Supporting Multi-Fidelity-Aware
Concurrent Applications in
Dynamic Sensor Networks

Nirmalya Roy, The University of Texas at Austin
Vasanth Rajamani, The University of Texas at Austin
Christine Julien, The University of Texas at Austin

TR-UTEDGE-2010-010

© Copyright 2010
The University of Texas at Austin

Supporting Multi-Fidelity-Aware Concurrent
Applications in Dynamic Sensor Networks

Nirmalya Roy, Vasanth Rajamani and Christine Julien
The University of Texas at Austin
Email: {nirmalya.roy, vasanthrajamani, c.julien}@mail.utexas.edu

Abstract— Most existing research in wireless sensor networks focuses
on optimally running a single application on top of a tailor-made and de-
ployed network. However, as sensors become an integral part of our en-
vironments, we posit that sensor networks will be increasingly viewed as
platforms that will be used to run several user applications simultaneously.
Concurrently executing applications requires the network’s resources to be
shared across applications so as to make the best long-term utilization of the
constrained devices and communications network. This resource sharing
entails tradeoffs in the fidelity offered to individual applications. Fidelity is
an application-dependent concept that can denote a variety of operational
measures including communication latency, data quality, and redundancy.
In this paper, we present a principled way to define the fidelity associated
with an application given a particular allocation of the available resources.
Given a desired set of applications to deploy, we also explore the impact
of sharing resources among the applications in terms of fidelity degrada-
tion to individual applications. To this end, we provide an algorithm that
determines the optimal subset of applications to deploy given the available
resources and the potential impact on fidelity and evaluate it.

I. INTRODUCTION

Enabling multiple applications to execute concurrently in sen-
sor networks requires allocating the network’s resources to the
applications’ potentially competing tasks in a way that maxi-
mizes the applications’ fidelities, or qualities of performance.
As sensor networks become ubiquitous, they will increasingly
be treated as shared platforms for application-dependent sens-
ing, computation, storage, and communication. This diverges
from the current paradigm of designing individual applications
optimized for a particular sensor network deployment. How-
ever, sharing a common pool of resources between different ap-
plications may result in individual applications performing sub-
optimally, if at all. In this paper, we present the theoretical un-
derpinnings of a sensor network architecture that can navigate
the tensions between resource sharing and the potential ensu-
ing fidelity degradations. To gain a deeper understanding of the
tradeoff, we first identify the following interrelated issues:

Resource Sharing. The basic premise behind any resource
sharing scheme is to identify common tasks across different ap-
plications. Output from these shared tasks can be used across
multiple applications instead of each application executing the
task independently. This requires a fundamental understanding
of the nature and scope of a task.

Tasks. Tasks are units of execution that make up an applica-
tion. We abstract the tasks that occur in a sensor network into
three classes: capture, storage, and distribution. Capture refers
to the process of generating data, both in terms of raw data sens-
ing and data aggregation (both temporal and spatial). Storage
refers to the maintenance of captured values for finite periods of
time. Finally, distribution refers to tasks that utilize the commu-
nication medium to move captured values among the devices.
A single application may perform a variety of combinations of

these tasks. To understand how the network’s resources can be
shared to accomplish applications’ tasks requires understanding
the quality with which applications’ competing constraints are
met.

Fidelity. Fidelity is an application defined concept that refers
to a notion of quality. The key observation is that different ap-
plications can tolerate different levels of quality across the dif-
ferent dimensions of its definition. For example, an application
may optimally sample at a frequency of once per minute but
still be able to function if this sample rate drops to once per five
minutes. A variety of functions preformed in a sensor network
setting can be run in a multi-fidelity setting. For example, sens-
ing fidelity can be modified by sampling at different frequen-
cies. Similarly, storage fidelity can be modulated by varying the
storage format of data or the granularity at which information
is stored (e.g., raw information can be stored for high fidelity
while averages may suffice for lower fidelity).

To create a framework for supporting resource sharing among
concurrently executing applications, it is necessary to first deter-
mine if the resource availability is such that all applications can
be supported at their optimal levels of quality. If not, then the
framework must use application-specified fidelity tolerances to
drive a policy engine for resource allocation and sharing.

Consider an example of a sensor network where all hosts
combined have CPU and battery resources of 250 units (cy-
cles/sec in million) and 315 units (Microjoule) available respec-
tively as shown in Table I. There are two applications that want
to run in this network. The first usually runs in the background
to perform low-level target detection of a mobile intruder. It
requires 210 units of CPU cycles and 240 units of energy to
achieve 90% fidelity (assuming fidelity is proportional to re-
source demand and there is no discernible difference running
at 90% instead of 100% fidelity). It is willing to tolerate a de-
crease in fidelity, but only down to 60% (the sensor may switch
to sleep mode more frequently thereby reducing the sensing and
communication overhead), at which point it requires 140 units
of CPU cycles and 160 units of energy to perform its required
sensing and communication tasks. The second application mea-
sures the current visibility in the region of interest. It requires
100 units of CPU and 150 units of energy to operate at 80%
fidelity. It will tolerate a decrease in fidelity, down to 60%, at
which point it requires at least 80 units of CPU and 120 units
of energy. To enable these applications to execute concurrently
and ease the tensions between their resource requirements, we
need to investigate the optimal allocation of resources and tol-
erate some degradation of the fidelity of each individual appli-
cation. For example, the first application can be executed with

fidelity of 70% (168 units of CPU and 192 units of energy) and
the second with fidelity 60% (80 units of CPU and 120 units of
energy) resulting in a total resource usage of 248 units of CPU
cycles and 312 units of energy. Different combinations of this fi-
delity level and resource allocation are possible depending upon
the available network resources. For simplicity, we do not delve
into different dimensions of each individual application fidelity
in this example although we characterize this in Section III.

[[CPU cycles/sec (million) | Energy in uJ [Fidelity (p)]

Network 250 315
Appl 210 240 Pmaz =90%
App2 100 150 Pmaz = 80%
Appl 140 160 Pmin = 060%
App2 80 120 Pmin = 60%
Appl 168 192 Padaptive = 10%
App2 80 120 Padaptive = 60%

TABLE I
ADAPTIVE MULTI-APPLICATION SCENARIO

Our goal is to enable the automatic determination of such re-
source allocations in a general way that best satisfies the appli-
cations’ fidelity requirements (e.g., data timeliness, data quality,
location of sensing) and best utilizes the available network re-
sources by maximizing the number of concurrent applications.
To that end, we discuss fidelity-aware resource allocation and
application selection to support multiple concurrent applications
in wireless sensor networks. Our main contributions are the fol-
lowing.

o Multi-Fidelity based Resource Decomposition (MFRD):
We describe a scheme to specify application requirements in a
fidelity spectrum. This provides a principled way to degrade fi-
delity on the spectrum (Section III) as the network’s resource
constraints are considered.

« Multi-Applications Task Sharing (MATS): Based on appli-
cations’ task and fidelity breakdowns, we show how we can
identify tasks to be shared across applications. To accomplish
this, we consider each application’s minimum task and fidelity
requirements and maximize the task sharing across applications
(Section IV).

« Utility-based Application Selection (UAS): We present a
linear time search heuristic algorithm for determining the con-
current applications that can be accommodated with the fidelity
requirement within the available network resources (Section V).

In this paper, we focus on the problem of determining the best
possible fidelities that different applications can be supported
at, given the total available resources in the network. We do
not focus on the task assignment problem—assigning the tasks
comprising these applications to nodes in the network. The so-
lution to this problem may require further constraining the appli-
cations that can be supported or further reducing the fidelity with
which they can be supported. This will be investigated in future
work. We evaluate our approach in a simulator and demonstrate
the performance of our system (Section VI). Our approach is a
first step in making sensor networks more general and flexible
in their support of a priori unknown application constraints.

II. OUR SYSTEM COMPONENTS

In this section, we outline and discuss the different compo-
nents of our system model as shown in Fig. 1. In the following

sections, we describe each of these components in greater detail.

Application;

; MFRD H MATS }—>

MFRD: Multi-Fidelity based Resource Decomposition
MATS: Multi-Application Task Sharing
UTS: Utility-based Application Selection

UAS

Application,,

Fig. 1. System Components

Multi-Fidelity based Resource Decomposition: We present
a model where fidelity-aware applications can be tailored to ex-
ecute at different granularities of fidelity for different associated
costs in terms of resource utilization. We assume that appli-
cations typically prefer high fidelity behavior but can tolerate
results of lower fidelity when the resources are limited. We also
assume that achieving higher fidelity requires greater resource
utilization in comparison to low fidelity applications. We repre-
sent each application’s fidelity with multi-dimensional metrics
that capture the relationship between fidelity and resource con-
sumption. In addition, we define a performance metric index
that captures the relationship between an application’s requests
for resources and the available network resources.

Multi-Application Task Sharing: A key observation in our
approach is that maximizing the sharing of tasks among multi-
ple applications eases the accommodation of concurrent applica-
tions in a network. To determine the best allocation of resources
to potentially competing application tasks, the allocation algo-
rithms must consider not only the fidelity of the applications
but also a way to maximize task sharing across all the appli-
cations. To that end, we investigate a multi-applications task
sharing scheme based on a task dependency graph.

Utility-based Application Selection: To maximize the num-
ber of concurrently executing applications, we have formulated
a utility based application selection problem. We define a sys-
tem utility function and propose a constraint-optimization prob-
lem based on the individual application’s fidelity and resource
constraints. We use this system utility function and the degree
of task sharing across the spectrum of different applications to
determine a correct subset of applications that can run on the
network.

III. MULTI-FIDELITY BASED RESOURCE DECOMPOSITION

We begin by discussing three different applications related
to an example target detection problem. A network of sensors,
cameras, and servers can be used to satisfy the diverse needs of
those applications. For example, Custom and Border Patrol per-
sonnel may need real-time data to see if a detected target is a
potential threat. Homeland security personnel may ask for high
fidelity results if there is a high risk of threat or potential match
of a target with existing federal database. The project’s support
personnel might be interested to see the intermediate output of
the system and how the performance of the system could be im-
proved. In general, different applications have different expec-
tations of the fidelity metric (delay in this example) in receiving
updates.

As can be seen, one of the major challenges in wireless sen-
sor networks is how to enable multiple applications with varying
fidelity requirements to execute concurrently in a network with
limited resources. One option is to allow those applications to
execute independently without sharing any task or network re-
sources, but that would result in wastage of network resources.
Additionally, it may not be possible to satisfy all of the applica-
tions’ requirements given the limited nature of sensor network
resources. An alternate approach is to allow applications to
share their tasks and resources jointly and if needed to reduce
the fidelity of an application to maximize the number of concur-
rently executing applications.

In this section, we discuss such a multi-fidelity based ap-
proach to vary applications’ fidelities to accommodate multiple
concurrent applications. The intuition is that an application can
be satisfied with different fidelity levels by varying its resource
request; the higher the resources allocated to it, the better the
fidelity. We now discuss how to go about defining multi-fidelity
applications in greater detail.

A. Application Task and Fidelity Specification

Different applications expect sensor networks to perform a
variety of tasks from three categories: capture, storage, and dis-
tribution. Each of these tasks can be accomplished at various
fidelity levels. We now provide example fidelity metrics that
can be associated with each of these tasks. These examples are
are not intended to be exhaustive but illustrative.

In the capture category, the sensor network can perform a va-
riety of operations such as: collect data from on board sensors;
cooperate to perform distributed sensing tasks; aggregate tem-
porally; aggregate spatially, etc. Each of these operations can
be captured concretely with a numerical fidelity measure. For
example, data sampling can be represented at a variety of fre-
quencies (e.g, 8, 16, or 24 kHz). Other measures relating to the
fidelity of the sampling task can be similarly specified. Link la-
tency can be measured in milliseconds (e.g., 15, 30, 45, 60 ms).
Similarly, the image format can be represented as a function of
the scheme such as JPEG, BMP, GIF, or PNG etc.

In the storage category, the sensor network and its compos-
ite nodes can perform the following types of tasks: store data
locally; handle load balancing, replication, and redundancy.
Once again, this task can have fidelity representation along sev-
eral dimensions. For example, data compression ratio can be
used to interpret the impact of the compression algorithm (LWZ,
ZIP, JPG etc.) Data freshness may alternatively be used to de-
scribe how often its is possible to receive a new measurement.

The final category in our framework is distribution, which
handles the communication of data among nodes in the network.
Aspects relating to the fidelity of distribution can once again re-
fer to a variety of operations like, gaining access to the medium,
creating and using multihop routes, and creating and maintain-
ing distributed data structures. Some examples of fidelity met-
rics that describe these operations are, the maximum packet loss
due to collision, the expected packet loss and data timeliness.
We now discuss how to formally capture the variety of fidelity
levels that these operations can operate in.

B. Application Fidelity Decomposition

We begin by defining a mathematical representation for a
multi-fidelity application. An application’s fidelity changes dy-
namically as its resource allocation changes based on compet-
ing applications. We assume Fjq, Fio, ..., I}, are the fidelity
dimensions of the i-th application, and we denote the possible
fidelity vectors by F; = Fj1 X Fija X ... X ... F;,. Thus, we de-
fine an application’s fidelity as a multi-dimensional vector and
envision that the application can tolerate lower fidelity in certain
dimensions if there are insufficient resources to achieve higher
fidelity levels. For a handful of the example metrics described
previously, we show briefly how we express them in terms of a
multi-dimensional utility function.

Data Sampling Rate: The data sampling rate of sensors can
vary from 8 kHz (low quality) to 72 kHz (high quality), and each
setting can provide a different level of fidelity.

Sampling rate 8 16 | 24 | 48 | 72
Fidelity(F31) | p1 | p2 | p3 | pa | ps5

TABLE II
SAMPLING VS. FIDELITY

Data Compression Ratio: Different compression techniques
can be used such as LZW compression, ZIP compression, lossy
JPG compression etc. We use compression ratio to quantify the
reduction in data representation size produced by a data com-
pression algorithm.

Compression Ratio 1 2 4 8 16
Fidelity (Fi2) pr | p2 | p3 | pa | ps

TABLE III
COMPRESSION VS. FIDELITY

Data Timeliness: This is the end-to-end delay of routing the
data. We assume that it varies from 20 ms to 100 ms.

Delay (ms) 100 | 80 | ... 60 | 40 | 20
Fidelity(Fi3) | p1 [p2 | ... | p3 | pa | ps
TABLE IV

DELAY VS. FIDELITY
C. Application’s Utility

For ease of defining the utility function we consider an order-
ing of an application’s individual fidelity dimensions. We map
each of the above fidelity dimensions to a non-decreasing multi-
dimensional utility function u,;(.) and represent a dimension-
wise fidelity utility function as follows. Fj1 o< u;1(pij); Fia o
wi2(pij); Fis o< uiz(pij) - .. etc. Thus the utility of an appli-
cation can be expressed as u; = Z?:l uij(pi;) where k is the
k-th dimension of the fidelity vector.

D. Performance Index

Using a multi-fidelity representation is useful because the net-
work can have a varying degrees of resources available at dif-
ferent times. To capture, the availability of resources for each
application we define a parameter called the performance index
metric, ov. To determine the network’s available resources at run-
time, we probe the network in specific time intervals to get the
network load statistics and make predictions on resource avail-
ability. For the ease of modeling, we assume that this gives us an
estimate of the CPU cycles available (A,), the available net-
work bandwidth (Ay,,), and the available energy (A.,). There

are other methods to estimate the resources available [6], and
perfecting this estimation is left for future work.

To determine the resource request of the i*" application, we
define a relation between resource request R; and the applica-

tion’s achievable fidelity F; such that r 4 p. That is, for cer-
tain combinations of different resources r the application can
achieve its fidelity point p. One application might increase the
data sampling rate over time to decrease spatial data aggrega-
tion. Increasing the data sampling rate may result in increased
energy depletion, but decreasing the spatial aggregation could
reduce the communication overhead (network bandwidth) and
link latency. In both cases, the application asks for different sys-
tem resources but satisfies the same fidelity requirements. We
assume an application’s resource request is presented in terms
of CPU cycles (Rcp,, units), network bandwidth (Rp,, units),
and energy (R, units) required to achieve the fidelity point
p. Finally, we define the performance index as a function of
the application’s resource request and the network’s available

resources. For the i-th application we define it as follows:
az - Acpu Abw + Aen !

IV. MULTI-APPLICATION TASK SHARING

In this section we present a multi-application task sharing ap-
proach to minimize the resource usage across multiple applica-
tions that have commonalities among their component tasks.

Affiliation Set: We define an affiliation set, 4, as a choice
of the subset of tasks for a specific application that, when per-
formed, meets the application’s minimum fidelity (p7*'") re-
quirement. Let (t) be the resource request associated with task
t. Then R(A) = [J;c47(t), where R(A) denotes the total
(maximum) resource request of an affiliation A4 to satisfy the
application’s minimum fidelity requirement.

Let us consider different concurrent applications having dif-
ferent affiliation sets as shown in Fig. 2. There may exist re-
source dependencies between the common tasks. For example,
the set of tasks in one affiliation set may produce the aggregated
data which may be required by another affiliation set. Again
the tasks in one affiliation set which already capture the data,
can store it for being retrieved later by the set of tasks in an-
other affiliation set for a different application. We represent
these relationships using dependency graphs. Each node in the
dependency graph represents a local affiliation, and an edge be-
tween two nodes implies that each affiliation shares some tasks
in common. The weight of an edge represents the resource uti-
lization of the common tasks in this set of common tasks that
the edge represents. Thus the dependency graph can be repre-
sented as a weighted graph, G’ = (V’,£’) where the nodes in
V' = {A1, As,..., A;}, and an edge € = (A;, Aj) € &, if
and only if A; N .A; # (). Each node A; € V' represents a local
affiliation set meeting the application’s objective. The weights
on the edges and nodes are defined as follows:

w(e') = Uyepr(t) where ¢’ = (A;, Aj) and B = A; N A;

We also define the weight of a node or the degree of an af-
filiation A as the sum of weights of all the edges from a node:
di = Uocerand imposed on.4 w(e’), which represents the de-
gree of an affiliation 4;. This gives us an estimate of the task
sharing an affiliation set .A may have for a particular application

Common task

/L.:al\ o
iati Application2

Set

Applicationl

7

Common task .~ ‘

Common task :Common task

Common task

Tocal & Local
Affiliation)< - - - -3\ Affiliation) Application N
Set Set

Application3 -
Common task

Fig. 2. Mapping of multiple concurrent applications to Affiliation Sets

in the presence of multiple concurrent applications.

We use the degree of an affiliation set to prioritize the applica-
tion execution across multiple concurrent applications. The pri-
ority of an affiliation .4 depends upon its degree, as a higher de-
gree corresponds to larger sharing of tasks across applications.
Thus a higher degree of an affiliation means a better chance of
satisfying more concurrent applications due to a larger overlap
of common tasks. We consider this degree information later in
our utility-based application selection heuristic algorithm.

V. UTILITY-BASED APPLICATION SELECTION

In this section, we propose a heuristic search algorithm to de-
termine the optimal subset of the applications that can be ac-
commodated given the applications’ fidelity requirements and
resource limitations of the network.

A. System’s Utility Determination

We define an application’s utility based on the fidelity-utility
function, where the application utility is directly proportional to
the fidelity value. Considering the multi-application scenario,
we define the overall system utility as follows:

S(p1y---pn) = Y wini(pi) 6]
i=1

where w; is a weighting factor (0 < w; < 1), which represents
the relative importance of the applications.

Problem Definition: Determine the optimal subset of the ap-
plications, given the fidelity and resource restrictions, such that
the overall system utility is maximized. Thus we can define the
optimization problem as follows:

S(p17"'7pn)

pi > p™™ i=1,...,n, (Fidelity Constraints)

maximize

subject to:

n
Zai <1 (Resource Constraints)
i=1

(@)

B. Choice of the Applications

The optimization problem stated in Equation 2 can be solved
if all the required parameters are known a priori. But consider-
ing the dynamic nature of sensor networks, it is nearly impos-
sible to have complete knowledge of the operating conditions.
Thus we design a greedy heuristic algorithm to solve it.

Greedy Algorithm: We describe a simple greedy heuristic
algorithm in the absence of any prior knowledge of the net-
work. Our goal is to determine the optimal subset of appli-
cations (called) that maximizes the overall system utility in

addition to satisfying the minimum fidelity requirement p7"‘"
for each of the application. Clearly, one solution is to iter-

ate through all possible combinations, computing system utility

S(.) for each combination of applications. However, for effi-
cient operation, we have developed a selection heuristic that is
instead linear in the number of applications.

The heuristic is based on the observation that the increase or
decrease in system utility (based on Equation 1) of adding an
application A; to an existing set 6 is dependent on the nature of
the specific utility function, the degree of task sharing d;, and
the performance index factor ;. A higher value for this shar-
ing term indicates a greater preference for selecting an appli-
cation (ideally, an application with increasing d; would reduce
the overall performance index «; in the presence of other con-
current applications). A lower value of «; also indicates lower
resource consumption. Accordingly, our heuristic sorts the set
of available applications, B, in descending order of this term, in-
crements the individual application’s fidelity using a step func-
tion until the total performance index factor exceeds the limiting
value 1 and keeps adding applications to 6 until the total system
utility decreases. Fig. 3 shows our heuristic’s pseudocode.

Procedure Application.Selection (input set B, p;”i", ;)

1. 1Initialize an empty set of applications; 6 = ¢;
pi = pi"™; MaxzSysUtility = oo;

2. Sort the application set B into a list L in
decreasing order of factor (Z—:),

3. For (i=1;i < |B|;i++))

4 0 =6+ L(i); //set—theoretic addition

5. Calculate R; — d;;//Resource Request - Resource Sharing

6. Update o;;

7 Compute performance index factor) ', ; for 6

8 if (0 o <m1a)w

9 A

pi = pi + p’f; // Increment fidelity

—

10. Compute system utility S(.) for p;
11. if (S(.) — MaxSysUtility) < 0

12. break;

13. else MaxSysUtility = S(.)

14. End-For
15. return {6, p;, S(.)}

Fig. 3. Application Set Selection Heuristic

VI. EVALUATION

In this section, we evaluate the feasibility of the ideas dis-
cussed in this paper. We wrote a Java based application to do
performance analysis based on typical use cases that a user of
our approach is likely to undertake. We simulated a setting
where there are ten applications that would like to run simulta-
neously on a given sensor network. Each application is broken
into a random number of sense, store, and communication tasks
and is assigned a random of resource requests for each of these
tasks (typically a random number between 10 and 100 units).
In addition, the simulator randomly determines the number of
tasks that are shared between applications (i.e., the degree of the
Affiliation Sets). The amount of resources available in the net-
work is generated randomly for each run. These are typically a
random fraction of the resources requested. Every application
is assigned a utility function that allows it to generate a range
of fidelities that the application can operate under as discussed
earlier.

Our first experiment was designed to establish whether hav-
ing multi-fidelity applications is beneficial to creating sensor
network platforms. Fig. 4 demonstrates that this is indeed the

W Regular Fidelity
B Multi-Fidelity

Percentage of Concurrant
Applications Accomodated

0.2 0.4 0.6 0.8 1

Ratio of Resource Request to Availability

Fig. 4. Effectiveness of Multi-Fidelity Representation

case. The X-axis represents the ratio of resources requests to
the actual availability on average. The Y-axis represents the per-
centage of all applications that can be run simultaneously in the
network for two different configurations. The first configura-
tion (blue bar) represents traditional applications that come with
only one fidelity level. These applications can either run at that
fidelity level or not at all. The second bar (red bar) represents
applications that are designed using the ideas in this paper (i.e.,
the applications are fidelity-aware). Here, applications run at
several fidelities and we can lower the fidelities of some applica-
tions to satisfy more applications in the sensor network concur-
rently. As can be seen with the graph, writing applications that
can be run at several fidelity levels is greatly valuable. We can
use the same sensor network to more efficiently accommodate
more applications simultaneously. In our specific experimen-
tal settings, we typically observe that we can accommodate two
extra applications (out of the ten possible applications) when
employing multi-fidelity applications.

100 4
90 -
80 -
70 A
60 -
50 -

40
30 4
20 4
10
0 -
0.2 0.4 0.6 0.8 1

Ratio of Resource Request to Availability

Percentage of Optimal
Configuration Detections

Fig. 5. Effectiveness of Greedy Algorithm

Our second experiment assessed the effectiveness of our algo-
rithm in detecting a good combination of applications to sched-
ule on a sensor platform. Given the large number of applica-
tions that can be run in a variety of fidelity settings, the goal of
our algorithm is to pick a good combination of applications and
their corresponding fidelity setting. We call the set of chosen
applications and their corresponding fidelity settings a configu-
ration. Fig. 5 demonstrates that our greedy algorithm is quite
effective in practice. The X-axis, once again, represents the ra-
tio of resource requests to availability. The Y-axis highlights the
percentage of times our algorithm achieved an optimal configu-
ration out of 100 runs. By this we mean, the percentage of times
where resources in the network was used most efficiently. That

is, there was no better configuration of applications that could
have used the resources in the network more efficiently. As can
be seen from the graph, the percentage of times that we discover
the optimal set is around 40%. This is a pretty high number
given the large number of combinations that are possible tak-
ing into account all the applications and the various fidelities
that they can exist in. We believe this is because the degree of
task sharing is an important metric in making our greedy algo-
rithm effective. This experiment demonstrates that relying on a
heuristic and employing a greedy algorithm works well in prac-
tice and more often than not, finds a good solution in a large
search space.

Figs. 4 and 5 demonstrate that it is beneficial to treat a sensor
network as a platform and run several applications simultane-
ously on it. However, to use the platform effectively, applica-
tions need be written so as to run in several fidelity settings. An
algorithm, such as our greedy algorithm, can then be used to
select the right configuration at run time.

VII. RELATED WORK

Our work relates to several areas of research explored in wire-
less networks and other areas. In this section, we place our
work in context. The idea of using multiple fidelities for individ-
ual applications has been discussed previously in the literature.
Satyanarayanan et al. [7] formally define the notion of multi-
fidelity algorithms as those that allow a range of possible out-
comes instead of a single output specification. They established
the usefulness of using multi-fidelity approaches to interactive
applications in particular [6]. The approach taken in this paper
is inspired by this work, and we explore the implications of us-
ing multi-fidelity algorithms in the context of a sensor networks
platform. In addition our approach borrows from the notion of
fidelity vectors introduced in [3]. Another theme that runs in
this work is the ability to break down applications into tasks
and share tasks while running applications concurrently. The
Abstract Task Graph [1] is an effort in a similar vein. The user
specifies a set of abstract data items and tasks that are performed
by the sensor network. Our breakdown of sensor network tasks
into sensing, storage, and communication is in the same spirit.
However, our focus is on using such a task breakdown for ap-
plication sharing, thereby enabling a sensor network platform
supporting multiple concurrently executing applications. There
has been some work on running multiple applications in a sensor
network in the database community [2], [8]. Such work has typi-
cally focused on intelligently sharing some sensor network tasks
such as reusing aggregated data and using the same data for mul-
tiple applications. Our work exploits some of these observations
and also focuses on sharing network resources like bandwidth
and energy. Finally, we discuss other efforts relating to deciding
which applications to schedule in a sensor network platform. An
analytic evaluation of satisfying the QoS needs of multiple ap-
plications along multiple QoS dimensions was presented in [3]
for real time systems. Given the difficulty of knowing the exact
state of the environment and the resources available, we believe
that analytic solutions will be difficult to employ in sensor net-
works. Consequently, we employed a utility driven approach.
A similar technique was studied for large radio networks in [4].
Several other utility-based approaches such as resource alloca-

tion in sensor networks SORA [5] have also been studied. These
rely on reinforcement learning and economic models for energy
optimization in sensor networks instead of the greedy heuristic
employed in our work. In future work, we plan to look at all the
possible options—analytic, heuristic, learning, optimization etc.
and understand the tradeoffs of using each to determine what set
of applications to run concurrently in a sensor network.

VIII. CONCLUSION AND FUTURE WORK

We have presented a new way of looking at application se-
lection and resource sharing in sensor networks, specifically
addressing the needs of sensor networks that support multi-
ple differing and potentially competing applications. Our ap-
proach introduces a fidelity function to judiciously trading off
application’s fidelity decay in presence of multiple applications
and limited network resources. We also formulate a constraint-
optimization problem and propose a greedy heuristic algorithm
to select the optimal subset of concurrent applications within the
limited fidelity and resource budget.

In future work we plan to address three issues. First, we plan
to explore the software engineering implications of writing ap-
plications that run at several fidelities. Can applications that
are currently written be easily changed so as to run at differ-
ent fidelities. Can we develop design patterns to ease this ef-
fort? Second, we will investigate both analytic solutions to our
constraint optimization problem and learning based techniques
that should perform better than our greedy heuristic presented
here. Finally, we investigate the impact of error on our percep-
tion of resources. In this work, we assumed the we had real-time
knowledge of all the resources available in the network. This is
clearly unrealistic in actual deployment. We will investigate the
impact of having imperfect information about resource usage
and consumption on our algorithms.

REFERENCES

[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task
graph: a methodology for architecture-independent programming of net-
worked sensor systems. In EESR ’05: Proceedings of the 2005 workshop on
End-to-end, sense-and-respond systems, applications and services, pages
19-24, Berkeley, CA, USA, 2005. USENIX Association.

[2] R.Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica. Sharing aggre-
gate computation for distributed queries. In SIGMOD ’07: Proceedings of
the 2007 ACM SIGMOD international conference on Management of data,
pages 485-496, New York, NY, USA, 2007. ACM.

[3] C.Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen. A scalable
solution to the multi-resource qos problem. In Proceedings of the 20"
IEEE Real-Time Systems Symposium, pages 315-326, 1999.

[4] M. Li, T. Yan, D. Ganesan, E. Lyons, P. Shenoy, A. Venkataramani, and
M. Zink. Multi-user data sharing in radar sensor networks. In Proceed-
ings of the 5" International Conference on Embedded Networked Sensor
Systems, pages 247-260, 2007.

[5] G.Mainland, D. C. Parkes, and M. Welsh. Decentralized, adaptive resource
allocation for sensor networks. In Proceedings of the 2% conference on
Symposium on Networked Systems Design & Implementation, pages 315—
328, 2005.

[6] D.Narayanan and M. Satyanarayanan. Predictive resource management for
wearable computing. In Proceedings of the 15t International Conference
on Mobile Systems, Applications and Services, pages 113-128, 2003.

[7] M. Satyanarayanan and D. Narayanan. Multi-fidelity algorithms for inter-
active mobile applications. Wireless Networks, 7(6):601-607, 2001.

[8] N. Trigoni, Y. Yao, A. Demers, and J. Gehrke. Multi-query optimization
for sensor networks. In Proceedings of the 15¢ International Conference on
Distributed Computing in Sensor Systems, pages 307-321, 2005.

