
A Declarative Approach to Agent-Centered Context-Aware
Computing in Ad Hoc Wireless Environments

Gruia-Catalin Roman1 Christine Julien1 Amy L. Murphy2

1Department of Computer Science
Washington University
Saint Louis, MO 63130

{roman, julien}@cs.wustl.edu

2Department of Computer Science
University of Rochester
Rochester, NY 14627

murphy@cs.rochester.edu

ABSTRACT
Much of the current work on context-aware computing re-
lies on information directly available to an application via
context sensors on its local host, e.g., user profile, host loca-
tion, time of day, resource availability, and quality of service
measurements. We propose a new notion of context, which
includes in principle any information reachable via the ad
hoc network infrastructure but is restricted in practice to
specific views of the overall context. The contents of each
view will be defined in terms of data, objects, or events
exhibiting certain properties, associated with particular ap-
plication components, residing on particular hosts, and part
of some restricted subnet. Location, distance, movement
profile, access rights, and a lot more will be available for use
in view specifications. The underlying system infrastruc-
ture will interpret the view specifications and continuously
update the contents of user-defined views despite dynamic
changes in the specifications, state transitions at the appli-
cation level, mobility of hosts in the physical space, and the
migration of code among hosts.

1. INTRODUCTION
The foundation of this work is the notion that context-

aware computing holds the key to achieving rapid develop-
ment of dependable mobile applications in ad hoc networks.
Context-aware computing refers to the explicit ability of a
software system to detect and respond to changes in its en-
vironment, e.g., a drop in the quality of service on a video
transmission, a low battery level, or the sudden availability
of much needed access to the Internet. Most current facili-
ties supporting context-awareness are relatively simple and
limited in scope. When the needs of the application must
reach beyond the basics (e.g., the application requires access
to services available at a remote location), the programmer
needs to contend with more complex processes that include

.

discovery and communication. While these extra costs may
be acceptable in wired networks where connections persist
over extended periods of time, in ad hoc networks the com-
plexity of managing frequent disconnections can significantly
increase the programming effort. Yet, mobile systems do
need access to a broad range of resources, maybe even more
so than distributed applications.
Of interest to us is the ease with which resources can

be acquired and retained in the presence of mobility. Our
idea is to extend the notion of declarative specifications to
a broader set of resources and to provide the mechanisms
needed to maintain access to the specified resources despite
rapid changes in the environment caused by the mobility
of hosts, migration of software components, and changes
in connectivity. For instance, an application on a palmtop
should be able to declare its need for printer access and, as
the owner travels along, a printer should always appear on
the desktop, as long as some printer is within wireless com-
munication range. Of course, building such an application
with today’s technology is feasible, but coding it cannot be
reduced to the simple act of providing a declaration in the
program. We contend that we can accomplish the latter
(and a lot more) by extending the notion of context-aware
computing and by developing a software infrastructure that
continuously secures the resources declared in the applica-
tion program.

2. DECLARATIVE SPECIFICATION
OF VIEWS

We assume a computing model in which hosts can move in
physical space and the applications they support are struc-
tured as a community of software components called agents
that can migrate from one host to another whenever connec-
tivity is available. Thus, an agent is the unit of modularity,
execution, and mobility, while a host is a container char-
acterized, among other things, by its location in physical
space. Communication among agents and agent migration
can take place whenever the hosts involved can physically
communicate with each other, i.e., they are connected. Since
the notion of context is always a relative one, we will use the
term reference agent to denote the agent whose context we
are about to consider, and we will refer to the host on which
this agent is located as the reference host. An agent’s lo-
cation is always a host, while a host’s location is always a



point in some physical or logical space.
An ad hoc network is defined as a closed set of reach-

able hosts. In principle, the context associated with a given
agent consists of all the information available in the ad hoc
network. We will refer to it as the maximal context of the
reference agent. Of course, such broad access to informa-
tion is generally costly to implement. In addition, various
parts of the same application may need different resources
at different times during the execution of the program. For
this reason, we believe that it is important to structure the
context in terms of fine-grained units which we call views. A
view is a projection of the maximal context together with an
interpretation that defines the rules of engagement between
the agent and the particular view.
The concept of view is agent centric in the sense that

every view is defined relative to a reference agent and with
respect to its needs for resources from and knowledge about
its environment. An agent sees the world through a set of
views. The set may be altered at will by defining, redefining,
and deleting views as processing requirements demand. The
expected software engineering gains will be determined to a
great extent by the level of flexibility and simplicity we can
offer to the application programmer. Our strategy focuses
on declarative specifications. A rich set of criteria can be
employed towards this purpose. For instance, one ought to
be able to describe the view contents in terms of phrases
such as:

All specials (reference to objects) posted by fam-
ily restaurants (reference to agents) within a mile
(implicit reference to hosts) of my current loca-
tion (property of the reference host).

In general, constraints on the attributes of the desired re-
sources (data or objects) and the agents that own them are
an effective way to restrict a view’s contents. They must be
combined, however, with constraints on the attributes of the
hosts on which the agents reside and with properties of the
ad hoc network in the immediate vicinity. Security and net-
work considerations will likely emerge as important research
issues in any effort to design a language for view specifica-
tion. At the network level, for instance, it may be desirable
to limit context to a connected subnet of the ad hoc network
forming a region around the reference host. The network
topology, geometry, physical distribution in space, and se-
curity enforcement procedures may play a role in determin-
ing the shape of the region of interest. These considerations
are new to context-aware computing and are injected by our
focus on ad hoc mobility.
The adoption of a declarative context specification is moti-

vated by the expectation that transparent context manage-
ment will shift to the underlying middleware many of the
burdens programmers face in the development of applica-
tions for use over ad hoc networks. Moreover, the program-
mer can be given explicit control over the cost associated
with context management. The programmer controls the
scope of the view (a large or small neighborhood), the size
of the view (the range of entities included), and the rela-
tive cost of executing a particular operation on that view
(by defining the level of consistency, e.g., best effort versus
transactional semantics). Finally, by having access to a com-
plete specification of the needs of all agents residing on the
same host, opportunities for optimizations arise naturally.

3. MODELS OF CONTEXT-AWARENESS
Because we see ad hoc mobility as a fundamental challenge

to developing the next generation of consumer, industrial,
and military applications, we seek to develop new models of
context-awareness able to accommodate the complexities of
mobile computing, to build middleware that embodies these
models, and to evaluate both on interesting application test
beds. This section offers a broad-brush discussion of the
four types of context-awareness models we are currently in-
vestigating. Our models reflect those popular in distributed
computing, but we expect new technological advances to re-
sult from our special focus on their applicability to ad hoc
networks, the introduction of declarative specifications of
context, and automatic context maintenance.
To show how an agent’s interaction with the view dif-

fers among the four models, we introduce an example that
we will revisit throughout this section. Consider a team of
robots exploring an uninhabited planet. The robots need
to perform experiments that require precise relative loca-
tions and instrumentation that no single robot can carry.
For example, some robots may be able to precisely sense
their locations, some may be able to sense the ambient tem-
perature, others may sense atmospheric pressure, and still
others may collect data about the soil composition. All of
these pieces of information have the potential to contribute
to the operating context of any agent in the system. Now
consider a specific agent that requires two pieces of location
information from other robots (for determining relative lo-
cations) and a single piece of temperature information (for
performing its experiment). To satisfy its needs, the agent
defines two views. The first is defined to contain the loca-
tion data items that are between some minimum and max-
imum distance from the agent’s robot. The second view
contains temperature data items within a specified number
of network hops. The agent can dynamically adjust its view
specifications as its needs change. The agent’s style of in-
teraction with these views depends upon the features of the
context-awareness model in use by the system. As we de-
scribe the several context-awareness models, we will revisit
this example to elucidate how the agent interacts with its
temperature view in each model.

Context-Sensitive Data Structures. In many dis-
tributed systems, data access serves as the primary form of
interaction among components. In mobile computing, sev-
eral systems have used shared tuple spaces as a coordination
medium. MARS [1] is concerned with interactions among
mobile agents and employs a single tuple space per host
to facilitate coordination among co-located mobile agents.
Lime [6] relies on transient sharing of tuple spaces among
agents on the same host and among hosts within commu-
nication range. This enables Lime to provide support for
both physical and logical mobility. Other systems have ex-
plored different data structures. PeerWare [3], for exam-
ple, stores documents in trees and adjusts the tree structure
to account for mobility. All these systems assume a sym-
metric model of sharing. When a group of components is
formed, they all share the same data, and they perceive it
in the same manner. By contrast, our proposed model al-
lows each individual agent to define its own perspective of
the data available in the world in terms of one or more views.
This asymmetry, a distinguishing feature of our model, al-
lows each agent to assume responsibility for and control over
the size and scope of the data it accesses. For example, an



d1

d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1

d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

Contents of a1's view

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

d1
d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

h3 a2 d2
d3

Contents of a1's view

(a) (b)

Figure 1: View dynamics. Data items visible to the reference agent a1 located on host h1 before and after h3 moves

into the range of h1. Hosts, agents, and data items with darkened borders contribute to the view, while ones with

lighter borders do not satisfy the specification.

agent associated with a managing robot that monitors the
activities of other robots in its vicinity might define a view
that includes the locations and activities of all other robots
within a certain distance, which may be continuously ad-
justed as the exploration progresses.
In general, we envision allowing the agent’s view to con-

tain a representation of a subset of the data available in the
ad hoc network. The choice of representation is a defining
feature of each specific instantiation of the general model. In
the context-sensitive data structures model, the view’s rep-
resentation is a simple data structure (e.g., a tuple space).
The three remaining models build on this foundation. The
choice of data included in the view, i.e., its contents, is
determined by the view specification. The latter is given
in a declarative manner by stating constraints on the net-
work, hosts, agents, and data that contribute to defining
the view. One can impose restrictions on network proper-
ties (e.g., number of hops, distances, bandwidth, etc.) so as
to define a connected subnet immediately surrounding the
reference host. We expect this kind of locality to help con-
trol the context maintenance costs while meeting the needs
of most mobile applications. Within this contextual set-
ting, further restrictions can be imposed on the properties
of the physically mobile hosts (e.g., power availability, de-
vices supported, etc.) in the subnet and of the mobile agents
supported by the admissible hosts. Finally, data associated
with the remaining eligible agents can be filtered to produce
the actual contents for that view. As hosts and agents move
and properties of the network components change over time,
the contents of the view must be transparently updated for
the reference agent.
The dynamic nature of the view definition is illustrated

in Figure 1, where the depicted view of agent a1 changes as
the distance between hosts h1 and h3 decreases. Agent a1

is grayed to indicate that it is the agent specifying the view.
Hosts, agents and data items that contribute to the view
are shown with darkened borders. In part (a) of the figure,
because of a1’s specification, only hosts h1 and h2 qualify

to contribute agents to the view. Because of the restrictions
on agent properties and data properties, only certain data
items on certain agents on these hosts appear in the view.
The balloon pointing to a1 shows a table of the hosts, agents,
and data items contributing to a1’s view. As part (b) shows,
when host h3 moves closer to h1, it satisfies the view’s con-
straints. Again, only certain data items on certain agents
appear in the view. Exactly which hosts, agents, and data
items contribute is determined by the application-provided
view specification.
In this model, the view rep-

<probe_1, temp, 23>

<probe_2, temp, 36>

robot agent's
temperature view

request

robot
agent

Figure 2: Agent/view

interaction in the

context-sensitive data

structures model.

resentation takes the form of a
standard data structure. For
the purposes of discussing our
example, we assume the view’s
data structure is a tuple space
with which the robot agent in-
teracts by performing standard
tuple space operations. Fig-
ure 2 shows this general pat-
tern of interaction. This figure
and all subsequent ones show
a virtual picture of an agent’s
view where both remote and lo-
cal tuples are included in a sin-
gle “soup”. The actual distribution of the information in
logical and physical space (as shown in Figure 1) is omitted.
The tuple space operations, or requests, include reading and
removing data from the view. Additionally, the tuple space
might provide reactive behaviors whereby the robot agent
can react to the appearance of new data items in the view.
Tuples match operations or reactions through content-based
pattern matching, i.e., an agent selects data by specifying
values for fields in the tuples. For example, a robot agent
might gain an initial temperature reading by performing a
read operation for a tuple corresponding to any probe (p),
labeled as temperature data (by the string temp), with any



temperature value (v):

read(〈probe : p, temp, value : v〉)

If the robot wants to receive subsequent readings from the
same temperature probe, it might register a reaction:

react to(〈p, temp, value : v〉, A)

The action A will be performed whenever the temperature
probe p outputs a new temperature reading that satisfies
the view specification.

Context-Sensitive References. One can easily extend
the context-sensitive data model so that the view contains
objects and object references instead of data items. An
agent obtains an object reference and description from the
view. The agent then uses this information to interact with
the remote object directly by invoking methods in it. The
agent can continue to use the reference but receives no guar-
antees regarding the stability of the remote object because
the interaction occurs outside the view.
In using the

temp

location

reference

interaction

returned
request

remote
object

robot
agent

robot agent's
temperature view

Figure 3: Agent/view interac-

tion in the context-sensitive ref-

erences model.

context-sensitive ref-
erences model in the
robot environment,
the temperature data
is encapsulated in
objects. Instead of
reading data items di-
rectly from the view,
the robot agent reads
an object reference
based on require-
ments it provides.
The information
returned indicates
the remote object’s location and information about how
to interact with the object (i.e., its available methods).
Figure 3 shows this style of interaction. A robot agent
might request from the view a reference to a temperature
object at a location (l) within 2 meters:

read(〈object reference : r, temp, location : l :: l−here < 2m〉)

For a more complicated request, the agent could require
that the object reference returned provide a particular
method. The robot agent can interact directly with the
remote object by invoking methods on it. For example,
a temperature object might have methods getCelsius()
and getFahrenheit(), and the robot agent could call either
method depending on its needs:

r.getCelsius()

The agent can hold the reference as long as it desires, how-
ever, if the reference object disappears, an exception will be
generated if the robot agent attempts to use the stale refer-
ence. In such a case, the agent must obtain a new reference
from the view.

Context-Sensitive Bindings. Traditional distributed
systems, like CORBA-compliant systems [5] and Jini [4],
hide many of the details of object distribution from the
programmer. The general pattern of interaction requires
a client to find an object in the lookup service and then
bind to it, allowing the programmer to invoke methods on
the remote object as if it were local. If the remote object
fails, the client must revisit the lookup service to retrieve

a new reference. In a mobile environment, objects move,
and bindings are more likely to break. The middleware sup-
porting the view concept transparently manages bindings,
hiding both the lookup service and object mobility from the
programmer. In general, the view contains a set of objects
owned by connected agents. The set of available objects de-
pends on the reference agent’s view specification. However,
the programmer does not access this set of objects directly.
Instead he can request bindings to objects in the view. As
agents and the objects associated with them move, the bind-
ings are maintained and transparently updated to select new
objects as needed. As an example of a view, consider a ref-
erence agent responsible for printing documents. Its view
might contain all printers available on the current floor in
the current building. The agent might then request a bind-
ing to the highest quality printer. As the agent moves, the
set of available printers changes, and therefore the binding
automatically changes. Our current implementation plan fo-
cuses on adding this functionality as a thin veneer over the
context-sensitive references model. This veneer will hide the
view contents and will service a binding request by locating
an object in the view that matches the binding specification
and by creating the connection to it for the agent. The layer
will also have to respond to changes in the available set of
objects in order to maintain, update, and break bindings
when necessary.
Because the

method
invocation

local
reference

bound
object

robot agent's
temperature view

robot
agent

Figure 4: Agent/view interaction

in the context-sensitive bindings

model.

robot agent re-
quires a single
temperature
reading, when
using the context-
sensitive bindings
model, the agent
would request a
single binding to
a temperature ob-
ject. This model
allows the agent to specify a binding policy which helps
select the “best match” for the binding from among the
objects in the view. In our example, the agent might
request to bind to the temperature probe with the highest
precision. A binding request might look like:

bind(〈object reference : r, temp〉) highest precision policy

The agent interacts with the object by invoking methods on
the binding:

r.getCelsius()

Figure 4 shows these interactions. If the bound object dis-
appears or a new object appears that better satisfies the
binding policy, the middleware automatically updates the
binding. The system generates an exception only when no
object in the view satisfies the binding request.

Context-Sensitive Events. Another model we plan to
investigate allows agents to interact through a language of
events. In this case, the view contains events generated by
components in the system. For example, an agent moni-
toring robot activity might define a view containing events
generated when new robots (hosts) connect and are within a
certain physical distance. Event-based interactions have be-
come common in distributed systems. The JEDI system [2],
for example, uses a distributed event dispatcher through
which active objects communicate by generating events and



registering to receive events. The view concept we propose
introduces allowances for ad hoc mobility and the capability
to restrict the scope of visible events based on the network,
hosts, agents, objects, and the events themselves.
In this case, the objects themselves are not directly visi-

ble to the reference agent, only the events they generate are
visible. These events are filtered by an event specification.
Agents operate on this resulting view of events by bind-
ing callback functions to the events or prescribed sequences
of events which pass through the filter. Any application-
defined object can generate events, allowing agents to re-
spond to both application specific events as well as generic
events such as a change in an object data field. To ensure
a unified treatment of all events and uniformity of the view
contents, we expect to postulate (for specification purposes)
the existence of virtual objects so named as to refer to ap-
plication agents, hosts, and network resources abstractly.
Their role will be to pass on system generated events to the
context, but their implementation will be hard coded in the
middleware. The implementation of context-sensitive events
will appear as a veneer over the context-sensitive data struc-
tures model.
In this model, the

robot agent's
temperature view

robot
agent

call-
back

registration

event

Figure 5: Agent/view in-

teraction in the context-

sensitive events model.

robot agent interacts
with events generated
by temperature objects
instead of interacting
with the data or objects
themselves. The robot
agent registers to receive
temperature events from
its view. As shown in
Figure 5, this registration
attaches a callback function provided by the agent to the
generation of satisfying events. As the figure indicates, this
style of interaction completely hides the view’s contents
from the robot agent. The agent will, however, receive all
events generated by all temperature probes in the view. To
handle this, the agent has several choices. One is simply to
filter these events locally, using the information only as the
application desires. A second option would detect a single
“first” event and remember the source, r. The callback
for this event would deregister the initial registration and
register the agent for only events originating at r. Of
course, this option requires the agent to explicitly handle
the failure or disappearance of r.
Even for this simple example, all four models have advan-

tages and disadvantages. The model chosen for use depends
on factors as varied as the guarantees required by the sys-
tem and the application developer’s preferred programming
paradigm.

4. DISCUSSIONS
Our experiences in the ongoing development of the Lime

middleware provides us with a foundation for beginning this
model’s implementation. An initial implementation of the
basic context-sensitive data structures model is in progress.
This prototype builds directly on top of the Lime middle-
ware and provides most of the capabilities required by the
model. This initial prototype allows us to begin the devel-
opment of the applications that spurred this investigation.
Further work on the middleware’s development will replace
Lime with the provision of true asymmetric behavior and

will allow for an empirical evaluation of the performance of
the applications. We approach this development effort from
a bottom-up perspective. The lowest level requires algo-
rithms and protocols for gathering information from sensors
and disseminating that information in a timely fashion. We
have already developed an algorithm for consistent group
membership [7] that uses location information to provide
the appearance of announced disconnection in spite of host
mobility. Other work on providing an abstraction of the
network based on properties of network paths [8] provides a
foundation for implementing the view abstraction required
in this model. At each layer of the implementation, key is-
sues related to the highly dynamic ad hoc environment will
have to be addressed. As mentioned in the introduction,
one such issue concerns the application’s ability to specify
the level of consistency guarantees it requires for particular
operations over particular views. As always, another key el-
ement of the final implementation involves tradeoffs between
system expressiveness and the efficiency of its implementa-
tion. Specifically, the view specification language should be
as flexible as possible without losing the efficiency gains as-
sociated with the provision of the asymmetric model. The
initial prototype will be useful in evaluating possible speci-
fication mechanics, but the final evaluation will come with
the full implementation of the asymmetric model.

5. CONCLUSIONS
As software must function in settings that are increasingly

open and highly dynamic, software development is becoming
more complex. While we cannot eliminate the intrinsic com-
plexity of software artifacts operating under such demanding
circumstances, we can reduce the complexity of application
development by shifting much of the burden onto the system
support infrastructure. Programming power can be ampli-
fied by allowing the developer to think at a new and higher
level of abstraction. Effective use of the limited resources
often associated with mobile systems can be achieved by
having the system infrastructure explicitly know what the
application needs are at any given point in time.

6. REFERENCES
[1] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A

programmable coordination architecture for mobile agents.
Internet Computing, 4(4):26–35, 2000.

[2] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27(9):827–850, September 2001.

[3] G. Cugola and G. Picco. PeerWare: Core middleware
support for Peer to Peer and mobile systems. Technical
report, Politecnico di Milano, 2001.

[4] K. Edwards. Core JINI. Prentice Hall, 1999.

[5] W. Emmerich. Engineering Distributed Objects. John Wiley
and Sons, Ltd., 2000.

[6] A. Murphy, G. Picco, and G.-C. Roman. Lime: A
middleware for physical and logical mobility. In Proc. of the
21st Int’l. Conf. on Distributed Computing Systems, pages
524–533, April 2001.

[7] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group
membership in ad hoc networks. In Proc. of the 23rd Int’l.
Conf. on Software Engineering, May 2001.

[8] G.-C. Roman, C. Julien, and Q. Huang. Network
abstractions for context-aware mobile computing. In Proc. of
the 24th Int’l. Conf. on Software Engineering, (To appear).


