be formally
verified by a state-of-the-art theorem prover. However, we also
found that requirements and costs of human involvement (i.e.,
the total effort for the proof was about 20 person-years [8])
makes this specific approach inadequate for verifying an entire
general-purpose CPS application. Also particularly promising
in our literature review was the state-of-the-art in runtime
verification, especially in the form of aspect-oriented monitor-
ing [4], which can potentially provide a great supplement for
formal methods and traditional testing. However, as we discuss
in more detail in Section III, runtime verification applied to
CPS has its own distinct research challenges.

The most illuminating aspects of our empirical study [20]
came from the surveys of and interviews with real CPS
developers and researchers. We next briefly highlight some of
the widely held beliefs we targeted and summarize the findings
of our studies. For each belief we review, we briefly state the
belief in bold text and then discuss our findings.

CPS developers are generally unfamiliar with traditional
software verification and validation tools and methodolo-
gies. We found this belief to be largely, and disappointingly,
true. Many of the CPS developers and researchers responding
to our survey came from other engineering fields (e.g., civil
and mechanical engineering), and it is therefore not unreason-
able that they have not been introduced to mainstream software
engineering tools. These results also motivate the fact that new
tools and specification languages targeted to CPS verification
and validation must have intuitiveness as a primary goal.

High-level programming languages (e.g., Java) are not
applicable to CPS. Contrary to this popularly held belief,
we found that high level programming language, along with
functional languages, are actually quite commonly used in de-
veloping CPS applications. Resource constraints (e.g., CPU,
memory, and storage) are a major issue in developing and
debugging CPS. This claim often goes in hand with the previ-
ous one; outsiders assume CPS developers eschew high-level
programming languages because they tie developers’ hands
in dealing with low-level concerns like resource constraints.
We found that, although resource constraints are indeed often
considered at the lower layers of CPS system (e.g., sensor

drivers and wireless networks), the upper layers (i.e., the
core application logic) are not bounded by resources. One
particular interviewee, who is in charge of a large scale bridge
monitoring system, stated that the team designed the resource
layer (e.g., sensors and networking unit) to fit the computation
requirement for the software. These findings might have a
rippling effect on research directions for CPS since much
current research focuses on building tools and techniques
specific to resource-constrained platforms and languages and
are therefore potentially limited in practical applicability.

Existing model checking and other formal techniques
are insufficient to meet CPS applications’ needs. This
belief rang true with our study participants. Our respondents
indicated that the two primary reasons that these existing
techniques are insufficient are their steep learning curves and
the resulting inefficiencies in checking a system of any real
size. There is a significant gap in language between formal
models of computing and communications and models of
physics that makes applying them jointly in CPS challeng-
ing. In our studies we found that, while cyber physical systems
inherently intertwine the computational and the physical, the
tools and techniques available to developers have largely
focused only on the computational aspects, leaving physics
and physical models underrepresented in the verification and
validation stages. CPS researchers and practitioners therefore
discount the value of simulation tools not only because of the
inefficiencies associated with applying them but also because
of the inaccuracy of the (physical) models.

This brings us to the final contested belief. An ad hoc, trial-
and-error approach to development is the state of the art
for CPS systems. We found this belief to be overwhelmingly
true among CPS developers “in the trenches.” CPS practition-
ers are not enamored with this approach, and they are fully
aware of the shortcomings. Nonetheless, the demand for CPS
applications and the insufficiencies of alternative approaches
lead trial-and-error to be the ‘“state-of-the-art.” The lack of
rigor in employed testing approaches in general should be
of grave concern to the software engineering community and
leads us to propose the research roadmap described in the next
section, based on three specific challenges:

o The trial-and-error testing currently employed in CPS do
not provide sufficient rigor in error detection.

o Formal methods provide a desired level of expressiveness
and would improve testing coverage, but existing formal
methods are not intuitive and efficient (scalable) enough
to be adopted in real CPS scenarios.

« Existing simulation tools are limited; their capabilities to
jointly model physical and cyber components are lacking,
which poses a significant threat to the accuracy of CPS.

III. A RESEARCH ROADMAP

Based on the results of our literature review and empirical
study, we posit that runtime verification, tailored to the special
needs of cyber-physical systems offers a reasonable and feasi-
ble complement to existing trial and error testing approaches
in CPS, where developers are already tuned to detecting and

potentially responding to faults in real-time. Enabling CPS
developers in employing such techniques requires providing:
« an easy and intuitive way for CPS developers to specify
desired correctness properties of a CPS application;
o mechanisms to incorporate properties of the physical
world into the runtime verification process; and
o a usable tool suite that is both integrated with the de-
velopment process and approachable to CPS developers
who may not be expert software engineers.

Figure 1 shows the Brace architecture, which fits these com-
ponents together. CPS developers use an assertion language to
annotate a CPS program with desired correctness guarantees.
This annotated program is passed through the Brace compiler
to the runtime framework, which uses a set of tools that model
and connect to the physical aspects of a CPS to generate a
deployable CPS program. BraceForce refers to a tool that
provides access to physical information from sensors and
actuators deployed in the environment [21]; BraceForce is
similar in nature to other tools that connect applications to
sensing capabilities in the wild [3], [18]. BraceBind refers to
a tool that connects the developer’s correctness specifications
either to outputs of these sensors and actuators or to models
(e.g., simulations or numerical models) of physical properties.

~ ¢~ CPSTarget

Environment \\
(&

\/ & X\
g E—' AV

Annotated
CPS Program

Deployable
CPS Program

/

Brace

CPS >~ Framework < \/ \ 7/:‘»/
Assertion \r\\’/y*\
: (o ®)
(AN
CpPS Brace < Y A 4 NV
Developers Assertion =>(_sensors & /
1) Bind Force U Actuators -

Fig. 1. The Brace Framework Architecture

We use this strawman architecture to elucidate research
challenges in bringing practical runtime verification to CPS
development. Our first step is to create a specification language
for intuitively and expressively stating CPS assertions; this
is BraceAssertion in Figure 1. Secondly, the state of art in
runtime verification lacks a balance between expressiveness
and efficiency [1]. Moreover, CPS has distinct requirements
for runtime verification (e.g., the ability to represent both func-
tional and timing behaviors). Brace is an online monitoring
framework that address these issues. Thirdly, as found in our
empirical study, physical properties cannot be simply ignored,
and a robust approach to accounting for the intertwined physi-
cal and cyber components of a CPS must be addressed; this is
BraceBind in Figure 1. Lastly, cyber physical systems exhibit
stochastic attributes: sensors can be faulty, delays of actuation
are random, and impacts of the deployment environment are
often undetermined. Addressing this randomness is the last
piece of our research roadmap.

Intuitive and Expressive Assertions. We envision an
accessible approach to providing correctness specifications
through BraceAssertion. A BraceAssertion allows a CPS de-
veloper to provide natural language statements of correctness

properties that are automatically converted to a temporal logic
with qualitative (e.g., eventually, always, eventually always,
never) and quantitative (e.g., within, more than, after exactly
k time units) expressiveness. The main idea is to turn this
(signal clock) temporal logic into a (determinizable) monitor
automaton for run-time verification. The formal specification
must be accessible to CPS practitioners who are not logicians
and may not understand formalisms such as temporal logics.
To that end, our natural language specifications will be based
on the paradigm of Behavior Driven Development'. Though
the idea of using temporal logics to generate a monitor is not
fundamentally new, we see an essential challenge in making
the paradigm more accessible and therefore practically viable.
An Online Monitoring Framework. Fully supporting
the complex properties necessary for CPS, e.g., capturing
global properties that can only be checked by combining
events and properties from a set of distributed nodes in the
CPS [14], a major component of the Brace framework will
be to develop time synchronization algorithms to deal with
challenges associated with unreliable networks, to guarantee
ordering of events from distributed nodes, to synchronize
between (distributed) events and objects used for checking
global properties. To meet desired requirements of CPS (e.g.,
minimum impact to the observed system and predictable be-
haviors of monitors irrespective of surges of events), the online
monitoring framework will require optimization algorithms
to dynamically adjust the behavior of runtime monitors. The
ultimate goal is to create a practical runtime verification frame-
work to replace the trial-and-error method that is currently
adopted by CPS practitioners as the de facto standard.
Connecting to Real-time Simulation. Connecting the CPS
application to the physical world through BraceBind is an
essential piece of our strawman architecture. Since testing
in situ is expensive and may not be reasonable for all CPS
applications, connecting the CPS runtime verification frame-
work to high-quality real-time simulation of physical processes
will be a key enabler of a verification and validation tool
suite for CPS. The integration of real-time simulation with
the Brace online monitoring framework would enable models
of physical components (e.g., sensors, actuators, battery, and
environment) to be checked at runtime against the cyber part
of a CPS in a simple and repeatable way. The research
challenges that remain relate to quantifying the accuracy of
the models and creating a programming interface that can act
as a facade between the cyber components and physical data
sources, whether they are sensors or real-time simulations.
We envision a cyber-model interface that can be automati-
cally synthesized from a simple specification of sensors and
actuators. We also envision a model-environment interface
that glues transducer models (e.g., of sensors, actuators, and
resources like CPUs and batteries) with physical models (e.g.,
kinematic models) to enable runtime verification in varying
deployment environments. Modelica [15], [10] provides both
a cyber-model interface and a model-environment interface,

Ihttp:/dannorth.net/introducing-bdd

enabling implementing physics simulations with equations and
introducing the execution of algorithms over these simulations.
However, Modelica is not applicable to heterogenous models,
which are required for CPS in general. Functional Mock-up
Interface (FMI) [5] integrates simulation components across
platforms but requires simulation tools to strictly support FMI
function calls. The two fundamental challenges in integrated
simulation (time synchronization and data integration) are left
for developers to handle, which is complex and error prone.
We intend to create a middleware to handle these challenges
using a simple and approachable specification language. More
specifically, one could imagine a tight integration of simulation
models and tools (especially an off-the-shelf product like
Simulink) with a CPS runtime monitoring framework to detect
bugs that originate from the interaction between the cyber
and the physical components of the system. The ultimate
result would be a practical framework/tool for industrial CPS
developers to do software-in-the-loop testing.

Addressing Uncertainties. Finally, a CPS runtime moni-
toring framework must support reasoning under uncertainty.
Fuzzy logic enables altering the guarantees associated with
models of physical components. For instance, instead of using
a single observation to generate an event, we can perform
temporal aggregation over a period of observations. In [11],
the period of sampling, the weight of each observation, and the
acceptance threshold were all set empirically. In contrast, we
envision determining these parameters using machine learn-
ing and creating efficient monitor synthesis and verification
algorithms for the fuzzy models. We should also evaluate
alternatives to deal with stochastic nature of CPS systems. For
example, using robust control [2], the control system (e.g., a
car’s braking system) should be robust to many situations (e.g.,
the conditions of the asphalt). Robust control identifies the
uncertain parameters and their variations. Control strategies
can be designed to be robust with respect to a variation in
the parameters within the prescribed range. Applying this for
CPS verification requires automating the identification of the
parameters and their ranges. Another viable tool to deal with
testing uncertainty of CPS is the scenario theory/approach,
which has been used to test wind farm systems [19]. The
idea is to define all the potential sources of uncertainty and
perform a certain (very high) number of experiments on the
real system. The number of experiments to be performed with
random conditions for the uncertainty sources is given by a
chance constrained problem. The result of the application of
this approach is the formal guarantee that the system will
do what is required with probability 1 — €, where € is very
small. Our research in this direction is to automate a process
to identify and solve a chance constrained problem (namely
to find the number of experiments required for a given e).

IV. CONCLUSIONS

In this position paper, we used an empirical study on
debugging teting CPS to motivate a set of research challenges
and presented a roadmap that highlights a set of challenges
addressed by an integrated runtime monitoring framework

designed with the goal of supporting CPS developers in sifu as
they attempt to verify their complex cyber physical systems.
Key aspects of this roadmap include integrating simulation
tools and fuzzy models into a tool for validating CPS.

ACKNOWLEDGMENTS

Thanks to all participants in the empirical study and all col-
laborators in our ongoing research. This work was supported
in part by the NSF under grant CNS-1239498. Any findings,
conclusions, or recommendations are those of the authors and
do not necessarily reflect the views of the sponsor.

REFERENCES

[1] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard.
Quantified event automata: Towards expressive and efficient runtime
monitors. In Proc. of FM. 2012.

[2] S. Bhattacharyya, H. Chapellat, and L. Keel.
parametric approach. Upper Saddle River, 1995.

[3] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone, J. V. Orden,
and G. Borriello. Open data kit sensors: A sensor integration framework
for android at the application-level. In Proc. of Mobisys, 2012.

[4] F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming
environment for Java. In Tools and Algorithms for the Construction and
Analysis of Systems. 2005.

[5] Functional mock-up interface. http://www.fmi-standard.org.

[6] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Acm Sigplan Notices, 2003.

[7]1 Z. Jiang, M. Pajic, and R. Mangharam. Cyber—physical modeling of
implantable cardiac medical devices. Proc. of IEEE, 100(1), 2012.

[8] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser. Comprehensive formal verification of an os
microkernel. ACM Transactions on Computer Systems (TOCS), 2014.

[9]1 G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Deffin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,

H. Tuch, and S. Winwood. sel4: Formal verification of an OS kernel.

In Proc. of SOSP, 2009.

C. Knobel, G. Janin, A. Woodruff, and A. Modelon. Development

and verification of a series car modelica/dymola multibody model to

investigate vehicle dynamics systems. In Proc. of Int’l. Modelica Conf.,

2006.

K. B. Lamine and F. Kabanza. Using fuzzy temporal logic for monitoring

behavior-based mobile robots. In Proc. of IASTED, 2000.

N. G. Leveson and C. S. Turner. An investigation of the therac-25

accidents. Computer, 26(7):18—-41, 1993.

S. Mitra, T. Wongpiromsarn, and R. M. Murray. Verifying cyber-

physical interactions in safety-critical systems. /EEE Security & Privacy,

11(4):28-37, 2013.

T. A. Moehlman, V. R. Lesser, and B. L. Buteau. Decentralized

negotiation: An approach to the distributed planning problem. Group

decision and Negotiation, 1(2):161-191, 1992.

L. Morawietz, S. Risse, T. Christ, H. Zellbeck, and H. C. Reuss.

Modeling an automotive power train and electrical power supply for

hil applications using modelica. In Proc. of Int’l. Modelica Conf., 2005.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof

assistant for higher-order logic. 2002.

R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical

systems: the next computing revolution. In Proc. of DAC, 2010.

A. Sani, K. Boos, M. Yun, and L. Zhong. Rio: A system solution for

sharing I/O between mobile systems. In Proc. of Mobisys, 2014.

M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson. A

probabilistic framework for reserve scheduling and security assessment

of systems with high wind power penetration. [EEE Transactions on
Power Systems, 28(4):3885-3896, 2013.
[20] X. Zheng, C. Julien, M. Kim, and S. Khurshid. On the state of the art in
verification and validation of cyber physical systems. Technical report,
The University of Texas at Austin, 2014. http://goo.gl/VIgOIB.

[21] X. Zheng, D. Perry, and C. Julien. Braceforce: A middleware to enable
sensing integration in mobile applications for novice programmers. In
Proc. of MOBILESoft, 2014.

Robust control: the

[10]

(1]
[12]

[13]

[14]

[15]

(16]
[17]
[18]

[19]

